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1 Introduction to Shannon Entropy

1.1 Shannon entropy

Information theory is unusual in that it originated from the work of one person, Claude
Elwood Shannon, in the late 1950s.1 Shannon’s idea was how to numerically measure the
“amount of (statistical) uncertainty” inherent in a probabilistic experiment.

Example 1.1 (Coin flipping). The “uncertainty” in (1/2, 1/2) is “more” than in (3/4, 1/4),
which is “more” than in (99/100, 1/100).

Shannon developed a calculus to work with such quantities. This notion is called
entropy.

Definition 1.1. Consider a probability distribution (p(1), . . . , p(d)) on {1, . . . , d}. The
Shannon entropy of p is

H(p) = −
d∑
i=1

p(i) log p(i).

Here, the log is base 2, which was Shannon’s convention and the convention for engi-
neers. In mathematics and statistical mechanics, the natural logarithm is used. We take
the convention that 0 log 0 = 0 (which is limx↓0 x log x).

Example 1.2. Note that

H

(
1

2
,
1

2

)
= −1

2
log

1

2
− 1

2
log

1

2
= log 2 = 1.

This is a kind of normalization.

1.2 Motivation for the formula of entropy

To motivate the actual formula, consider d = 2 and n independent copies of {1, 2}-valued
random variables with probability distribution p. For a sequence xn of 1s and 2s,

p(xn) =

n∏
i=1

p(xi)

= p(1)N(1|xn)p(2)N(2|xn)

= 2n(N(1|xn)/n log p(1)+N(2|xn)/n log p(2)),

1Shannon lived from 1916-2001. His master’s thesis is also considered a landmark. It introduced the
boolean circuit view of computing. There is a 2017 movie about Shannon called The Bit Player and a book
called A Mind at Play.
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where N(i | xn) is the number of times i appears in xn. But by the strong law of large

numbers, N(i|xn)
n → p(1) almost surely as n→∞. So

p(xn) ≈ (2p(1) log p(1)+p(2) log p(2))n.

This suggests that −p(1) log p(1)− p(2) log p(2) represents the “uncertainty” in one toss.

1.3 Expectation formulation of entropy

If X is a random variable taking values in {1, . . . , d} with probability distribution p, i.e.
P(X = i) = p(i) for 1 ≤ i ≤ d, we write H(X) for H(p). With this notation,

H(X) =
d∑
i=1

P(X = i) log
1

P(X = i)
= E[log 1/p(X)].

1.4 Concavity of Shannon entropy and entropy of uniform distributions

Fix d ≥ 2. The set of probability distributions on {1, . . . , d} is called the unit d-simplex
in Rd. We can write it as {(p(1), . . . , p(n)) : p(i) ≥ 0,

∑d
i=1 p(i) = 1}. This is a convex

set, and H can be viewed as a function on this set.

Proposition 1.1. H is a concave function on the (unit) d-simplex for each fixed d.
That is, for all p0, p1 ∈ {1, . . . , d} and λ ∈ [0, 1], if pλ denotes λp1 + (1− λ)p0, then

H(pλ) ≥ λH(p1) + (1− λ)H(p0).

Proof. Because H(p) = −
∑d

i=1 p(i) log p(i), we want to check that x log x is convex. This
is twice differentiable, so it suffices to show that the second derivative is ≥ 0. Write

(x log x)′′ = (log2 e)(x loge x)′′

= (log2 e)(loge x+ 1)′

= (log2 e)
1

x
≥ 0.

Corollary 1.1. The uniform distribution on {1, . . . , d} has the largest entropy among
probability distributions on {1, . . . , d}.

Proof. Let Sd denote the set of permutations of {1, . . . , d}. Then

(1/d, . . . , 1/d) =
1

d!

∑
σ∈Sd

(p(σ(1)), p(σ(2)), . . . , p(σ(d))),
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so by the concavity of H,

H(1/d, . . . , 1/d) ≥ 1

d!

∑
σ∈Sd

H(p(σ(1)), p(σ(2)), . . . , p(σ(d)))

= H(p).

1.5 Conditional entropy

The entropy calculus starts with the definition of “conditional entropy.” Given a pair of
random variables (X,Y ), we consider H(X,Y ) − H(Y ) and denote this H(X | Y ). This
is known as the conditional entropy of X given Y . Next time, we will consider the
information I(X;Y ) := H(X) − H(X | Y ) and see that this is actually symmetric in X
and Y .
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2 Entropic Quantities Relating Random Variables

2.1 The binary entropy function

Suppose we have a probability distribution p = (p1, . . . , pd) on a finite set of X of size d,
say X = {1, . . . , d}. We will use the notation [d] = {1, . . . , d}. The function

H(p1, . . . , pd) = −
d∑
j=1

pi log pi

is called the entropy of the distribution p. Last lecture we saw thatH ≥ 0 andH(p1, . . . , pd) ≤
H(1/d, . . . , 1/d) = log d as a consequence of the concavity of H as a function on the
unit d-simplex. Concavity of H means that for λ ∈ [0, 1], H(λp(1) + (1 − λ)p(0)) ≥
λH(p(1)) + (1− λ)H(p(0)).

Example 2.1. For d = 2, H(p, 1 − p) = −p log p − (1 − p) log(1 − p). We denote this as
h(p).

The function h(p) is known as the binary entropy function. The graph is very steep
near 0; all the derivatives approach ∞. h(1/2) = 1, and h(p) = h(1− p). We can calculate

h′(p) = log2 e(− loge p− 1 + loge(1− p) + 1)

= log
1− p
p

,

which is +∞ at p = 0 and −∞ at p = 1. We can check

h′′(p) = log2 e

(
− 1

1− p
− 1

p

)
,
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which is −∞ at p = 0 and p = 1.

2.2 Convexity and Jensen’s inequality

Definition 2.1. A set D ⊆ Rn is convex if when λ ∈ [0, 1] and x(0), x(1) ∈ D, λx(0) +
(1− λ)x(1) ∈ D, as well.

Definition 2.2. A function f : D → R where D ⊆ Rn is a convex set is called a convex
function if for all λ ∈ [0, 1] and x(0), x(1) ∈ D, we have

f(λx(1) + (1− λ)x(0)) ≤ λf(x(1)) + (1− λ)f(x(0)).

This implies that if for any m ≥ 1, x(1), x(2), . . . , x(m) ∈ D and any probability distri-
bution (λ1, . . . , λm) on [m], we have

f

(
m∑
i=1

λix
(i)

)
≤

m∑
i=1

λif(x(i)).

More generally, we have the following:

Theorem 2.1 (Jensen’s inequality). For any random variable Z taking values in a convex
set D ⊆ Rn,

f(E[Z]) ≤ E[f(Z)].

2.3 Joint and conditional entropy

If X is a random variable taking values in [d], we write H(X) for H(p1, . . . , pd), where
pi := P(X = i). If X takes values in X , then H(X) denotes H(p(x), x ∈ X ), where
p(x) := P(X = x). Now suppose X takes values in X and Y takes values in Y , where
X ,Y are finite sets. They have a joint probability distribution (p(x, y), (x, y) ∈X ×Y ).

Definition 2.3. The joint entropy of the pair (X,Y ), which is just a random variable
taking values in X × Y , is denoted H(X,Y ) and equals

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y).

Definition 2.4. The difference H(X,Y )−H(X), denoted H(Y | X), is called the condi-
tional entropy of Y given X.

Recall that the entropy is H(X) = E[log 1/p(X)]. The joint entropy can be written
similarly:

H(X,Y ) = E
[
log

1

p(X,Y )

]
.
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We can also write the conditional entropy as

H(Y | X) = E
[
log

1

p(Y | X)

]
=
∑
x,y

p(x, y) log
1

p(y | x)

=
∑
x

p(x)
∑
y

p(y | x) log
1

p(y | x)
.

For each fixed x ∈ X ,
∑

y p(y | x) log 1
p(y|x) is denoted H(Y | X = x). It is the entropy of

the conditional distribution of Y given that X = x. With this notation,

H(Y | X) =
∑
x

p(x)H(Y | X = x).

Remark 2.1. This notation is not consistent with the rest of probability notation. H(Y |
X) is a number, rather than a random variable. This notation is widespread in information
theory, however, because it was introduced by Shannon himself.

From this formula, we can see that H(Y | X) ≥ 0.

2.4 Mutual information

We might hope that we “learn” about Y from observing X, i.e. the uncertainty in Y is
reduced. That is, we hope that H(Y ) ≥ H(Y | X). This is true.

Definition 2.5. H(Y )−H(Y | X) is denoted I(X;Y ) (or sometimes denoted as I(X∧Y ))
and is called the mutual information between X and Y .

We have

I(X;Y ) = E
[
log

1

p(Y )

]
− E

[
log

1

p(Y | X)

]
= E

[
log

p(X,Y )

p(X)p(Y )

]
=
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
.

This is symmetric when X and Y are interchanged. That is, I(X;Y ) = I(Y ;X).
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2.5 Relative entropy

I(X,Y ) ≥ 0 because it is a relative entropy.

Definition 2.6. Given two probability distributions (p(z), z ∈ Z ) and (q(z), z ∈ Z ), we
write

D(p || q) =
∑
z∈Z

p(z) log
p(z)

q(z)
,

which is called the relative entropy of p with respect to q. It is also called the informa-
tion distance/divergence of p from q or the Kullback-Leibler divergence.

Remark 2.2. The relative entropy is not a distance; it is not symmetric in p and q and
does not satisfy the triangle inequality.

We want to show that D(p || q) ≥ 0. Note that

I(X;Y ) = D(p(x, y) || p(x)p(y)),

where p(x, y) is the joint distribution of (X,Y ) and p(x)p(y) is the distribution of (X̃, Ỹ ),

where X̃
d
= X, Ỹ

d
= Y , and X̃, Ỹ are independent. So we will get I(X;Y ) ≥ 0 if we can

prove D(p || q) ≥ 0 in general.
The relative entropy is a natural statistical quantity that measures how far p is from

q. So the conceptual meaning of I(X;Y ) is that it measures how far apart the joint
distribution of (X,Y ) is from being a product distribution of independent X,Y .

Proposition 2.1. D(p || q) ≥ 0.

Proof. Write

D(p || q) =
∑
z∈Z

q(z)
p(z)

q(z)
log

p(z)

q(z)

=
∑
z∈Z

q(z)φ

(
p(z)

q(z)

)
,

where φ : R+ → R is given by φ(u) = u log u, which is convex (checked below). Using
Jensen’s inequality,

≥ φ

(∑
z∈Z

q(z)
p(z)

q(z)

)
= φ(1)

= 0.

To check that φ is convex, we have φ′(u) = log2 e(loge u+ 1), so φ′′(u) = log2 e · 1
u ≥ 0.

Corollary 2.1. I(X;Y ) ≥ 0.
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3 Entropy Over Countable Alphabets and Features of Con-
ditional Entropy

3.1 Entropy of distributions over countable sets

Let’s adjust our definitions to allow for distributions over countable sets. Let X be a
random variable taking values in X , a finite or countably infinite set, and let (p(x), x ∈X )
be its probability distribution. Its entropy is

H(X) = H((p(x), x ∈X )) = −
∑
x

p(x) log p(x).

This is well-defined, even if X is countably infinite, because all the terms have the same
sign.

Remark 3.1. In general, to define
∑

x∈X a(x), where X is countably infinite, define
it to be (

∑
x∈X a+(x)) − (

∑
x∈X a−(x)), where a+(x) := max(a(x), 0) and a−(x) :=

max(−a(x), 0). This definition makes sense when at least one of
∑

x∈X a+(x),
∑

x∈X a−(x)
is finite.

To avoid subtracting infinities when dealing with entropies over countable sets, proceed
as follows: Given a pair of random variables X,Y taking values taking values in (finite or
countably infinite) X ,Y , respectively, for each y ∈ Y , define H(X | Y = y) to be the
entropy of the conditional distribution of X given Y = y:

H(X | Y = y) = −
∑
x∈X

p(x | y) log p(x | y).

We can alternatively express

H(X) = E
[
log

1

p(X)

]
, E

[
log

1

p(X | Y )
| Y = y

]
,

as before.
Define the conditional entropy of X given Y to be

∑
y p(y)H(X | Y = y), denoted

H(X | Y ). So

H(X | Y ) = E
[
log

1

p(X | Y )

]
.

Now H(X,Y ) = H(Y )+H(X | Y ) becomes a theorem, called the chain rule for entropy.

Theorem 3.1 (Chain rule).

H(X,Y ) = H(Y ) +H(X | Y ).

12



Proof.

E[log
1

p(X,Y )
] = E

[
log

1

p(Y )

]
+ E

[
log

1

p(X | Y )

]
.

We define D(p || q) for (p(x), x ∈X ), (q(x), x ∈X ) as

D(p || q) =
∑
x

p(x) log
p(x)

q(x)

To see that this is well-defined, observe that

=
∑
x

q(x)
p(x)

q(x)
log

p(x)

q(x)
.

Then this is well-defined because the function u 7→ u log u defined on R+ is bounded below.
Then, we can define I(X;Y ) := D(p(x, y) || p(x)p(y)), and our previous definition for

mutual information becomes a theorem:

Theorem 3.2.
H(X) = I(X,Y ) +H(X | Y ).

Proof.

E
[
log

1

p(X)

]
= E

[
log

p(X,Y )

p(X)p(Y )

]
+ E

[
log

1

p(X | Y )

]
.

These “theorems” or (X,Y ) can be schematically visualized via a Venn diagram.

3.2 Relationship between mutual information and independence

It is important to recognize that the condition for I(X;Y ) = 0 is p(x, y) = p(x)p(y) for all
x, y, i.e. X,Y are independent (denoted XqY ). Since I(X;Y ) = H(X)+H(Y )−H(X,Y )
(inclusion-exclusion),

X q Y ⇐⇒ H(X,Y ) = H(X) +H(Y ).

13



3.3 General form of the chain rule

If we apply the chain rule twice, we get

H(X1, X2, X3) = H(X1 | X2, X3) +H(X2, X3)

= H(X1 | X2, X3) +H(X2 | X3) +H(X3).

Similarly, using the notation Xn
1 to denote (X1, . . . , Xn), we get the general chain rule:

Theorem 3.3 (Chain rule, general form).

H(X1, . . . , Xn) = H(X1) +H(X2 | X1) +H(X3 | X1, X2) + · · ·+H(Xn | Xn−1
1 ).

Example 3.1. Consider an urn2 with 3 balls, two white and 1 red. Pull out all 3 balls
in a random order. Let X1 be the color of the first ball, let X2 be the color of the second
ball, and let X3 be the color of the third ball. Then

H(X1) = H(X2) = H(X3) =
1

3
log 3 +

2

3
log

3

2
= log 3− 2

3
.

We can also calculate the conditional entropies:

H(X2 | X1) = P(X1 = red)H(X2 | X1 = red) + P(X1 = white)H(X2 | X1 = white)

=
2

3
log 2

=
2

3
.

On the other hand, H(X3 | X1, X2) = 0 because X3 is determined by X1, X2. So the chain
rule gives

H(X1, X2, X3) = H(X1) +H(X2 | X1) +H(X3 | X1, X2)

= log 3− 2

3
+

2

3
+ 0

= log 3.

2No one in the 21st century has ever seen an urn.

14



3.4 Problems with intuiting mutual information

Here is the Venn diagram for (X1, X2, X3):

What does region 6 represent? This could be I(X;Y | Z), the conditional relative en-
tropy between the joint distribution (X,Y ), conditioned on Z and the product distribution
with the corresponding marginals, conditioned on Z. That is, region 6 is

H(X | Z)−H(X | Y,Z).

What does region 7 represent? This region is

I(X;Y )− I(X;Y | Z).

Here is a big problem, not for the math but for any hope of intuition: This can be negative.
In particular, this says that in the presence of Z, Y can tell you more about X than it
does alone.

Example 3.2. Let X q Y , with X ∈ {1,−1}, Y ∈ {1,−1}, P(X = 1) = 1/2, and
P(Y = 1) = 1/2. Let Z = XY so Z ∈ {1,−1} with P(Z = 1) = 1/2. Then Y q Z and
X q Z, but X,Y, Z are not mutually independent. Since X q Y , we have I(X;Y ) = 0.
However,

I(X;Y | Z) = P(Z = 1)I(X;Y | Z = 1) + P(Z = −1)I(X;Y | Z = −1)

= P(Z = 1)(H(X | Z = 1)−H(X | Y, Z = 1))

+ P(Z = −1)(H(X | Z = −1)−H(X | Y, Z = −1))

Since X q Z, H(X | Z = 1) = H(X | Z = −1) = H(X) = log 2 = 1. Also, H(X | Y, Z =
1) = 0 because X = Y when Z = 1 and H(X | Y,Z = 1) = 0 because X = −Y when
Z = −1. So

=
1

2
(1− 0) +

1

2
(1− 0)

15



= 1.

This is strictly bigger than I(X;Y ).

Let’s define I(X;Y | Z) in a way that works for a countably infinite alphabet. We first
define, given p(x, y, z), ∑

z

p(z)D(p(x | z) || p(y | z)),

denoted D(p(x | z) || p(y | z) | p(z)) to be the conditional relative entropy of p(x, z) with
respect to p(y, z) given z. Then D(p(x, y | z) || p(x | z)p(y | z) | p(z)) would then be
I(X;Y | Z). That is,

I(X;Y | Z) :=
∑
z

p(z)
∑
x,y

p(x, y | z) log
p(x, y | z)

p(x | z)p(y | z)

= E
[
log

p(X,Y | Z)

p(X | Z)p(Y | Z)

]
= H(X | Z) +H(Y | Z)−H(X,Y | Z).

Then the chain rule gives

I(X;Y | Z) = H(X | Z)−H(X | Y,Z).

3.5 The chain rule for relative entropy

Theorem 3.4 (Chain rule for relative entropy).

D(p(x, y) || q(x, y)) = D(p(x) || q(x)) +D(p(y | x) || q(y | x) | p(x)).

Proof.

D(p(x, y) || q(x, y)) =
∑
x,y

p(x, y) log
p(x, y)

q(x, y)

= Ep
[
log

p(X,Y )

q(X,Y )

]
= Ep

[
log

p(X)

q(X)

]
+ Ep

[
log

p(Y | X)

q(Y | X)

]
= D(p(x) || q(x)) +D(p(y | x) || q(y | x) | p(x)).

Similarly, there is a chain rule for mutual information

Theorem 3.5 (Chain rule for mutual information).

I(X;Y1, . . . , Yn) = I(X;Y1) + I(X;Y2 | Y1) + · · ·+ I(X;Yn | Y n−1
1 ).
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4 Convexity of Relative Entropy and the Data Processing
Inequality

4.1 Chain rules for entropy, relative entropy, and mutual information

The chain rule for entropy for two random variables says that

H(X1, X2) = H(X1) +H(X2 | X1)

For n variables, we have

H(Xn
1 ) = H(Xn−1

1 , Xn)

= H(Xn−1
1 ) +H(Xn | Xn−1

1 )

...

= H(X1) +H(X2 | X1) + · · ·+H(Xn | Xn−1
1 ),

which we can write as

=
n∑
`=1

H(X` | X`−1
1 ).

Here, the convention is that X`−1
1 for ` = 1 needs no conditioning.

This also comes from

H(Xn
1 ) = E

[
log

1∏n
`=1 p(X` | X`−1

1 )

]

=
n∑
`=1

E

[
log

1

p(X` | X`−1
1 )

]

=

n∑
`=1

H(X` | X`−1
1 ).

Similarly, we can obtain the chain rule for relative entropy from

D(p(xn1 ) || q(xn1 )) = Ep
[
log

p(Xn
1 )

q(Xn
1 )

]
= Ep

[
log

∏n
`=1 p(X` | X`−1

1 )∏n
`=1 q(X` | X`−1

1 )

]

=

n∑
`=1

Ep

[
log

p(X` | X`−1
1 )

p(X` | X`−1
1 )

]

17



=

n∑
`=1

D(p(x` | x`−1
1 ) || q(x` | x`−1

1 ) | p(x`−1
1 )).

We can also obtain the chain rule for mutual information:

I(X;Y1, Y2) = I(X;Y1) + I(X;Y2 | Y1).

This comes from

E
[
log

p(X,Y1, Y2)

p(X)p(Y1, Y2)

]
= E

[
p(X,Y1)

p(X)p(Y1)

p(X,Y1, Y2)p(Y1)p(Y1)

p(Y1)p(X,Y1)p(Y2, Y1)

]
= E

[
log

p(X,Y1)

p(X)p(Y1)

p(X,Y2 | Y1)

p(X | Y1)p(Y2 | Y1)

]
,

More generally,

I(X;Y n
1 ) = I(X;Y n−1

1 , Yn)

= I(X;Y n−1
1 ) + I(X;Yn | Y n−1

1 )

...

= I(X;Y1) + I(X;Y2 | Y1) + · · ·+ I(X;Yn | Y n−1
1 ),

which we can write as

=

n∑
`=1

I(X;Y` | Y `−1
1 ).

4.2 Convexity of relative entropy and the log-sum inequality

An important property of relative entropy D(p || q) is that it is convex in the pair (p, q),
where p denotes (p(x), x ∈X ) and q denotes (q(x), x ∈X ). That is for all (p0, q0), (p1, q1)
and λ ∈ [0, 1], if we denote pλ = λp1 + (1− λ)p0 and qλ = λq1 + (1− λ)q0, then

D(pλ || qλ) ≤ λD(p1 || q1) + (1− λ)D(p0 || q0).

Remark 4.1. Note that D(p || q) can take the value +∞.

This is a consequence of the log-sum inequality:

Lemma 4.1 (log-sum inequality). Suppose ai, bi > 0 for i ∈X .∑
i∈X

ai log
ai
bi
≥ a log

a

b
,

where a =
∑

i∈X ai and b =
∑

i∈X bi.

18



Proof. This comes from the convexity of u log u for u ≥ 0. The left hand side is∑
i∈X

ai log
ai
bi

= b
∑
i∈X

bi
b

(
ai
bi

log
ai
bi

)
Using Jensen’s inequality,

≥ b

(∑
i

bi
b

ai
bi

)
log

(∑
i

bi
b

ai
bi

)
= a log

a

b
.

Corollary 4.1. D(p || q) is convex in the pair (p, q).

Proof.

λD(p1 || q1) + (1− λ)D(p0 || q0) =
∑
x

λp1(x) log
p1(x)

q1(x)
+ (1− λ)p0(x) log

p0(x)

q0(x)

=
∑
x

λp1(x) log
λp1(x)

λq1(x)
+ (1− λ)p0(x) log

(1− λ)p0(x)

(1− λ)q0(x)

Using the log-sum inequality,

≥
∑
x

(λp1(x) + (1− λ)p0(x)) log
λp1(x) + (1− λ)p0(x)

λq1(x) + (1− λ)q0(x)

= D(pλ || qλ).

Remark 4.2. The inequality is still true if any of the terms = +∞.

A good book on convex functions is the book by Rockafeller.

4.3 The data processing inequality

The data processing inequality says that if you are looking at the mutual information
between X and Y and then you process Y in a way that does not use X, the mutual
information can only decrease. How do we make this notion precise?

Definition 4.1. Given 3 random variables X,Y, Z, we write Y −X − Z to indicate that
Y and Z are conditionally independent given X. We may say that they form a Markov
chain in this order. In probability notation, we may use the notation Y qX Z.

Recall that conditional independence says that p(y, z | x) = p(y | x)p(z | x). Since

p(y, z | x) = p(y | x, z)p(z | x),

the assumed conditional independence gives

p(y | x, z) = p(y | x).

This argument can be run backwards, hence the “Markov” terminology.
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Remark 4.3. Running the argument in the other direction gives p(z | x, y) = p(z | x) if
Y −X − Z.

Theorem 4.1 (Data processing inequality). Suppose Y − X − Z form a Markov chain.
Then

I(Y ;Z) ≤ I(Y ;X).

Proof. Use the chain rule in two different orders:

I(Y ;X,Z) = I(Y ;X) + I(Y ;Z | X),

I(Y ;X,Z) = I(Y ;Z) + I(Y ;X | Z).

Because Y qX Z, I(Y ;Z | X) = 0. In fact, each I(Y ;Z | X = x) equals 0. So

I(Y ;X) ≥ I(Y ;Z),

as desired.

Remark 4.4. The condition for equality is I(Y ;X | Z) = 0, i.e. Y qZ X. This has
interesting implications in statistics. Say we try to find an estimate for a random variable
Θ (in a Bayesian framework) based on observations X. We might ask for some function
T (X) such that Θ−X−T (X). When is it true that I(Θ;T (X)) = I(Θ;X)? This happens
precisely when Θ− T (X)−X.

A typical example (not in a discrete context) is when Θ is the mean of the marginal,
where each marginal is normal with variance 1. So conditioned on Θ = θ, each Xi ∼ N(0, 1)
for 1 ≤ i ≤ n. If T (X) = 1

n

∑
iXi, then Θ−T (X)−X. By the data processing inequality,

we should study T (X) instead of X in a statistical context because it contains at least as
much information as X in terms of estimating Θ.
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5 Sufficient Statistics, Fano’s Inequality, and the Asymp-
totic Equipartition Property

5.1 Sufficient statistics

Last time, we discussed the data processing inequality. Given Y − X − Z (i.e. Y and Z
are conditionally independent given X), the data processing inequality says that

I(X;Z) ≥ I(Y ;Z).

The equality condition is when I(X;Z | Y ) = 0, i.e. X − Y − Z.
We also discussed sufficient statistics. The idea is to think about learning about Θ by

processing some observations X into T (X), so Θ−X − T (X). Then Θ− T (X)−X if and
only if I(Θ;X) = I(Θ;T (X)). Given Θ − T (X) − X, we say that T (X) is a sufficient
statistic (for learning about Θ from X).

If |X | = d, let u(x) = 1
d for x ∈X . Given (p(x), x ∈X ), then

D(p || u) =
∑
x

p(x) log
p(x)

u(x)
= log d−H((p(x), x ∈X )).

So it is difficult to define entropy in non-discrete settings. Regardless, here is a non-discrete
example of a sufficient statistic.

Example 5.1. Let X1, . . . , Xn
iid∼ N(θ, 1) when Θ = θ, where Θ ∈ {θ1, . . . , θd} is a random

variable. Then 1
n

∑n
i=1Xi is a sufficient statistic for Θ. To check this, we need to show

that Θ−X − (X1, . . . , Xn), where X := 1
n(X1, . . . , Xn). The conditional joint density is

f(x1, . . . , xn | θ) =
n∏
i=1

1√
2π
e−(xi−θ)2/2

=
n∏
i=1

1√
2π
e−(xi−x+x−θ)2/2

=
1

(2π)n/2
e−

∑n
i=1(xi−x)2

e−
n
2

(x−θ)2
e−

∑n
i=1(xi−x)(x−θ)︸ ︷︷ ︸

=1

.

Now

f(x1, . . . , xn | x, θ) =
f(x1, . . . , xn, θ, x)

f(θ, x)

=
f(x1, . . . , xn, x | θ)

f(x | θ)
And f(x | θ) = e−

n
2

(x−θ)2
by integrating over x1, . . . , xn, so

= f(x1, . . . , xn | x).
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5.2 Fano’s inequality

In the data processing inequality, we had Y −X− Ŷ , where Ŷ is viewed as derived from X
to learn about Y . Suppose Y and Ŷ take values in the same set and our goal is to try to
get small P(Ŷ 6= Y ). Fano’s inequality gives us an lower bound on this probability using
the conditional entropy of Y given X.

Theorem 5.1 (Fano’s inequality). Suppose Y −X − Ŷ , and let pe = P(Y 6= Ŷ ). Then

H(Y | X) ≤ H(Y | Ŷ ) ≤ h(pe) + pe log(|Y | − 1),

where h(pe) = −pe log pe − (1− pe) log(1− pe) is the binary entropy function.

Proof. Because I(X;Y ) = H(Y ) −H(Y | X) and I(Ŷ ;Y ) = H(Y ) −H(Y | Ŷ ), the data
processing inequality gives H(Y | X) ≤ H(Y | Ŷ ). Now consider H(Y,E | Ŷ ), where
E = 1{Y 6=Ŷ } is a {0, 1}-valued random variable. Write this as

H(Y,E | Ŷ ) = H(Y | Ŷ ) +H(E | Y, Ŷ )︸ ︷︷ ︸
=0

.

We can also write this as

H(Y,E | Ŷ ) = H(E | Ŷ ) +H(Y | E, Ŷ )

≤ H(E) + peH(Y | E = 1, Ŷ )

≤ h(pe) + pe log(|Y | − 1).

5.3 The asymptotic equipartition property

Given (p(x), x ∈X ) with X finite, let X1, . . . , Xn
iid∼ p. Then

pn(xn1 ) =
n∏
i=1

p(xi)

=
∏
x∈X

p(x)N(x|xn1 ),

where N(x | xn1 ) =
∑n

i=1 1{xi=x} is the number of times x shows up in x1, . . . , xn.

= 2
∑
x∈X N(x|xn1 ) log p(x).

The Strong Law of Large Numbers tells us that 1
nN(x | Xn

1 ) → p(x) almost surely as
n → ∞. This suggests that for large n, the realizations that “matter” are those xn1 for
which each N(x | xn1 ) is roughly np(x). The asymptotic equipartition property formalizes
this statement in a weak way via the weak law of large numbers. The “method of types”
formalizes this more carefully.

The asymptotic equipartition property comes from applying the weak law of large
numbers to the iid sequence of entropy densities, i.e. to the sequence log 1

p(x1) , log 1
p(x2) , . . . .
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Lemma 5.1 (Weak law of large numbers). For any real-valued iid sequence Z1, Z2, . . .
with E[|Z1|] <∞,

1

n

n∑
i=1

Zi
p−→ E[Z1].

That is, for all ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − E[Z1]

∣∣∣∣∣ ≤ ε
)
→ 1

as n→∞.

Theorem 5.2 (Asymptotic equipartition property). For all ε > 0,

P
(∣∣∣∣− 1

n
log p(X1, . . . , Xn)−H(X)

∣∣∣∣ ≤ ε)→ 1

as n→∞.

This leads us to define the following.

Definition 5.1. The set of ε-weakly typical sequences is

A(n)
ε :=

{
xn1 :

∣∣− 1
n log pn(xn1 )−H(X)

∣∣ ≤ ε} .
We can see

xn1 ∈ A(n)
ε ⇐⇒ 2−nH(x)2−nε ≤ pn(xn1 ) ≤ 2−nH(X)2nε.

Proposition 5.1.
|A(n)

ε | ≤ 2nH2nε.

Proof. We must have P(Xn
1 ∈ A

(n)
ε ) ≤ 1.

The AEP says that
P(Xn

1 ∈ A(n)
ε )→ 1

as n→∞. The left hand side is equal to∑
xn1∈A

(n)
ε

pn(xn1 ).

Hence, for all ε→ 0, if n is large enough (how large depending on δ), P(Xn
1 ∈ A

(n)
ε ) ≥ 1−δ.

Hence,
|A(n)

ε | ≥ (1− δ)2nH2−nε

for all large enough n.
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6 The Asymptotic Equipartition Property and Data Com-
pression

6.1 The asymptotic equipartition property

Last time, we discussed the asymptotic equipartition property (AEP). Given an iid se-
quence of random variables X1, X2, · · · ∼ (p(x), x ∈ X ) with X finite, the weak law of
large numbers applied to the sequence log 1

p(X1) , log 1
p(X2) , . . . tells us that for every ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

log
1

p(Xi)
− E

[
log

1

p(X)

]∣∣∣∣∣ < ε

)
n→∞−−−→ 1.

Note that 1
n

∑n
i=1 log 1

p(Xi)
= 1

n log 1
pn(Xn

1 ) because pn(Xn
1 ) =

∏n
i=1 p(Xi) from the iid

assumption. Also note that E[log 1
p(X) ] = H(X). In other words,

P
(
−ε < 1

n
log

1

p(Xn
1 )
−H(X) < ε

)
n→∞−−−→ 1.

We can also write this as

P
(
2−nH2−nε < pn(Xn

1 ) < 2−nH2nε
) n→∞−−−→ 1.

We define the set of ε-weakly typical sequences A
(n)
ε ⊆X n as

A(n)
ε := {xn1 ∈X n : 2−nH2−nε < pn(xn1 ) < 2−nH2nε}.

We learn that

1. For all ε > 0,
P(Xn

1 ∈ A(n)
ε )

n→∞−−−→ 1.

2. For all ε > 0, |A(n)
ε | ≤ 2nH2nε because

P(Xn
1 ∈ A(n)

ε ) =
∑

xn1∈A
(n)
ε

pn(xn1 ) ≥
∑

xn1∈A
(n)
ε

2−nH2−nε = |A(n)
ε |2−nH2−nε.

3. For any ε > 0 and δ > 0, for all sufficiently large n (how large depending on (ε, δ)),

|A(n)
ε | > (1− δ)2nH2−nε

because if n is large enough,

1− δ < P(Xn
1 ∈ A(n)

ε ) =
∑

xn1∈A
(n)
ε

pn(xn1 ) ≤
∑

xn1∈A
(n)
ε

2−nH2nε = |A(n)
ε |2−nH2nε.
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Together, these three statements comprise the asymptotic equipartition property.

6.2 Data compression

From the point of view of data compression, the AEP says that there is a data compression
scheme where you assign shorter length bit strings to more commonly occurring sequences.
On average, you will end up compressing the data with such a scheme.

Definition 6.1. A lossless data compression scheme at block length n is a pair of
maps (en, dn) called the encoding and decoding maps

en : X n → {0, 1}∗ \ {∅}, dn : {0, 1}∗ \ {∅} →X n

(with {0, 1}∗ denoting the set of binary sequences of finite length) such that dn◦en : X n →
X n is the identity map.

An efficient scheme will try to minimize E[`(en(Xn
1 ))], where ` : {0, 1}∗ → N denotes

the length of the string and the expectation is for X1, . . . , Xn
iid∼ (p(x), x ∈X ).

The AEP suggests the following scheme:

1. Use 1 bit to declare if xn1 ∈ A
(n)
ε or not.

2. If xn1 ∈ A
(n)
ε , we can represent it by at most

dlog |A(n)
ε |e ≤ d2nH2nεe ≤ nH + nε+ 1

bits.
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3. If xn1 /∈ A(n)
ε , we can represent it by dlog |X n|e ≤ n log |X |+ 1 bits.

With this data compression scheme,

E[`(en(Xn
1 ))] ≤ 1 + P(Xn

1 ∈ A(n)
ε )(nH + nε+ 1) + (1− P(Xn

1 ∈ A(n)
ε ))(n log |X |+ 1),

so

lim sup
n→∞

1

n
E[`(en(Xn

1 ))] ≤ H(X) + ε

because P(Xn
1 ∈ A

(n)
ε )→ 1. This scheme is lossless, as well.

6.3 Asymptotic optimality of the AEP compression scheme

It turns out that asymptotically compressing below H(X)−ε bits per symbol via a lossless

scheme is impossible for any ε > 0. To see this, let B
(n)
δ ⊆ X n be any set with P(Xn

1 ∈
B

(n)
δ ) ≥ 1− δ. Then

P(Xn
1 ∈ B

(n)
δ ∩A(n)

ε ) ≥ 1− 2δ

for all large enough n because P(Xn
1 ∈ A

(n)
ε ) > 1− δ (and using a union bound). So

1− 2δ ≤
∑

xn1∈B
(n)
δ ∩A

(n)
ε

pn(xn1 ) ≤ |B(n)
δ ∩A(n)

ε |2−nH2nε.

This tells us that
|B(n)

δ ∩A(n)
ε | ≥ (1− 2δ)2nH2−nε

for all large enough n.
Suppose we have a probability distribution on a finite set giving probability 2−nH2nε to

each of b(1−2δ)2nH2−nεc elements of the set and giving an arbitrary distribution to the rest
of the sequences. We claim that the expected length under any lossless binary encoding of
such a distribution is “approximately” bounded below by nH−nε−1. To see this, consider
a binary tree of depth L. The total number of nodes is 2 + 22 + · · ·+ 2L = 2L+1 − 2. The
total depth of all the nodes is

1 · 2 + 2 · 22 + 3 · 23 + · · ·+ L2L = (L− 1)2L+1 + 2.

So the average depth is
(L− 1)2L+1 + 2

2L+1 − 2
≥ L− 1

The precise lower bound is

log
(
b(1− 2δ)2nH2nεc+ 2

)
− 2.
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This is further lower bounded by

log((1− 2δ)2nH2−nε)− 2 = log(1− 2δ) + n(H − ε)− 2.

So
1

n
expected depth ≥ 1

n
(log(1− 2δ)− 2) +H − ε

A lossless compression scheme X n → {0, 1}∗\{∅}must use at least this many bits/symbols

because P(Xn
1 ∈ B

(n)
δ ∩A(n)

ε ) > 1− 2δ and each xn1 ∈ B
(n)
δ ∩A(n)

ε has pn(xn1 ) ≤ 2−nH2nε.
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7 Types, Typicality Sets, and Entropy Rate

7.1 Types

Let X be a finite set (called the alphabet). Given a sequence of symbols xn1 := (x1, . . . , xn)
taking values in X n and x ∈ X , let N(x | xn1 ) =

∑n
i=1 1{xi=x} be the number of times x

shows up in xn1 . Notice that (
N(x|xn1 )

n , x ∈ X ) is a probability distribution on X (which
depends on X ).

Definition 7.1. The distribution Pxn1 = (
N(x|xn1 )

n , x ∈ X ) is called the type of xn1 in
information theory and the empirical distribution of xn1 more generally.

A type based on a sample of size n from X has to be of the form (kxn , x ∈X ) for some
integers 0 ≤ kx ≤ n with

∑
x kx = n. Pn denotes the set of all types based on samples of

size n from X .

Proposition 7.1.
|Pn| ≤ (n+ 1)|X |.

So |Pn| grows only polynomially in n. Contrast this with the total number of sequences
of length n, whose size is |X |n, exponential in n.

7.2 The scale of typicality sets

Definition 7.2. For p ∈ Pn, the set T (p) = {xn1 : Pxn1 = p} ⊆X n is called the typicality
set of type p.

Now note that given any probability distribution (q(x), x ∈ X ) and any sequence
xn1 ∈X n, qn(xn1 ) =

∏n
i=1 q(xi) is determined by Pxn1 , the type of xn1 , because

qn(xn1 ) =
∏
x∈X

q(x)N(x|xn1 )

=
∏
x∈X

2
nPxn1

(x) log q(x)

= 2
n
∑
x Pxn1

(x) log q(x)
,

which depends on xn1 only through its type. But also note that∑
x

Pxn1 (x) log q(x) =
∑
x

Pxn1 (x) log
q(x)

Pxn1 (x)
+
∑
x

Pxn1 (x) logPxn1 (x),

so
qn(xn1 ) = 2

−n(H(Pxn1
)+D(pxn1

||q))
.

This calculation implies the following:
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Proposition 7.2. For any p ∈ Pn,

|T (p)| ≤ 2nH(p).

Proof. Take q to be p and consider xn1 having Pxn1 = p. This tells us that for all xn1 with
type Pxn1 = p,

pn(xn1 ) = 2−nH(p)

because D(p || p) = 0.
But, given p ∈ Pn,

1 =
∑
xn1

pn(xn1 )

≥
∑

xn1 :Pxn1
=p

pn(xn1 )

=
∑

xn1 :Pxn1
=p

2−nH(p)

= |T (p)|2−nH(p).

We can also prove a lower bound:

Proposition 7.3. For all p ∈ Pn,

|T (p)| ≥ 2nH(p)

(n+ 1)|X |
.

Proof. This comes from showing that for p ∈ Pn, pn(T (p)) ≥ pn(T (p̂)) for all p̂ ∈ Pn. The
left hand side is

pn(T (p)) =
∑

xn1 :Pxn1
=p

pn(xn1 ) =
∑

xn1 :Pxn1
=p

2−nH(p) = |T (p)|2−nH(p),

while the right hand side is |T (p̂)|2−n(H(p̂)+D(p̂||p)).
Substituting the exact values of |T (p)| and |T (p̂)| using combinatorics, the left hand

side is
(

n
np(a1),...,np(ad)

)
2−nH(p) (with X = {a1, . . . , ad}), while the right hand side is(

n
np̂(a1),...,np̂(ad)

)
2−n(H(p̂)+D(p̂||p)). So

pn(T (p))

pn(T (p̂))
≥ n!

np(a1)! · · ·np(ad)!
2n

∑d
i=1 p(ai) log p(ai)

n!

np̂(a1)! · · ·np̂(ad)!
2n

∑d
i=1 p̂(ai) log p̂(ai)

Now observe that m!
`! ≥ `

m−` for all `,m.

≥
∏n
i=1 p(ai)

np(ai)(np(ai))
np̂(ai)∏n

i=1 p̂(ai)
np̂(ai)(np(ai))np(ai)
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= 1.

Finally, we have

1 =
∑
p̂∈Pn

pn(T (p̂))

≤ |Pn|pn(T (p))

≤ (n+ 1)|X |pn(T (p))

= (n+ 1)|X ||T (p)|2−nH(p).

7.3 ε-typical sets in terms of types

For a probability distribution q on X ,

A(n)
ε :=

{
xn1 :

∣∣∣∣∣− 1

n

n∑
i=1

log q(xi)−H(q)

∣∣∣∣∣ < ε

}
.

Proposition 7.4.

A(n)
ε = {xn1 : |D(Pxn1 || q) +H(Pxn1 )−H(q)| < ε}.

Proof.

− 1

n

n∑
i=1

log q(xi) = − 1

n

∑
x

N(x | xn1 ) log q(x)

= −
∑
x

pxn1 (x) log q(x)

= D(Pxn1 || q) +H(Pxn1 ).

So
A(n)
ε = {xn1 : |D(Pxn1 || q) +H(Pxn1 )−H(q)| < ε},

as claimed.

7.4 Stationary sequences and entropy rate

Beyond iid sequences, we consider stationary random sequences.

Definition 7.3. As sequence of random variables (Xk)
∞
k=−∞ with Xk ∈ X is called sta-

tionary if

P(X` = x0, X`+1 = x1, . . . , X`+L = xL) = P(X`+m = x0, X`+m+1 = x1, . . . , X`+m+L = xL)

for all `,m ∈ Z, L ≥ 0, and x0, . . . , xL ∈X .
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For a stationary sequence,

H(X2 | X1) ≤ H(X2),

but H(X2) = H(X1) by stationarity, so

H(X2 | X1) ≤ H(X1).

Similarly,
H(XL+2 | X1, . . . , XL+1) ≤ H(XL+1 | X1, . . . , XL)

because the left hand side equals H(XL+1 | X0, . . . , XL) by stationarity.
This implies that for a stationary process,

lim
L→∞

H(XL+1 | X1, . . . , XL)

exists and is called the entropy rate of the process. In fact, the chain rule says that this
equals

lim
L→∞

1

L
H(X1, . . . , XL).

Definition 7.4. A stationary process is a stationary Markov chain if

P(XL+1 = xL+1 | X1 = x1, . . . , XL = xL) = P(XL+1 = xL+1 | XL = xL)

for all L ≥ 1 and x1, . . . , xL+1.

So all that matters is the matrix [p(j | i) : 1 ≤ i, j ≤ |X |], where the transition
probabilities p(j | i) = P(X2 = j | X1 = i). If we let π(i) := P(X1 = i) for i ∈ X in a
stationary Markov chain, then ∑

i

π(i)p(j, i) = π(j)

for all j. The entropy rate for a stationary markov chain will be H(X2 | X1) because
H(X2 | X1, X0) = H(X2, X1). So the entropy rate is∑

i

π(i)
∑
j

p(j | i) log
1

p(j | i)
.
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8 Entropy Rate, Markov Processes, and Data Compression
for Sequences

8.1 Entropy rate

Last time, we introduced the entropy rate of a stationary stochastic process. If X is a
finite or countably infinite set, a stationary stochastic process is a sequence of random
variables (Xk)

∞
k=−∞ with the property that

P(Xk = x0, Xk+1 = x1, . . . , Xk+t = xt)

does not depend on k (for all t ≥ 0, x0, . . . , xt). The entropy rate of the process is the
limit

lim
n→∞

1

n
H(X1, . . . , Xn),

where the limit exists because H(X1) ≥ H(X2 | X1) ≥ · · · ≥ H(Xn | X1, . . . , Xn−1), and
in fact,

lim
n→∞

1

n
H(X1, . . . , Xn) = lim

n→∞
H(Xn | X1, . . . , Xn−1)

because of the chain rule, H(X1, . . . , Xn) = H(X1) + H(X2 | X1) + · · · + H(Xn | Xn−1
1 ).

We can think of the entropy rate as the asymptotic amount of information we learn from
the next random variable in the sequence.

Observe that

p(x1, . . . , xt) = p(x1)p(x2 | x1) · · · p(xt | x1, . . . , xt−1).

For large t and k < t,

p(x1)p(x2 | x1) · · · p(xk | x1, . . . , xk−1)
t−k∏
j=1

p(xk+j | xk+j−t−1, . . . , xk+j−1)

might be a decent approximation from a modeling point of view. This defines a (k−1)-order
stationary Markov process.

A first order Markov process3 is defined by the transition probabilities p(x2 | x1)
for x1, x2 ∈X and an initial distribution (p(x), x ∈X ). A stationary Markov process
is defined by the transition probabilities and a probability distribution (π(x), x ∈X ) such
that

∑
x∈X π(x)p(y | x) = π(y) for all y ∈X . This would mean that

p(x1, . . . , xt) = π(x1)p(x2 | x1)p(x3 | x2) · · · p(xt | xt−1).

3For finite or countable state spaces, these are often referred to as “Markov chains.”
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For a k-th order Markov process, we need p(xk+1 | x1, . . . , xk) with xi ∈ X and i =
1, . . . , k + 1 and an initial distribution (p(x1, . . . , xk), x

k
1 ∈X k). For stationarity, we need

a distribution (π(x1, . . . , xk), x
k
1 ∈X k) such that∑

x1

π(x1, . . . , xk)p(xk+1 | x1, . . . , xk) = π(x2, . . . , xk+1).

The entropy rate for a stationary Markov process is H(X2 | X1), while the entropy rate
for a k-th order stationary Markov process is

H(Xk+1 | X1, . . . , Xk) =
∑

x1,...,xk

π(x1, . . . , xk)H((p(xk+1 | x1, . . . , xk), xk+1 ∈X )).

For k = 1, this is

H(X2 | X1) = −
∑
x,y

π(x)p(y | x) log p(y | x)

8.2 Time reversal and reversible Markov processes

An important class of examples is reversible stationary Markov processes.

Definition 8.1. A stationary Markov process is reversible if

π(x)p(y | x) = π(y)p(x | y) ∀x, y ∈X .

For a general stationary Markov chain depending on the transition probability matrix
[p(y | x)]x,y∈X and stationary distribution (π(x), x ∈X ), one can define

p̃(y | x) :=
π(y)p(x | y)

π(x)

(assuming π(x) > 0 for all x ∈X ). Then

∑
y∈X

p̃(y | x) =

∑
y∈X π(y)p(x | y)

π(x)
=
π(x)

π(x)
= 1

and ∑
x∈X

π(x)p̃(y | x) =
∑
x∈X

π(y)p(x | y) = π(x),

so [p̃(y | x)]x,y∈X defines a transition probability matrix with stationary distribution
(π(x), x ∈ X ). This is called the time reversal of the original process. A Markov
process is time reversible if and only if its time reversal has the same joint distributions as
as the original process.
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Example 8.1. Stationary random walks on weighted graphs give rise to examples.

At any time t, Xt belongs to the set of vertices, and

P(Xt+1 = j | Xt = i) =
wi,j∑
k∈V wi,k

.

The stationary distribution will be

π(i) =

∑
j∈V wi,j

2
∑

i,j wi,j
,

and this process is reversible.
This is of huge importance in algorithms, and it has connections to resistive network

theory.4

8.3 Overview of data compression for sequences

The next 2-3 lectures will be about various schemes for lossless data compression. The goal
is to represent observed data efficiently (using as few bits/symbols as possible). We have
already seen, for example, that if X1, X2, . . . are iid with marginal distribution (p(x), x ∈
X ), there exists an encoding map en : X n → {0, 1}∗ \ {∅} and a decompression map
dn : {0, 1}∗ \ {∅} →X n (for each n ≥ 1) such that dn ◦ en is the identity map and

1

n
E[length(en(X1, . . . , Xn))] ≤ H + ε.

Morover, we have also seen that for any en : X n → {0, 1}∗ \ {∅} and dn : {0, 1}∗ \ {∅} →
X n with dn ◦ en = id, for any ε > 0,

1

n
E[length(en(X1, . . . , Xn))] ≥ H − ε.

4This is covered in a book by Doyle and Snell called Random Walks and Electrical Networks.
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There is a book called Handbook of Data Compression by Salamon which discusses this.5

We would like a version of this for stationary processes. We’ll see this as we go along,
but here are some big picture facts related to this.

We cannot get an analog of the Strong Law of Large Numbers for stationary processes
without assuming an additional condition called ergodicity which excludes examples like
p(. . . , X0 = 1, . . . , Xt = 1) = P(X0 = 0, . . . , Xt = 0) = 1/2 for all t ≥ 0.

For a stationary ergodic process, we have (under some conditions) the pointwise ergodic
theorem:

Theorem 8.1 (Pointwise ergodic theorem, Birkhoff). Let (Xk)
∞
k=−∞ be a stationary, er-

godic process with random variables taking values in X . Given f : X → R,

lim
n→∞

1

n

n∑
i=1

f(Xi) = E[f(X1)]

almost surely.

But even this is not enough for us to replace the Strong Law of Large Numbers applied
to information densities. We need a further statement:

Theorem 8.2 (Shannon-McMillan-Breiman). If (Xk)
∞
k=−∞ is a stationary, ergodic pro-

cess,

lim
n→∞

− 1

n
log p(X1, . . . , Xn) = entropy rate of process

almost surely.

From a practical point of viewpoint, en : X n → {0, 1}∗ \ {∅} needs to be construc-
tion from “smaller pieces.” For example, start with e : X → {0, 1}∗ \ {∅} and define
en(x1, . . . , xn) = e(x1)e(x2) · · · e(xn). This function e needs to be 1 to 1 for invertibility.
But even if e : X → {0, 1}∗ \ {∅} is 1 to 1, en might not be.

Example 8.2. Let X = {1, 2, 3} with e(1) = 0, e(2) = 00, and e(3) = 1. Then

e3(12) = 000, e3(21) = 000.

Definition 8.2. e : X → {0, 1}∗ \ {∅} is called uniquely decodable if each en is one to
one.

One way to get this property is to make e instantaneous (or prefix-free) if no e(x)
is a prefix of e(y) for x 6= y.

5The book is on the order of 1000 pages long.
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Example 8.3. If X = {1, 2, 3, 4}, we can take

e(1) = 1, e(2) = 01, e(3) = 001, e(4) = 000.
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9 Uniquely Decodable Codes

9.1 Uniquely decodable and prefix-free codes

Last time, we talked about lossless data compression.

Definition 9.1. A lossless data compression scheme is a sequence ((en, dn), n ≥ 1)
of maps en : X n → {0, 1}∗ \ {∅} and dn : {0, 1}∗ \ {∅} → X n such that dn ◦ en is the
identity for each n.

Equivalently, we could specify (en, n ≥ 1) and insist that each en is one to one. Equiv-
alently, we could specify e∗ : X ∗ \ {∅} → {0, 1}∗ \∅ which is one to one on each X n.

One practical way to create encoding maps is to specify e : X → {0, 1}∗ \ {∅} and
define en(xn1 ) = e(x1)e(x2) · · · e(xn).

Example 9.1. If X = {1, 2, 3} with

e(1) = 0, e(2) = 11, e(3) = 0110,

then we can encode larger words like

e(12) = 011.

We could also do this by specifying e on blocks of length r for some r ≥ 1.

Definition 9.2. We’ll say e is uniquely decodable if each en is one to one.

This is equivalent to requiring that e∗ is one to one. One way to get unique decodability
is if e is instantaneous or prefix-free.

Definition 9.3. The encoding map e is instantaneous or prefix-free6 if for all x 6= y ∈
X , e(x) is not a prefix of e(y).

It’s easiest to think about this in terms of a binary tree. Prefix-free is equivalent to
the requirement that no node e(x) in the coding can lie on the path between the root and
another node e(y).

Example 9.2. The previous example is not prefix-free.

6Cover and Thomas call this a “prefix code,” which is super confusing.
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Example 9.3. The following example is uniquely decodable but not prefix-free:

e(1) = 0, e(2) = 01, e(3) = 11.

If the first received bit is 1 and the next bit is 1, we can parse 11 from the received sequence.
If the first received bit is 0, then if the next bit is 0, we can parse off the first 0; if the next
bit is 1, we need to wait to figure out the parity of the run of 1s.

9.2 Kraft’s inequality

Theorem 9.1 (Kraft’s inequality). For any prefix-free binary code e,∑
x∈X

2−`(e(x)) ≤ 1.

Proof. A formal proof is in Cover and Thomas. The idea is to add the weights of the e(x),
where a node at depth d gets weight 2−d.

Remark 9.1. There is a version of this for prefix-free D-ary codes e : X → {0, . . . , D−1}.
In this case, Kraft’s inequality says ∑

x∈X

D−`(e(x)) ≤ 1.

Here is a generalization by McMillan.

Theorem 9.2. For every uniquely decodable code e : X → {0, 1}∗ \ {∅},∑
x∈X

2−`(e(x)) ≤ 1.

Remark 9.2. There is also a version of this for uniquely decodable D-ary codes e : X →
{0, . . . , D − 1}. In this case, Kraft’s inequality says∑

x∈X

D−`(e(x)) ≤ 1.
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Let’s prove the D-ary version:

Proof. We use a generating function technique. Consider the expression∑
xk∈X

D−`(e(xk))

at time k. Then∑
xn1∈X n

D−`(en(xn1 )) =
∑

xn1∈X n

n∏
k=1

D−`(e(xk)) =
n∏
k=1

∑
xk∈X

D−`(e(xk)).

Take n-th roots on both sides. The key observations are that on the left hand side,

1. The total number of terms that provide D−m for any m ≥ 1 is at most Dm (by
unique decodability).

2. The largest m for which D−m shows up in the left hand side is n`max, where `max =
maxx `(e(x)).

So this tells us that the left hand side is ≤ n`max. Now observe that

(n`max)1/n = e
1
n

(logn+log `max) n→∞−−−→ 1.

9.3 Optimal compression as a linear programming problem

To optimize compression (in bits/symbol) for an iid source (X -valued, marginal distribu-
tion (p(x), x ∈X )), we want to solve

minimize:
∑
x∈X

p(x)`(e(x))

subject to: e is prefix-free.

This suggests studying the problem

minimize:
∑
x∈X

p(x)`(e(x))

subject to:
∑
x∈X

2−`(e(x)) ≤ 1, `(e(x)) ≥ 1.

This, although looking like a weakening of the constraint, actually is equivalent because
for every collection of lengths satisfying Kraft’s inequality, there is a prefix-free code with
those lengths.
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Proposition 9.1. Given any (`(x), x ∈ X ) with `(x) ≥ 1 and
∑

x∈X 2−`(x) = 1, there
exists a prefix-free e : X → {0, 1}∗ \ {∅} such that for all x, `(e(x)) = `(x).

Proof. Proceed by induction on |X |. Merge the two smallest values 2−`(x) to reduce the
size of the alphabet by 1.

This new linear program is an integer programming problem because the variables `(x)
are required. This is computationally difficult. We can relax this to get a tractable problem

minimize:
∑
x∈X

p(x)`(e(x))

subject to:
∑
x∈X

2−`(e(x)) ≤ 1,

where the `(x) can be real-valued. The second condition implies `(x) ≥ 0. We can also
replace the inequality by an equality because this only improves the objective.

We can solve this using Lagrange multipliers. Consider the Lagrangian

∑
x

p(x)`(x) + λ

(∑
x

2−`(x) − 1

)
.

Differentiate in each `(x), and set the derivative equal to 0 to get

p(x)− λ loge 2 · 2−`(x) = 0 ∀x ∈X .

This requires
`(x) = − log p(x) + k

for all x ∈ X . The condition
∑

x 2−`(x) = 1 gives us k = 0. So the optimal value of the
objective is

−
∑
x∈X

p(x) log p(x) = H(p).

We have just proven the following:

Theorem 9.3. The expected length of a uniquely decodable binary code is ≥ H(p).

Remark 9.3. Taking `(x) = dlog 1
p(x)e for x ∈X , we have∑

x∈X

2−`(x) ≤ 1.

Hence, there is a prefix code with these lengths. Such a code is called a Shannon code.
Its expected length is ∑

x

p(x)
⌈

log
1

p(x)

⌉
≤ H(p) + 1.
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For a stationary process working at block length n, we can get lossless compression
with bits/symbol at most

1

n
H(X1, . . . , Xn) +

1

n
.

We will discuss this next time.
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10 Shannon Codes, Huffman Codes, and Shannon-Fano-Elias
Codes

10.1 Recap: Shannon codes

We have been discussing symbol by symbol codes c : X → {0, 1}∗ \ {∅}, extended to
c : X ∗ \ {∅} → {0, 1}∗ \ {∅} by c(x1, . . . , xn) = c(x1) · · · c(xn).

Definition 10.1. We say that c is uniquely decodable if its extension is one to one.

Definition 10.2. We say that c is prefix-free if c(x) is not a prefix of c(y) for x 6= y ∈X .

We showed the Kraft inequality for prefix-free codes:∑
x∈X

2−`(c(x)) ≤ 1.

We saw this by looking at the length associated to the codewords, viewed as sitting in
a binary tree. We also proved an extension of this inequality by McMillan to uniquely
decodable codes.

We saw that the minimization of the expected length of codewords
∑

x∈X p(x)`(c(x))
over prefix-free codes is equivalent to the integer programming problem

minimize:
∑
x∈X

p(x)`(x)

subject to:
∑
x∈X

2−`(x) ≤ 1,

where `(x) is a positive integer for each x ∈ X . This equivalence came from Kraft’s
inequality and from the fact that for every sequence of lengths (`(x), x ∈ X ) satisfying
Kraft’s inequality, there is a prefix code c : X → {0, 1}∗ \{∅} with `(c(x)) = `(x) for each
x ∈ X . Similarly, the Kraft-McMillan inequality says that this is equivalent to the same
problem for uniquely decodable codes.

Using Lagrange multipliers, we saw that minimizing
∑

x∈X p(x)`(x) subject to
∑

x∈X 2−`(x) ≤
1 with real `(x) has optimal solution

`(x) = log
1

p(x)
, x ∈X

with optimal value ∑
x

p(x) log
1

p(x)
= H(p).

This leads to the idea of a Shannon code.
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Definition 10.3. A Shannon code is a code c : X → {0, 1}∗ \ {∅} with `(c(x)) =
dlog 1

p(x)e.

Such codes exist because∑
x∈X

2
−dlog 1

p(x)
e ≤

∑
x∈X

2
− log 1

p(x) = 1.

For a Shannon code,

H(X) ≤
∑
x∈X

p(x)`(c(x)) ≤ H(X) + 1.

So if we create a Shannon code on blocks of length n,

H(X1, . . . , Xn) ≤
∑

xn1∈X n

p(xn1 )`(c(xn1 )) ≤ H(X1, . . . , Xn) + 1,

with Xi ∼ p. Dividing by n, the penalty is at most 1
n bits/symbol.

10.2 Huffman coding

It turns out that in this case, the integer programming problem can be solved exactly.7

The Huffman coding algorithm, in one sentence, basically says to “Recursively merge
the smallest probability pair of symbols.”

Example 10.1. Draw the following diagram, successively merging the two smallest prob-
abilities at each step:

Then label each branch with a 0 or a 1.

A D-ary version requires us to combine the smallest D probabilities at a time.

Theorem 10.1. The Huffman code is optimal.

Proof. Observe some properties that the solution to the integer problem must satisfy:

7This is unusual. Integer programming problems are generally very computationally difficult.
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1. If p(x) ≥ p(y), then `(x) ≤ `(y).

Proof. If not, interchange `(x) and `(y) to get a better code.

2. There have to be at least two symbols x, x′ ∈X getting the longest length.

Proof. If not, reducing the length of the longest codeword by removing a bit from
the end gives a better code.

Also, we can arrange the following:

3. There are two symbols x, x′ ∈X with longest length representations such that these
representations differ only at the last bit, and these are the two smallest probability
symbols.

Proof. If the sibling of a longest length codeword is not present, we can reduce the
length of that codeword by removing the last bit. To guarantee that these are the
two smallest probability symbols, we can just relabel.

This is enough to prove by induction that the Huffman coding algorithm is optimal.

Example 10.2. A Shannon code can be worse than a Huffman code. One way to see
this is to note that the expected length of a Huffman code is a continuous function on the
probability simplex.

Now consider X = {1, 2, 3, 4} with

p(1) =
1

4
, p(2) =

1

4
+ ε, p(3) =

1

4
− ε, p(4) =

1

4
,

for small ε > 0. Here, the Shannon code is worse than the Huffman code because
dlog 1

1/4−εe = 3.

10.3 Shannon-Fano-Elias Coding

Shannon-Fano-Elias coding is a precursor to arithmetic coding (which is widely
used), allowing one to learn the statistics and “improve the code” as one goes along.8

The idea comes from observing that if Z is a random variable with (invertible) CDF
FZ(z) = P(Z ≤ z), then

P(Z ≤ F−1
Z (u)) = FZ(F−1

Z (u)) = u, u ∈ [0, 1].

8This is similar to adaptive control in machine learning.
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This shows that FZ(Z) has uniform distribution on [0, 1], when F−1
Z is well-defined. This

is not true in general but suggests creating codes based on FX , where X ∈ X for a finite
X ⊆ R.

Suppose |X | = d with X = {a1, . . . , ad}, and write

P(X = ai) = pi, 1 ≤ i ≤ d.

For x ∈ R,

FX(x) = P(X ≤ x) =
∑
i:ai≤x

pi.

Here is the idea of how the code works. Draw the values of the CDF as follows:

Now draw the midpoints between these points at p1

2 , p1 + p2

2 , . . . . Take the binary repre-
sentation as a binary fraction of p1 + · · ·+ pi−1 + pi

2 . Then truncate it to get dlog 1
pi
e+ 1

bits. This will be prefix-free and within 2 bits of the entropy.
The arithmetic coding scheme is based on updating this procedure as we go.
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11 Shanon-Fano-Elias, Arithmetic, and Lempel-Ziv Coding

11.1 Shannon-Fano-Elias coding and arithmetic coding

Last time, we introduced the Shannon-Fano-Elias coding scheme. Suppose we have an
alphabet X of size d, which we can assume are real numbers a1 < a2 < · · · < ad. If X is
an X -valued random variable, we can view it as a real-valued random variable. Then we
have the Cumulative Distribution Function (CDF) of X:

FX(x) = P(X ≤ x),

defined for all x ∈ R.
Let pi := P(X = ai) for i = 1, . . . , d, and label the values of the CDF on the interval

[0, 1] as follows.

Then label the midpoints of these values,

Q1 =
p1

2
, Q2 = p1 +

p2

2
, . . . , Qd = . . . , p1 + · · ·+ pd−1 +

pd
2
.

Expand these in their binary representations, and truncate this representation to

`i :=

⌈
log

1

pi

⌉
+ 1

bits.

Example 11.1. Let X = {1, 2, 3} with (p1, p2, p3) = (1/4, 1/8, 5/8). Then the midpoints
are

1

8
= 0.001,

3

16
= 0.101,

11

16
= 0.1011.
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Now we get the lengths

`1 =

⌈
log

1

1/4

⌉
+ 1 = 3,

`2 =

⌈
log

1

1/8

⌉
+ 1 = 3,

`3 =

⌈
log

1

5/8

⌉
+ 1 = 2.

So the Shannon-Fano-Elias code is

1 7→ 001, 2 7→ 010, 3 7→ 10.

Proposition 11.1. This scheme gives a prefix-free code for (pi, i ∈X ).

Proof. Think of the interval [pi + · · ·+ pi−1, p1 + · · ·+ pi) as being owned by the symbol i,
where the left endpoint is 0 for i = 1. Qi is the midpoint of this interval. Let (Qi)`i denote
the `i-truncation of the binary representation of Qi. Observe that

Qi −
i−1∑
j=1

pj =
pi
2
≥ 1

2`i

because `i ≥ log 1
pi

+ 1, so 2`i−1 ≥ 1
pi

, which gives pi
2 ≥

1
2`i

.
Suppose that

(Qi)`i = 0.b1b2 · · · b`i .

Consider [
0.b1b2 · · · b`i , 0.b1 · · · b`i +

1

2`i

)
.

The binary representations of the real numbers in this interval are the continuations of the
binary tree of the string b1 · · · b`i , i.e. those that might violate the prefix-free condition.
But the inequality Qi −

∑i−1
j=1 pj ≥ 1/2`i tells us that this interval falls inside the interval

[pi + · · ·+ pi−1, p1 + · · ·+ pi) owned by the symbol i. Hence, no (Qk)`k for k 6= i can have
(Qi)`i as a prefix.

Observe that we also get

d∑
i=1

pi

⌈
log

1

pi

⌉
≤ H(X) + 2.

We can now amortize the 2 over multiple symbols (say n symbols) in the naive way by imple-
menting a scheme on X n (instead of X ). More interesting is to break [

∑i−1
j−1 pj ,

∑i
j=1 pj)
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itself into d subintervals and so on, iteratively. We can even use conditional probabilities
for this.

Look at the binary representations of the upper and lower ends, and spit out the prefix
they agree on.

11.2 Lempel-Ziv coding and comma-free coding of natural numbers

Imagine you’ve seen an infinite number of symbols from an ergodic source, and you see a
new symbol. How will you compress the new symbol? We want to represent a symbol in
context of its past. This is leading up to the Lempel-Ziv coding scheme from 1977.

First, we need a “comma free” representation of natural numbers. Imagine a transmitter
has a natural number and needs to send a bit string from which the receiver can figure out
this integer. Here is a solution to this problem due to Elias.9

The integer n can be written as a bit string of length τ(n) (so 2τ(n) ≥ n). Then τ(n)
can be written as a bit string of length φ(n) (so 2φ(n) ≥ τ(n)). We could go on like this for
a few stages, but for us this is good enough. To send φ(n), send

000 · · · 0︸ ︷︷ ︸
φ(n) zeroes

1.

The number of bits used in this scheme is

2φ(n) + 1 + τ(n) ≤ dlog ne+ 2dlogdlog nee+ 1

≤ log n+ 2 log log n+ 5.

The key idea in LZ’77 is to compress new samples in the context of the infinite past by
transmitting how far back in the past to look to see the current samples in the context of

9There are many solutions. You can try to figure one out for yourself.
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its own past. This works for a general stationary, ergodic process, but to understand why
this works, we will consider the iid case, working with blocks. Suppose we have

(. . . , x−2, x−1, x0, x1, . . . , xk−1, . . . ),

where x≤−1 is to be shared with the receiver, and x0, x1, . . . , xk−1 is to be conveyed. Find

inf{L ≥ l : (x0, . . . , xk−1) = (x−Lx−L+1, . . . , x−L+k−1)}.

Let p(ak−1
0 ) := P((X0, . . . , Xk−1) = ak−1

0 ). We can show that the comma–free encoding
needs ≤ (1 + ε)H(X1) bits. We will do this next time.
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12 Lempel-Ziv Coding for Ergodic Processes

12.1 Intuition behind Lempel-Ziv coding

Last time, we discussed a comma-free binary representation of natural numbers using
log n+ 2 log log n+ k bits (k = 5). To send n, send dlog ne bits (tells us n ∈ 1, . . . , 2dlogne).
To send dlog ne, send dlogdlog nee bits (same idea). Send dlogdlog nee as dlogdlog nee 0s,
followed by a 1.

Example 12.1. To send n = 17, we have dlog ne = 5 and dlog 5e = 3. Then transmit

0001 101︸︷︷︸
represents 5

10001.

Example 12.2. To send n = 14, we have dlog ne = 4 and dlog 5e = 2. Then transmit

00011001110,

which can be parsed as
0001 100 1110.

To motivate the LZ’77 scheme (which compresses to the entropy rate for any stationary
ergodic process), let’s consider i.i.d.

. . . , X−2, X−1, X0, X1, X2, . . .

at the level of blocks of size L. The situation is that . . . , X−3, X−2, X−1 is common knowl-
edge to the compressor and decompressor (or the transmitter and receiver). We need to
send (X0, X1, . . . , XL−1). We do this by finding

inf{m ≥ 1 : (X0, X1, . . . , XL−1) = (X−mLX−mL+1, . . . , X−mL+L−1}

and sending m using the comma-free encoding of N. Since the blocks of length L of the
type (X−jL, X−jL+1, . . . , X−jL+L−1) are independent, m will be geometrically distributed,
conditioned on (X0, X1, . . . , XL−1). Then

P(m = j | (X0, . . . , XL−1) = xL−1
0 ) = p(xL−1

0 )(1− p(xL−1
0 ))j−1, j = 1, 2, . . . .

So the conditional expectation on this event is

E[m | (X0, . . . , XL−1) = xL−1
0 ] =

1

p(xL−1
0 )

.

Also, for all xL−1
0 ,

P(m > K̃
1

p(xL−1
0 )

| XL−1
0 = xL−1

0 ) =
∑

j=dK̃ 1

p(xL−1
0 )

e

p(xL−1
0 )(1− p(xL−1

0 ))j−1
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≤ (1− p(xL−1
0 ))dK̃(1/p(xL−1

0 ))e−1

. e−K̃

as L→∞.
The upshot is that we can, with probability close to 1, convey m with log K̃

p(xL−1
0 )

+

log log K̃
p(xL−1

0 )
+ k bits (conditioned on XL−1

0 = xL−1
0 ) for any K̃, as L→∞. Note that

∑
xL−1

0

p(xL−1
0 )

(
log

K̃

p(xL−1
0 )

+ log log
K̃

p(xL−1
0 )

+ k

)
� H(X0, . . . , XL−1)

as L→∞.

12.2 Ergodicity and Kac’s theorem

Definition 12.1. A two-sided process (Xn, n ∈ Z) with Xn ∈X for finite X is ergodic
if

1. The process is stationary.

2. Every shift-invariant event should have probability 0 or probability 1.

By shift-invariant, we mean

{(. . . , X−1, X0, X1, . . . ) ∈ A} = {(. . . , X−2, X−1, X0, . . . ) ∈ A}.

Shift-invariant events can be very interesting.

Example 12.3. The event {there are infinitely many 1s in the sequence} is shift-invariant.

Example 12.4. The event {the lim sup of the sequence is 1} is shift-invariant.

Theorem 12.1 (Pointwise ergodic theorem, Birkhoff). If (Xn, n ∈ Z) is ergodic and
φ : X k → R, then

lim
n→∞

1

n

n−1∑
t=0

φ(Xt, Xt+1, . . . , Xt+k−1) = E[φ(X0, . . . , Xk−1)]

almost surely.

To look back in the past in the general ergodic case, we use the following theorem:
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Theorem 12.2 (Kac). Let (Xn, n ∈ Z) be an ergodic process with Xn ∈ X for all n,
where X is finite. Let

Qb(i) = P(X−i = b,Xj 6= b for −i+ 1 ≤ j ≤ −1 | X0 = b).

Then
∞∑
i=1

iQb(i) =
1

P(X0 = b)
.

Proof. Fix b ∈X . Define the events

Aj,k := {X−j = b,X−j+1 6= b, . . . ,Xk−1 6= b,Xk = b}, k ≥ 0, j ≥ 1.

These events are disjoint. We claim that

P

⋃
j,k

Aj,k

 = 1

if P(X0 = b) > 0. This is because b occurs some finite time in the future and some time in
the past; we can see this from, for example, looking at the sample averages of the ergodic
theorem with φ as the indicator of {b}.

Hence,
∞∑
j=1

∞∑
k=0

P(Aj,k) = 1.

But this equals

∞∑
j=1

∞∑
k=0

P(Xk = b)Qb(j + k) = P(X0 = b)
∞∑
i=0

iQb(i)

because P(Xk = b) = P(X0 = b) by stationarity and because the number of ways to get
j + k = i is i.

Now for LZ’77, assume that (Xn, n ∈ Z) is an ergodic process. For any fixed L ≥ 1,
define

RL(X0, X1, . . . , XL−1) := min{j ≥ 1 : (X−j , X−j+1, . . . , X−j+L−1) = (X0, . . . , XL−1)}.

By Kac’s theorem,

E[RL(X0, X1, . . . , XL−1) | XL−1
0 = xL−1

0 ] =
1

p(xL−1
0 )

.

52



The transmitter will send RL(X0, X1, . . . , XL−1) by comma-free encoding (in order to con-
vey X0). Let

λL(xL−1
0 ) = logRL(XL−1

0 ) + log logRL(XL−1
0 ) + 5.

Next time, we will show that

1

L
E[λL(XL−1

0 )]
L→∞−−−−→ H,

the entropy rate of the process.
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13 Optimality of Lempel-Ziv Coding, The Burrows-Wheeler
Transform, and Optimal Compression of IID Sequences

13.1 Asymptotic optimality of Lempel-Ziv coding

Last time, we were in the discussing LZ’77 for a general ergodic process (Xn, n ∈ Z) with
Xn ∈X (finite). For any L ≥ 1, we defined

RL(XL−1
0 ) := min{j ≥ 1 : X−j+L−1

−j = XL−1
0 }.

The compressor conveys RL(XL−1
0 ) to the decompressor. The compressor knows (Xn, n ≤

−1) and XL−1
0 ; the decompressor only knows the past, (Xn, n ≤ −1). This suffices for the

decompressor to determine XL−1
0 . By comma-free encoding, it suffices to send

logRL(XL−1
0 ) + log logRL(XL−1

0 ) + 5

many bits. Then

E[RL(XL−1
0 )] ≤ logE[RL(XL−1

0 )]

= log
1

p(XL−1
0 )

,

= H(X0, . . . , XL−1)

by Kac’s lemma. So for fixed L,

1

L
E[logRL(XL−1

0 )] ≤ 1

L
H(XL−1

0 ).

So

lim sup
L→∞

1

L
E[logRL(XL−1

0 )] ≤ H,

the entropy rate. Also,

1

L
E[log logRL(XL−1

0 )] ≤ 1

L
logE[logRL(XL−1

0 )]

≤ 1

L
logH(XL−1

0 )

L→∞−−−−→ 0.

Finally, 5/L→ 0 as L→∞, as well. So in total, we get

1

L
E[logRL(XL−1

0 ) + log logRL(XL−1
0 ) + 5]

L→∞−−−−→ H.
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13.2 The Burrows-Wheeler transform

Here is an algorithm that some people claim works better than the Lempel-Ziv coding
scheme.

Example 13.1. To compress the string SHANNON, a string from the English alphabet,
we’ll consider all the cyclic permutations and lexicographically order them:

SHANNON ANNONSH
HANNONS HANNONS
ANNONSH NNONSHA
NNONSHA 7→ NONSHAN
NONSHAN NSHANNO
ONSHANN ONSHANN
NSHANNO SHANNON

Transmit the last column (in compressed form) and the number of the row that has the
empirical string. The decompressor (after decompression) gets HSANONN and the number
7.

The decompressor can now recover the first column by lexicographically ordering the
symbols (because each symbol in the last column shows up the same number of times it
does in the original string). Then, the decompressor knows a list of pairs of symbols (the
first and last symbol of each row). Using this, the decompressor can now figure out the
second column by cyclically permuting these pairs and lexicographically ordering them,
and so on. In this way, the decompressor can recover the original string.

Why does this compress the message? Compressing the last column can be done by e.g.
arithmetic coding and works to compress down to the entropy rate for sequences from an
ergodic process because (as the length of the sequence goes to infinity, and for each fixed
L), the last column becomes piecewise iid with |X |L pieces. The piece for xL−1

0 appears
(asymptotically in n) np(xL−1

0 ) times and has marginal with law p(x | xL−1
0 ). Here,

H(XL | XL−1
0 ) =

∑
xL−1

0

p(xL−1
0 )H(p(x | xL−1

0 ), x ∈X )

is just the L-Markov approximation to the entropy rate. So we can compress to the entropy
rate as L→∞.

13.3 Compression of iid sequences at rate R bits/symbol

Leading up to distributed data compression, we will first discuss the fixed length to fixed
length (fixed-to-fixed) formulation of point to point data compression. To recognize the
relevance of entropy, we need to allow for a probability of error in decompression (which
becomes vanishingly small as the block length increases).
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Definition 13.1. We’ll say that compression can be done at rate R bits/symbol if there
is a sequence of pairs of maps ((en, dn) : n ≥ 1) where en : X n → [Mn] := {1, . . . ,Mn}
and dn : [Mn]→X n such that

lim sup
n→∞

1

n
Mn ≤ R

and
lim
n→∞

P(dn(en(Xn
1 )) 6= Xn

1 ) = 0.

Theorem 13.1. Let X1, X2, . . . be iid X -valued with entropy rate H. Then compression
can be done at rate H and cannot be done at any rate < H.

Remark 13.1. This theorem is also true for arbitrary stationary sequences, but we will
not prove that here.

Proof. Achievability: First, observe that it’s enough to show that for all ε > 0, compression
can be done at rate H + ε; this is because we can take ε = 1/m for large enough n

(depending on m). Recall that A
(n)
δ denotes the set of weakly ε-typical sequences. We

know that |A(n)
δ | ≤ 2n(H+δ) and

lim
n→∞

P(Xn
1 ∈ A

(n)
δ ) = 1.

So if en : X n → [d2n(H+δ)e + 1] gives a unique image to each element of A
(n)
δ and maps

(A
(n)
δ )c to a single image, then

lim sup
n→∞

1

n
log(d2n(H+δ)e+ 1) = H + δ,

and
P(dn(en(Xn

1 )) 6= Xn
1 ) ≤ P(Xn

1 ∈ (A
(n)
δ )c)

n→∞−−−→ 0.

So take δ = ε.
Converse: Given any ((en, dn), n ≥ 1) , denote Wn = en(Xn

1 ) and X̂n
1 = dn(Wn). Then

we have the Markov chain Xn
1 −Wn − X̂n

1 . We get from Fano’s inequality that

H(Xn
1 |Wn) ≤ P(dn(en(Xn

1 )) 6= X̂n
1 )︸ ︷︷ ︸

p
(n)
error

log |X |+ h(p(n)
error)︸ ︷︷ ︸
≤1

So if p
(n)
error → 0 as n→∞, then

1

n
H(Xn

1 |Wn)→ 0

as n→∞. But
1

n
H(Xn

1 ,Wn) =
1

n
H(Wn) +

1

n
H(Xn

1 |Wn)→ 0,
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and
1

n
H(Xn

1 ,Wn) =
1

n
H(Xn

1 ) +
1

n
H(Wn | Xn

1 ).

So

lim inf
n→∞

1

n
H(Wn) ≥ H(X1),

which is the entropy rate of the iid sequence. Hence,

lim inf
n

1

n
logMn ≥ H(X1).
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14 Joint ε-Weak Typicality and the Slepian-Wolf Theorem

14.1 Properties of joint ε-weak typicality

Suppose (X1, Y1), (X2, Y2), . . . are i.i.d. with (Xi, Yi) ∈ X × Y finite and (Xi, Yi) ∼
(p(x, y), x ∈ X , y ∈ Y ). We think of the Xis as being seen by Alice and the Yis as
being seen by Bob.

Definition 14.1 (Joint ε-weak typicality). Define the set A
(n)
ε ⊆X n × Y n to be the set

of (xn1 , y
n
1 ) ∈X n × Y n such that

1. | − 1
n log p(xn1 )−H(X)| < ε,

2. | − 1
n log p(yn1 )−H(Y )| < ε,

3. | − 1
n log p(xn1 , y

n
1 )−H(X,Y )| < ε.

Here are some properties of this:

Theorem 14.1.

1.
P((Xn

1 , Y
n

1 ) ∈ A(n)
ε )

n→∞−−−→ 1.

Proof. Use the weak law of large numbers.

2.
|A(n)

ε | ≤ 2nH(X,Y )2nε.

Proof. For all (xn1 , y
n
1 ) ∈ A(n)

ε ,

p(xn1 , y
n
1 ) ≥ 2−nH(X,Y )2−nε

and
1 ≥

∑
(xn1 ,y

n
1 )∈A(n)

ε

p(xn1 , y
n
1 ).

3. For all large enough n,

|A(n)
ε | ≥ (1− δ)2nH(X,Y )2−nε.
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Proof. For all (xn1 , y
n
1 ) ∈ A(n)

ε ,

p(xn1 , y
n
1 ) ≤ 2−nH(X,Y )2nε

and, for all large enough n, ∑
(xn1 ,y

n
1 )∈A(n)

ε

p(xn1 , y
n
1 ) ≥ 1− δ.

4. If (X̃n
1 , Ỹ

n
1 ) ∼ p(xn1 )p(yn1 ), then

(a)
P((X̃n

1 , Ỹ
n

1 ) ∈ A(n)
ε ) ≤ 2−nI(X;Y )23nε.

Proof. The left hand side is∑
(xn1 ,y

n
1 )

p(xn1 )p(yn1 ) ≤ |A(n)
ε |2−nH(X)2nε2−nH(Y )2nε

≤ 2nH(X,Y )2−nH(X)2−nH(Y )23nε.

(b) For all δ > 0,

P((X̃n
1 , Ỹ

n
1 ) ∈ A(n)

ε ) ≥ (1− δ)2−nI(X;Y )2−3nε.

Proof. The left hand side is∑
(xn1 ,y

n
1 )

p(xn1 )p(yn1 ) ≥ |A(n)
ε |2−nH(X)2−nε2−nH(Y )2−nε

≥ (1− δ)2nH(X,Y )2−nH(X)2−nH(Y )2−3nε.

14.2 The Slepian-Wolf theorem on distributed lossless compression

In this section, lossless is interpreted in the sense of asymptotically vanishing error prob-
ability. The scenario is that Alice sees X1, . . . , Xn and Bob sees Y1, . . . , Yn. The pairs
(Xi, Yi) with i = 1, . . . , n are iid and (Xi, Yi) ∼ (p(x, y), x ∈ X , y ∈ Y ). Alice compresses
Xn

1 , and Bob compresses Y n
1 . A fusion centor sees the compressed representations and

wants to recover (Xn
1 , Y

n
1 ) with small probability of error (going to 0 as n → ∞). The

problem is: What region of (Alice’s bits/symbol, Bob’s bits/symbol) is achievable?

Definition 14.2. We say that the pair of rates (R1, R2) is achievable if there is a sequence

((e
(1)
n , e

(2)
n , dn), n ≥ 1) where

e(1)
n : X n → [M (1)

n ] = {1, . . . ,M (1)
n }, with lim sup

n→∞

1

n
logM (1)

n ≤ R1,
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e(2)
n : X n → [M (2)

n ], with lim sup
n→∞

1

n
logM (2)

n ≤ R2,

dn : [M (1)
n ]× [M (2)

n ]→X n × Y n,

such that
P(dn(e(1)

n (Xn
1 ), e(2)

n (Y n
1 )) 6= (Xn

1 , Y
n

1 ))
n→∞−−−→ 0.

Theorem 14.2 (Slepian-Wolf). The set of achievable rate pairs is

{(R1, R2) : R1 ≥ H(X | Y ), R2 ≥ H(Y | X), R1 +R2 ≥ H(X,Y )}.

We will prove the achievability using the probabilistic method ; i.e. we will show that

a suitable ((e
(1)
n , e

(2)
n , dn), n ≥ 1) exists without explicitly demonstrating it. Here is an

example of the probabilistic method.

Example 14.1. Suppose that f : [0, 1] → R+. To show “there exists some x such that
f(x) > 10,” it’s enough to show that E[f(Z)] > 10 where Z ∼ Unif([0, 1]).

Proof. Achievability: It is enough to show that for all ε > 0, if (R1, R2) is such that
R1 ≥ H(X | Y ) + ε, R2 ≥ H(Y | X) + ε, and R1 + R2 ≥ H(X,Y ) + ε, then (R1, R2) is

achievable. We use a “random binning” argument: (e
(1)
n , e

(2)
n , dn) will be random variables

with

• e
(1)
n : randomly assign each xn1 ∈ X n to one of M

(1)
n bins uniformly, independently

over xn1 ,

• e
(2)
n : randomly assign each yn1 ∈ Y n to one of M

(2)
n bins uniformly, independently

over yn1

60



• dn(m
(1)
n ,m

(2)
n ) = (x̂n1 , x̂

n
2 ) if there is exactly one (x̂n1 , ŷ

n
1 ) with e

(1)
n (x̂n1 ) = m

(1)
n and

e
(2)
n (ŷn1 ) = m

(2)
n . Otherwise, dn(m

(1)
n ,m

(2)
n ) can take any value.

Now we upper bound P(dn(e
(1)
n (Xn

1 ), e
(2)
n (Y n

1 )) 6= (Xn
1 , Y

n
1 )), where the randomness is in

both (Xn
1 , Y

n
1 ) and (e

(1)
n , e

(2)
n , dn). We have

P(dn(e(1)
n (Xn

1 ), e(2)
n (Y n

1 )) 6= (Xn
1 , Y

n
1 )) ≤ P(E0,n)︸ ︷︷ ︸

n→∞−−−→0

+P(E1,n) + P(E2,n) + P(E12,n).

Here,

• E0,n = {(Xn
1 , Y

n
1 ) /∈ A(δ)

n } for some δ > 0, and the corresponding probability goes to
0 as n→∞.

• E1,n = {∃ x̃n1 6= Xn
1 with e

(1)
n (x̃n1 ) = e

(1)
n (Xn

1 ) and (x̃n1 , y
n
1 ) ∈ A(δ)

n }. Here,

P(E1,n) ≤
∑

(xn1 ,y
n
1 )

p(xn1 , y
n
1 )

∑
x̃n1 6=xn1

(x̃n1 ,y
n
1 )∈A(δ)

n

P(e(1)
n (x̃n1 ) = e(1)

n (xn1 ))︸ ︷︷ ︸
=1/M

(1)
n

.

Now |{x̃n1 : (x̃n1 , y
n
1 ) ∈ A(δ)

n }| ≤ 2nH(X|Y )22nδ because

1 ≥
∑

x̃n1 :(x̃n1 ,y
n
1 )∈A(δ)

n

p(x̃n1 | yn1 )

=
∑

x̃n1 :(x̃n1 ,y
n
1 )∈A(δ)

n

p(x̃n1 , y
n
1 )

p(yn1 )

≥ |{x̃n1 : (x̃n1 , y
n
1 ) ∈ A(δ)

n }|2−nH(X|Y )2−2nδ.

So
P(E1,n) ≤

∑
(xn1 ,y

n
1 )

p(xn1 , y
n
1 )2nH(X|Y )22nδ2−nR1 .

But R1 > H(X | Y ) + ε by assumption, so if 2δ < ε, the right hand side goes to 0 as
n→∞.

• E2,n is defined similarly to E1,n, and P(E2,n)→ 0 as n→∞.

We are now left with P(E12,n), which we will examine next time.
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15 Proof of the Slepian-Wolf Theorem and Introduction to
Channel Coding

15.1 Proof of the Slepian-Wolf theorem

Last time, we were proving the Slepian-Wolf theorem. We had an iid sequence of pairs
(Xi, Yi) ∼ (p(x, y), x ∈X , y ∈ Y ). Alice and Bob had respective encoding maps

e(1)
n : X n 7→ [M (1)

n ],

e(2)
n : Y n 7→ [M (2)

n ],

and a fusion center tries to decode the pairs of messages using the decoding maps

dn : [M (1)
n ]× [M (2)

n ]→X n × Y n.

We called the rate pair (R1, R2) achievable if there exist ((e
(1)
n , e

(2)
n , dn), n ≥ 1) such that

lim sup
n

1

n
logM (1)

n ≤ R1,

lim sup
n

1

n
logM (2)

n ≤ R2,

lim
n→∞

P(dn(e(1)
n (Xn

1 ), e(2)
n (Y n

1 )) 6= (Xn
1 , Y

n
1 )) = 0.

Theorem 15.1 (Slepian-Wolf). The set of achievable rate pairs is

{(R1, R2) : R1 ≥ H(X | Y ), R2 ≥ H(Y | X), R1 +R2 ≥ H(X,Y )}.

We set up the proof of achievability using a random binning argument.

Proof. Achievability: By a diagonal-type argument, it suffices to consider (R1, R2) such
that R1 > H(X | Y ) + ε, R2 > H(Y | X) + ε, and R1 +R2 > H(X,Y ) + ε. The idea is to

let M
(1)
n = d2nR1e and M

(2)
n = d2nR2e. Define random e

(1)
n and e

(2)
n via:

• e
(1)
n randomly assigns each xn1 ∈ X n to one of M

(1)
n bins uniformly, indepndently

over xn1 ,

• e
(2)
n randomly assigns each yn1 ∈ Y n to one of M

(2)
n bins uniformly, indepndently over

yn1

• dn(m
(1)
n ,m

(2)
n ) = (x̂n1 , x̂

n
2 ) if there is exactly one (x̂n1 , ŷ

n
1 ) ∈ A(n)

δ with e
(1)
n (x̂n1 ) = m

(1)
n

and e
(2)
n (ŷn1 ) = m

(2)
n . Otherwise, dn(m

(1)
n ,m

(2)
n ) can take any value.
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We have the probability (over randomness in (Xn
1 , Y

n
1 ) and in (e

(1)
n , e

(2)
n ))

P(dn(e(1)
n (Xn

1 ), e(2)
n (Y n

1 )) 6= (Xn
1 , Y

n
1 )) ≤ P(E0,n) + P(E1,n) + P(E2,n) + P(E12,n),

where
E0,n = {(Xn

1 , Y
n

1 ) /∈ A(n)
δ },

E1,n = {∃ x̃n1 6= Xn
1 with e(1)

n (x̃n1 ) = e(1)
n (Xn

1 ) and (x̃n1 , y
n
1 ) ∈ A(δ)

n },

E2,n = {∃ x̃n1 6= Xn
1 with e(1)

n (x̃n1 ) = e(1)
n (Xn

1 ) and (x̃n1 , y
n
1 ) ∈ A(δ)

n },

E12,n = {∃ ỹn1 6= Y n
1 with e(2)

n (ỹn1 ) = e(2)
n (Y n

1 ) and (xn1 , ỹ
n
1 ) ∈ A(δ)

n },

E12,n = {∃ (x̃n1 , ỹ
n
1 ) s.t. x̃n1 6= Xn

1 , ỹ
n
1 6= Y n

1 ,

e(1)
n (x̃n1 ) = e(1)

n (Xn
1 ), e(2)

n (ỹn1 ) = e(2)
n (Y n

1 ), (x̃n1 , x̃
n
1 ) ∈ A(n)

δ }.

We saw that the probabilities of the first three events goes 0 to as n→∞ if we pick 2δ < ε.
It remains to show that P(E12,n)→ 0 as n→∞. Write

P(E12,n) = E

[ ∑
xn1 ,y

n
1

p(xn1 , y
n
1 )

∑
x̃n1 6=xn1
ỹn1 6=yn1

(x̃1,ỹn1 )∈A(n)
δ

1{e(1)
n (x̃n1 )=e

(1)
n (xn1 )}1{e(2)

n (ỹn1 )=e
(2)
n (yn1 )}

]

Bring the expectation inside the sum, where the expectation of the inside is just a product
of probabilities

=
∑
xn1 ,y

n
1

p(xn1 , y
n
1 )

∑
x̃n1 6=xn1
ỹn1 6=yn1

(x̃1,ỹn1 )∈A(n)
δ

1{e(1)
n (x̃n1 )=e

(1)
n (xn1 )}

1

M
(1)
n

1

M
(2)
n

≤
∑
xn1 ,y

n
1

p(xn1 , y
n
1 )|A(n)

δ |
1

M
(1)
n

1

M
(2)
n

= |A(n)
δ |

1

M
(1)
n

1

M
(2)
n

≤ 2nH(X,Y )2nδ2−nR12−nR2 .

So if ε > δ, this goes to 0 as n→∞ because R1 +R2 > H(X,Y ) + ε by assumption.

63



Converse: Consider any scheme ((e
(1)
n , e

(2)
n , dn), n ≥ 1) for which the error probability

vanishes asymptotically. Letting W
(1)
n = e

(1)
n (Xn

1 ) and W
(2)
n = e

(2)
n (Y n

1 ), we have

Xn
1 W

(1)
n

(X̂n
1 , Ŷ

n
1 ) = dn(W

(1)
n ,W

(2)
n )

Y n
1 W

(2)
n

Let p
(n)
e = P((X̂n

1 , Ŷ
n

1 ) 6= (Xn
1 , Y

n
1 )). We have by Fano’s inequality that

H(Xn
1 , Y

n
1 |W (1)

n ,W (2)
n ) ≤ h(p(n)

e ) + p(n)
e (log |X |n + log |Y |n),

so if p
(n)
e → 0 then H(Xn

1 , Y
n

1 | W
(1)
n ,W

(2)
n ) ≤ nεn for some εn → 0 as n → ∞. Then,

recalling that R1 = 1
n logM

(1)
n and R2 = 1

n logM
(2)
n ,

n(R1 +R2) ≥ H(W (1)
n ,W (2)

n )

= I(Xn
1 , Y

n
1 ;W (1)

n ,W (2)
n ) +H(W (1)

n ,W
(n)
2 | Xn

1 , Y
n

1 )

= H(Xn
1 , Y

n
1 )−H(Xn

1 , Y
n

1 |W (1)
n ,W (2)

n )

≥ nH(X,Y )− nεn.

But we also have
H(Xn

1 |Wn(1),W (2)
n , Y n

1 ) ≤ nεn,

which gives

nR1 ≥ H(W
(n)
1 )

≥ H(W (1)
n | Y n

1 )

= I(Xn
1 lW

(n)
1 | Y n

1 ) +H(W
(n)
1 | Xn

1 , Y
n

1 )

= H(Xn
1 | Y n

1 )−H(X
(n)
1 |W (1)

n , Y n
1 ,W

(2)
n ,

where we can throw W
(2)
n in for free.

≥ nH(X | Y )− nεn.

Similarly, R2 ≥ H(Y | X)−nεn. Now divide by n and let n→∞ to get the lower bounds.
This gives

lim inf
n

1

n
logM (1)

n +
1

n
logM (2)

n ≥ H(X,Y ),
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lim inf
n

1

n
logM (1)

n ≥ H(X | Y ),

lim inf
n

1

n
logM (2)

n ≥ H(Y | X).

15.2 The discrete memoryless channel model for data transmission

At each time, the transmitter sends a symbol x ∈X , and the receiver gets y ∈ Y according
to the conditional probabilities (p(y | X), x ∈X , y ∈ Y ).

Example 15.1 (Binary symmetric channel). The receival probability is 1− p, so

H(1 | 0) = p(0 | 1) = p, p(1 | 1) = p(0 | 0) = 1− p.

Definition 15.1. A communication scheme is a sequence ((en, dn), n ≥ 1) such that

en : [Mn]→X n, dn : Y n → [Mn].

Definition 15.2. Communication is possible at rate R if there exis t((en, dn), n ≥ 1) with

lim inf
n

1

n
logMn ≥ R

and
P(dn(en(Wn)) 6= Wn)

n→∞−−−→ 0,

where Wn ∼ Unif([Mn]).

Theorem 15.2 (Shannon’s channel coding theorem). The supremum over all rates at
which communication is possible is

sup
(p(x),x∈X )

I(X;Y ) = sup
(p(x),x∈X )

∑
x,y

p(x)p(y | x) log
p(y | x)

p(x)
∑

x′ p(x
′)p(y | x′)

.
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16 Discrete Memoryless Channels and Shannon’s Channel
Coding Theorem

16.1 Discrete memoryless channels

Shannon’s discrete memoryless channel model of communication has 3 parts:

1. a finite set X , called the input alphabet,

2. a finite set Y , called the output alphabet,

3. a channel matrix of transition probabilities [p(y | x)]x∈X ,y∈Y with p(y | x) ≥ 0
and

∑
y p(y | x) = 1 for all x.

Using the channel n times with inputs x1, x2, . . . , xn results in outputs y1, y2, . . . , yn
with

p(yn1 | yn1 ) =
n∏
i=1

p(yi | xi).

Example 16.1. The binary symmetric channel with crossover probability ε has X = Y =
{0, 1} and p(0 | 1) = ε = p(1 | 0).

X Y

0 0

1 1

1−ε

ε
ε

1−ε

Here is the physical background: Fix time T > 0 (a real number) called the symbol
interval. Suppose (g1(t), t ∈ [0, T ]), (g2(t), t ∈ [0, T ]) are orthonormal functions:∫ T

0
g2

1(t) dt = 1,

∫ T

0
g2

2(t) dt = 1,

∫ T

0
g1(T )g2(t) dt = 0.

Example 16.2. For example, we could take

g1(t) =

√
2

T
sin

(
2πt

T

)
, g2(t) =

√
2

T
cos

(
2πt

T
.

)
If we let d = |X | be the size of the input alphabet, then we have{[

u1,1

u1,2

]
, . . . ,

[
ud,1
ud,2

]}
,
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where gi(t) = ui,1g1(t) + ui,2g2(t).
Now assume Y = X . The picture looks like this, called a constellation:

To send the sequence i1, . . . , in, what is physically sent is
∑n

`=1 gi`(t − (` − 1)T ). This is
received in noise. In each interval, a decision is made as to what symbol was sent. For
example, if the received output was in the bottom left triangle, we would make the decision
that the dot in the center was the symbol sent.

16.2 Channel capacity and Shannon’s channel coding theorem

Simple intuition suggests that in n uses of a DMC, we can hope to distinguish between a
number of messages that is exponential in n. This motivates the Shannon formulation of
“channel capacity.”

Definition 16.1. Let

en : [Mn]→X n, dn : Y n → [Mn].

We say that communication is possible at rate R if there is a sequence ((en, dn), n ≥ 1)
such that P(dn(en(Wn)) 6= Wn)→ 0 as n→∞, where Wn ∼ Unif([Mn]), and such that

lim inf
n

1

n
logMn ≥ R.

Definition 16.2. Channel capacity is the supremum over rates at which communication
is possible.

Theorem 16.1 (Shannon’s channel coding theorem for a DMC). The channel capacity
equals

sup
(p(x),x∈X )

I(X;Y ) = sup
(p(x),x∈X )

∑
x,y

p(x)p(y | x) log
p(y | x)∑

x′∈X p(y | x′)p(x′)
.
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Remark 16.1. This is the maximum of a concave function. Often the maximizer is in the
interior of the probability simplex.

Recall that I(X;Y ) = H(Y )−H(Y | X). Here, H(Y | X) =
∑

x p(x)H(Y | X = x) is
linear in (p(x), x ∈X ) and H(Y ) is concave in (p(y), y ∈ Y ) and hence in (p(y), x ∈X ).

Example 16.3 (Binary symmetric channel). Suppose pX(1) = a = 1− pX(0). Then

I(X;Y ) = H(Y )− H(Y | X)︸ ︷︷ ︸
(1−a)H(Y |X=0)+aH(Y |X=1)

= h(a(1− ε) + (1− a)ε)− h(ε),

to be optimized over a. This is maximized at a = 1/2. So the channel capacity is 1−h(ε).

To get a feeling for why the theorem might be true, consider inputs to the channel
X1, . . . , Xn which are iid with P(X1 = x) = p(x) for x ∈ X . Then the outputs will be iid
with marginals (p(y), y ∈ Y ), where p(y) =

∑
x p(x)p(y | x). The inputs and outputs will

be ε-jointly weakly typical with probability going to 1 as n→∞. The number of ε-weakly
typical output sequences is ≥ (1− ε)2nH(Y |X)2−nε. The number of jointly ε-weakly typical
output sequences with a specific ε-weakly typical input sequence is ≤ 2nH(Y |X)22nε. Then,
using

1 =
∑
yn1

p(yn1 | xn1 ) =
∑
xn1 ,y

n
1

p(xn1 , y
n
1 )

p(xn1 )
,

we get
(1− ε)2nH(Y )2−nε

2nH(Y |X)22nε
= (1− ε)2nI(X;Y )2−3nε.

16.3 Proof of Shannon’s channel coding theorem

Proof. For achievability, we need to show that for all rates R < maxp(x),x∈X I(X;Y ),
we want to show that R is achievable. For the converse, we need to show that no R >
maxp(x),x∈X I(X;Y ).

The achievability is given by a random coding argument.10 We will take Mn = d2nRe,
create random en : [Mn]→ X n for each n ≥ 1 and associated dn and show that the error
probability → 0 as n→∞. Let

en(m) = (X1(m), . . . , Xn(m)), 1 ≤ m ≤ d2nRe = Mn

where Xt(m) ∼ (p(x), x ∈ X ) is iid over 1 ≤ t ≤ n and 1 ≤ m ≤ Mn. To define dn, on
receiving y1, . . . , yn, find

{1 ≤ m ≤Mn s.t. (x1(m), . . . , xn(m)) is ε-jointly weakly typical with (y1, . . . , yn)}.
10This is one of the historically earliest uses of the probabilistic method. It predates Erdös’ widespread

usage of the method.
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If this set has exactly one member, return that member as dn(y1, . . . , yn); otherwise, define
dn(y1, . . . , yn) arbitrarily.

Let C denote the (random) codebookX)1(1) · · · Xn(1)
...

...
X1(Mn) · · · Xn(m)

 ,
and let Pe(C) = P(dn(en(Wn) 6= Wn | C) denote the error probability conditioned on the
codebook being C. Then the expected error probability over the codebook is P(dn(en(Wn)) 6=
Wn). We have

P(dn(en(Wn)) 6= Wn) =
∑
C

P(C)P(dn(en(Wn)) 6= Wn | C)

=
∑
C
P (C)

Mn∑
m=1

1

Mn
λm(C),

where λm(c) = P(dn(en(m)) 6= m | C).

=

Mn∑
m=1

1

Mn

∑
C

P(C)λm(C)

=
∑
C

P(C)λ1(C)

by symmetry.

≤ P

(
E0 ∪

(
Mn⋃
m=2

Em

))

≤ P(E0) +

Mn∑
m=2

P(Em).

Note that E0 is the event where (Y1, . . . , Yn) is not ε-jointly weakly typical with the sequence
(X1(1), . . . , Xn(1)). For m ≥ 2, Em is the event where (Y1, . . . , Yn) is not ε-jointly weakly
typical with (X1(m), . . . , Xn(m)). So

P(dn(en(WN ) 6= Wn) ≤ P(E
(n)
0 ) + (Mn − 1)P(E

(n)
2 )

by symmetry. Now P(E
(n)
0 ) → 0 as N → ∞, and P(E

(n)
2 ) ≤ 2−nI(X;Y )23nε So if R <

I(X;Y )− 3ε, this goes to 0 as n→∞.

Next time, we will prove the converse part of the theorem.
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17 Upper Bound for Channel Capacity, Perfect Noiseless
Feedback, and Joint Source Channel Coding

17.1 Upper bound for Shannon’s channel coding theorem

Last time, we were proving Shannon’s channel coding theorem for discrete memoryless
channels. A DMC is given by a probability transition matrix [p(y | x)]x∈X ,y∈Y , where
X ,Y are finite. Shannon’s formulation uses block codes ((en, dn), n ≥ 1), where

en : [Mn]→X n, dn : Y n → [Mn],

where Mn is exponentially growing in n. The “memoryless” part means

p(yn1 | xn1 ) =

n∏
i=1

p(xi, yi).

Definition 17.1. We say communication is possible at rate R if there exist ((en, dn), n ≥
1) such that

P(dn(en(Wn)) 6= Wn)
n→∞−−−→ 0

and

lim inf
n

1

n
logMn ≥ R.

Let
C := max

(p(x),x∈X )
I(X;Y ).

Theorem 17.1 (Shannon’s channel coding theorem).

sup{R : can communicate at rate R} = C.

C is called the Shannon capacity of the channel. Let’s finish the proof.

Proof. We have proved achievability: For ε > 0, we can communicate at rate C − ε.
Now we prove the converse. Consider any ((en, dn), n ≥ 1). We have the Markov chain

Wn −Xn
1 − Ŷ n

1 − Ŵn, where Wn ∼ Unif([Mn]), and Ŵn = dn(Y n
1 ). In this notation, the

error probability is p
(n)
e = P(Ŵn 6= Wn); let’s assume p

(n)
e → 0. We will prove that this

implies lim supn
1
nH(Wn) ≤ C as follows.

H(Wn) = H(Wn | Y n
1 ) + I(Wn;Y n

1 )

≤ H(Wn | Y n
1 ) + I(Xn

1 ;Y n
1 )

≤ H(Wn | Ŵn) + I(Xn
1 ;Y n

1 )
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Fano’s inequality says that H(Wn | Ŵn) ≤ h(p
(n)
e ) + p

(n)
e log(Mn − 1).

≤ h(p(n)
e ) + p(n)

e logMn + I(Xn
1 ;Y n

1 )

To deal with the last term, use the chain rule to write

I(Xn
1 ;Y n

1 ) = H(Y n
1 )−H(Y n

1 , X
n
1 )

≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi | Xn
1 , Y

n
1 )︸ ︷︷ ︸

=H(Yi|Xi)

=
n∑
i=1

H(Yi | Xi)

≤ nC.

Our issue is now that logMn looks like n. We can deal with this by noting that
H(Wn) = logMn on the left. So far, we have that

logMn ≤ h(p(n)
e ) + p(n)

e logmn + nC.

Hence,

(1− p(n)
e )

logMn

n
≤ h(p

(n)
e )

n
+ C.

If p
(n)
e → 0 as n→∞, this implies that lim supn

1
n logMn ≤ C.

17.2 Communication with perfect noiseless feedback

Earlier, we had Xi = en,i(m), where en = (en,1, . . . , en,n) and m ∈ [Mn] is a message.

Definition 17.2. Perfect noiseless feedback is when we haveXi = en,i(m,Y1, . . . , Yi−1).

Theorem 17.2. Perfect noiseless feedback cannot increase the rates at which communica-
tion is possible over a DMC.

Proof. The achievability at rate C − ε is the same as Shannon’s coding theorem, since the
encoder can ignore the feedback. But for the converse, we do not have a Markov chain. As
before, write

logMn = H(Wn)

= H(Wn | Y n
1 ) + I(W ;Y n

1 )

≤ h(p(n)
e ) + p(n)

e logMn,
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where p
(n)
e := P (dn(Y n

1 ) 6= Wn). Note that we can still use Fano’s inequality because we

have the Markov chain Wn − Y n
1 − Ŵn. Here, Yi conditioned on (Xi−1

1 , Y i−1
1 , Xi = xi) has

the law p(yi | xi). Observe that p(m,xn1 , y
n
1 ) = 1

Mn

∏n
i=1 1{xi=ei(m,yi−1

1 )}p(yi | xi).
The chain rule gives

I(Wn, Y
n

1 ) = H(Y n
1 )−H(Y n

1 |Wn)

≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi |Wn, Y
i−1

1 )

But Xi = en,i(Wn, Y
i−1

1 ), so H(Yi |Wn, Y
i−1) = H(Yi | Xn, Y

i−1
1 , Xi) = H(Yi, Xi). So

I(Wn, Y
n

1 ) ≤ nC,

and the rest of the proof proceeds as before.

17.3 Joint source channel coding

Model a source as a random sequence (Vk, k ∈ Z) (think stationary and ergodic) with
Vk ∈ V , where V is finite.

Definition 17.3. A source channel code at block length n is an encoding map

en : V `n →X n

and a decoding map
dn : Y n → V `n .

Note that `n might be different from n. Here, Y n
1 results from Xn

1 over a DMC.

V `n
1 X n

1 Y n
1 V `n

1 .
en DMC dn

Theorem 17.3 (Joint source channel coding theorem). If the source has entropy rate
H(V ), then there exists ((en, dn), n ≥ 1) with P(dn(en(V `n

1 )) 6= V `n
1 )→ 0 if and only if

lim sup
n

`nH(V )

nC
≤ 1.

Proof. Achievability: The idea is to compress the source and then use Shannon’s channel
coding theorem. Take `n = n. If H(V )/C ≤ 1− δ, we can compress V n

1 to n(H(V ) + δ/2)
bits with probability going to 0 as n → ∞. Then send those bits over a DMC with error
probability going to 0.

Converse: We have the Markov chain

V `n
1 −X

n
1 − Y n

1 − V̂ `n
1 ,
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so Fano’s inequality gives

H(V `n
1 | V̂ `n

1 ) ≤ 1 + P (n)
e (`n log |V |).

We then have

H(V n
1 ) = H(V `n

1 | V̂ `n
1 ) + I(V `n

1 ; V̂ `n
1 )

≤ 1 + p(n)
e (`n log |V |) + I(Xn

1 ;Y n
1 )

≤ 1 + p(n)
e (`n log |V |) + nC.

Divide by `n and let n → ∞ (we can assume without loss of generality that `n → ∞,
otherwise we automatically have the limsup bounded by 1). We get

H(V `n
1 )

`n
≤ 1

`n
+ p(n)

e log |V |+ nC

`n
.

The left hand side converges to H(V ). The first term on the right goes to 0 because

`n →∞. The second term on the right goes to 0 because p
(n)
e → 0 by assumption.
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18 Differential Entropy and the Additive White Gaussian
Noise Channel Model

18.1 Differential entropy

Let X be a real-valued random variable with density, i.e.

P(X ∈ [a, b)) =

∫ b

a
f(x) dx

for some nonnegative function f .

Definition 18.1. The differential entropy of X is

h(f) := −
∫ ∞
−∞

f(x) log f(x) dx.

This need not be well-defined (an example is provided in Handout 7), so when we talk
about h(f), we will assume it exists.

Example 18.1. Let X ∼ Unif([a, b]) with density

f(x) =

{
1
b−a x ∈ [a, b]

0 otherwise.

Then

h(f) =

∫ b

a

1

b− a
log(b− a) dx = log(b− a).

Note that if b− a < 1, this is negative. So h(f) is very different from entropy.

Example 18.2. Let X ∼ N(µ, σ2) with density

f(x) =
1√

2πσ2
e−(x−µ)2/(2σ).

Then

h(f) = (log e)

∫ ∞
−∞

f(x)

[
(x− µ)2

2σ2
+

1

2
ln(2πσ2)

]
dx

= (log e)

[
1

2
+

1

2
ln(2πσ2)

]
=

1

2
log(2πeσ2).
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18.2 Connection to entropy

Here is the connection between differential entropy and an underlying entropy. Imagine
quantizing R at scale ∆ with ∆→ 0.

We get a discrete probability distribution having probability∫ k∆+ ∆
2

k∆−∆
2

f(x) dx at k

as an approximation to a random variable with density f . Think of the entropy of this
approximation. This is

−
∑
k∈Z

(∆f(k∆) + o(∆)) log(∆f(k∆) + o(∆))− log ∆−∆
∑
k∈Z

f(k∆) log f(k∆) + o(∆).

So we can think of h(f) as the amount of entropy of a quantized pproximation about
− log ∆ as ∆→ 0.

This − log ∆ is a problem because − log ∆→∞ as ∆→ 0.

18.3 Relative entropy

However, this quantization problem does not show up for relative entropy.

Definition 18.2. Given two probability densities f and g, the relative entropy is

D(f || g) :=

∫ ∞
−∞

f(x) log
f(x)

g(x)
dx.

Note that in writing∑
k∈Z

(∆f(k∆) + o(∆)) log
∆f(k∆) + o(∆)

∆gf(k∆) + o(∆)
,

the ∆s in the log cancel.
The relative entropy will be nonnegative by convexity of u 7→ u log u because it is∫ ∞

−∞
g(x)

f(x)

g(x)
log

f(x)

g(x)
dx.
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18.4 Joint differential entropy

Definition 18.3. The joint differential entropy of X1, . . . , Xn (real-valued random
variables with a joint density f) is

h(X1, . . . , Xn) = −E[log f(X1, . . . , Xn)].

Example 18.3. The most important example is when X1, . . . , Xn are jointly Gaussian
random variables with invertible covariance matrix:X1

...
Xn

 ∼ N

m1

...
mn

 ,K
 ,

where K is a symmetric, positive definite matrix. The joint density is

f(x1, . . . , xn) =
1

(2π)n/2(detK)1/2
e−

1
2

(x−m)>K−1(x−m).

The joint differential entropy is

h(X1, . . . , Xn) =
1

2
log((2πe)n detK).

This can be understood by diagonalizing K. K = U>DU , where U>U = I and D =
diag(σ2

1, . . . , σ
2
n). Then

h(X1, . . . , Xn) =
n∑
`=1

1

2
log(2πeσ2

` ).

18.5 Mutual information

If X and Y have joint density f(x, y), then they will have marginal densities f(x) and f(y)
respectively.

Definition 18.4. The mutual information is defined as

I(X;Y ) = D(f(x, y) || f(x)f(y)).

This will turn out to be

I(X;Y ) = h(X) + h(Y )− h(X,Y ),

when this expression makes sense. This will also be

I(X;Y ) = h(X)− h(X | Y )

, if these quantities exist, where h(X | Y ) is the conditional differential entropy.
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Definition 18.5. The conditional differential entropy is

h(X | Y ) =

∫ ∞
−∞

f(y)h(X | Y = y) dy,

where

h(X | Y = y) = −
∫ ∞
−∞

f(x | y) log f(x | y) dx.

18.6 Chain rules for differential entropy

We can write some chain rules.

Proposition 18.1 (Chain rule for differential entropy). When all these quantities make
sense,

h(X1, . . . , Xn) = h(X1) + h(X2 | X1) + h(X3 | X1, X2) + · · ·+ h(Xn | X1, . . . , Xn−1).

Proposition 18.2 (Chain rule for mutual information). When (X,Y1, . . . , Yn) have a joint
density,

I(X;Y1, . . . , Yn) = I(X;Y1)+I(X;Y2 | Y1)+I(X;Y3 | Y1, Y2)+· · ·+I(X;Yn | Y1, . . . , Yn−1).

18.7 Basic properties of differential entropy

Proposition 18.3. For any constant c, h(X + c) = h(X).

Proof. Adding c just translates the density.

Proposition 18.4. If c 6= 0, then h(cX) = h(X)− log |c|.

Proof. The density of cX is 1
|c|f(x/c). So

h(cX) =

∫ ∞
−∞

1

|c|
f(x/c) log

1

|c|
f(x/c) dx

= h(X)− log |c|.

Remark 18.1. This is consistent with X ∼ N(0, σ2) ⇐⇒ cX ∼ 0, c2σ2). Here, h(X) =
1
2 log(2πeσ2) and h(cX) = 1

2 log(2πeσ2) + log |c|.

Proposition 18.5. If E[X] = 0 and E[X2] = σ2, then

h(X) ≤ 1

2
log(2πeσ2).

This upper bound is the entropy of the Gaussian.
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Proof. Let φ(x) denote the N(0, σ2) density, i.e. φ(x) = 1√
2πσ2

e−x
2/(2σ2). Write

0 ≤ D(f || φ)

=

∫ ∞
−∞

f(x) log
f(x)

φ(x)

= −h(f) + (log e)

∫ ∞
−∞

f(x)

[
1

2
ln(2πσ2) +

x2

2σ2

]
dx

= −h(f) +
1

2
log(2πeσ2).

18.8 The additive white Gaussian noise channel model

This is a discrete time model. At each channel use, the input is a real number, say x ∈ R.
The output is a real number Y . Conditioned on X = x, Y ∼ N (x, σ2), where σ2 is the
variance of the noise.

Consider an input power constrained scenario and block based communication: We have
an encoding map

en : [Mn]→ R

and a decoding map
dn : Rn → [Mn], Y n(m).

Here Xn is the output of en, and Yn is the input of dn.
Conditioned on Xn(m) = xn,

Y n ∼ N (xn, σ2I),

i.e. the noise is iid over time. In other words,

f(yn | xn) =

n∏
i=1

1√
2πσ2

e−(yi−xi)/(2σ).

The power constraint P requires that each Xn(m) satisfies

n∑
i=1

(Xi(n))2 ≤ nP.
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Intuitively, Mn can be on the scale of

Vn(
√
n(P + σ2))

Vn(
√
nσ2)

,

where Vn(R) denotes the colume of the ball in Rn of radius R.
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19 Capacity of an Additive White Gaussian Noise Channel

19.1 Shannon capacity of a additive white Gaussian noise channel

In the additive white Gaussian noise (AWGN) model, we send inputs real-valued Xi and

receive real-valued outputs Yi, where Yi = Xi + Zi, and Z1, Z2, . . .
iid∼ N (0, σ2). At block

length n, we have an encoding map en : [Mn]→ Rn and a decoding map dn : Rn → [Mn].
We assume an input power constraint, which, in Shannon’s formulation, says that each
codeword is required to have power at most P : If Xn(m) denotes en(m), then

1

n

n∑
i=1

Xn
i (m) ≤ P.

We want to find for which rates R we have

lim inf
n

1

n
logMn ≥ R with P(dn(en(Wn)) 6= Wn)→ 0

for some sequence ((en, dn), n ≥ 1) with Wn ∼ Unif([Mn]).

Theorem 19.1. The supremum over rates for which communication is possible is

sup
X∼f :

∫∞
−∞ x2f(x) dx≤P

I(X;X + Z),

which equals 1
2 log(1 + P

σ2 ) and is achieved by X ∼ N(0, P ).

This quantity is called the Shannon capacity. The achievability part of the proof
will use a random coding argument and requires the concept of ε-weakly typical sequences.
The converse part of the proof involves Fano’s inequality. Let’s first see why the last claim
is true:

Lemma 19.1. If E[X2] ≤ P , then I(X;X + Z) ≤ 1
2 log(1 + P

σ2 ), with equality if and only
if X ∼ N(0, P ).

Proof.

I(X;X + Z) = h(X + Z)− h(X + Z | X)

= h(X + Z)− h(Z)

= h(X + Z)− 1

2
log(2πeσ2).

Since X q Z and E[Z1] = 0, we also have

E[(X + Z)2] = E[X2] + E[Z2]
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≤ P + σ2.

So

h(X + Z) ≤ 1

2
log(2πe(P + σ2))

with equality iff X ∼ N(0, P ). So

I(X,X + Z) ≤ 1

2
log

(
P + σ2

σ2

)
=

1

2
log

(
1 +

P

σ2

)
.

19.2 Weak-typicality for differential entropy

Definition 19.1. For X ∼ f with differential entropy h(X) and ε > 0, the set of ε-weakly
typical sequences for the density f sis

Anε :=

{
xn ∈ Rn :

∣∣∣∣∣− 1

n
log

n∏
i=1

f(xi)− h(X)

∣∣∣∣∣ < ε

}
⊆ Rn

By the weak law of large numbers,

P(Xn ∈ Anε ) = 1

if Xi
iid∼ f . This is because E[log 1

f(X) ] = h(X) when X ∼ f .

Proposition 19.1. For all n,

Vol(Anε ) ≤ 2nh(X)2nε.

Proof.

1 ≥
∫
Anε

n∏
i=1

f(xi)dx
n

≥
∫
Anε

2−nh(X)2−nε dxn

= Vol(Anε )2−nh(X)2−nε.

Proposition 19.2. Given δ > 0, for all sufficiently large n,

Vol(Anε ) ≥ (1− δ)2nh(X)2−nε.

81



Proof. For sufficiently large n,

(1− δ) ≤
∫
Anε

n∏
i=1

f(xi) dx
n

≤
∫
Anε

2−nh(X)2nε dxn

= Vol(Anε )2−nh(X)2nε.

Definition 19.2. Let (X1, Y1), (X2, Y2), . . . be iid with (Xi, Yi) ∼ f(x, y). The set of
ε-jointly weakly typical sequences for f is

Anε :=

{
(xn, yn) :

∣∣∣∣∣− 1

n
log

n∏
i=1

f(xi)− h(X)

∣∣∣∣∣ ≤ ε,∣∣∣∣∣− 1

n
log

n∏
i=1

f(yi)− h(Y )

∣∣∣∣∣ ≤ ε,∣∣∣∣∣− 1

n
log

n∏
i=1

f(xi, yi)− h(X,Y )

∣∣∣∣∣ ≤ ε,
}
.

With this definition in mind, we can show the following.

Lemma 19.2. If X̃n d
= Xn, Ỹ n d

= Y n, and X̃n q Ỹ n, then

(1− δ)2−nI(X;Y )2−3nε ≤ P((X̃n, Ỹ n) ∈ Anε ) ≤ 2−nI(X;Y )23nε.

The upper bound holds for all n, and the lower bound holds for all sufficiently large n.

19.3 Proof of Shannon’s channel coding theorem for an AWGN channel

Now we can prove the theorem.

Proof. Achievability: Generate a random codebook
X1(1) · · · Xn(1)
X1(2) · · · Xn(2)
...

...
X1(Mn) · · · Xn(Mn)

 ,
where each Xn(i) ∼ N (0, P − η) is iid over i and n. Let Wn ∼ Unif([Mn]). The decoding
rule is

dn(Y n) =


m (Xn(m), Y n) are ε-jointly weakly typical and for all m′ 6= m,

(Xn(m), Y n) are not ε-jointly weakly typical

arbritrary either no or ≥ 2 Xn(m) are ε-jointly typical with Y n.
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By symmetry,

P(dn(en(Wn)) 6= Wn) = P(dn(en(1) 6= 1))

≤ P (E0,n) +
∑
m 6=2

P (Em,n),

where E0,n is the event that (Xn(1), Y n) is not ε-jointly weakly typical and Em,n for m ≥ 2
is the event that (Xn(1), Y n) is ε-jointly weakly typical. Then P(E0,n)→ 0 as n→∞, and
for each 2 ≤ m ≤ Mn, P(Em,n) ≤ 2−nI(X;Y )23nε. So if Mn = 2nR with R < I(X;Y )− 3ε,
then P(dn(en(Wn)) 6= Wn)→ 0 as n→∞.

Converse: Consider any ((en, dn), n ≥ 1). We have Wn ∼ Unif([Mn]) and the Markov

chain Wn −Xn − Y n − Ŵn with Xn = en(Wn), Y = X + Z, and Ŵn = dn(Y n). Suppose
Mn = d2nRe. The data-processing inequality gives

H(Wn | Y n) ≤ H(Wn | Ŵn).

Note that Wn is a discrete random variable, and Y n is a continuous random variable.
Here, we mean H(Wn | Y n) =

∫∞
−∞H(Wn | Yn = y)f(y) dy. If pe(n) := P(Ŵn 6= Wn), then

Fano’s inequality gives
H(Wn | Y n) ≤ 1 + nRpe(n).

Also, the data processing inequality gives

H(Wn) = I(Wn;Y n) +H(Wn | Y n)

≤ I(Xn;Y n) +H(Wn | Y n)

= h(Y n)−
n∑
i=1

h(Yi | Xn, Y i−1) +H(Wn | Y n)

Use 0 ≤ D(f(yn) ||
∏n
i=1 f(yi)) =

∫
Rn f(yn) log f(yn)∏n

i=1 f(yi)
dyn = −h(Y n) +

∑n
i=1 h(Yi).

≤
n∑
i=1

h(Yi)−
n∑
i=1

h(Yi | Xn, Y i−1) +H(Wn | Y n)

Use the Markov chain Yi −Xi − (Xi−1, Xn
i+1, Y

i−1)

≤
n∑
i=1

h(Yi)−
n∑
i=1

h(Yi | Xi) +H(Wn | Y n)

=

n∑
i=1

I(Xi;Yi) +H(Wn | Y n)

Let Pi := E[X2
i ], and recall that Yi = Xi + Zi, where Z ∼ N (0, σ2) and Xi q Zi.

≤
n∑
i=1

1

2
log

(
1 +

Pi
σ2

)
+H(Wn | Y n)
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≤ n

2
log

(
1 +

P

σ2

)
+H(Wn | Y n)

≤ n

2
log

(
1 +

P

σ2

)
+ 1 + (logMn)pe(n).

Since 1
n logMn → R if pe(n)→ 0, this gives

lim sup
n

1

n
logMn ≤

1

2
log

(
1 +

P

σ2

)
.

Why is this result interesting? Suppose the FCC assigns you a bandwidth of W Hertz,
and you communicate over this channel for some time T at power constraint P (with units
energy per unit time). One can show that if the noise that corrupts your waveform is
additive white noise with power spectral density N0

2 , then the theoretical limit of the rate
at which you can communicate is

W log(1 +
P

N0W
) bits/unit time.

Studying the W →∞ limit and the T →∞ limit is interesting.
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20 Capacity of Wide Sense Stationary Processes and Paral-
lel Gaussian channels

20.1 Wide sense stationary processes

Definition 20.1. A stationary stochastic process (X(t).t ∈ R) is a collection of ran-
dom variables X(t) such that

(X(t1), . . . , X(td))
d
= (X(t1 + s), . . . , X(td + s)).

The correct thing to study to understand spectral properties of such a process is the
autocorrelation function.

Definition 20.2. The autocorrelation function is

Rx,x(s, t) := E[X(t)X(s)] = Rx(t− s).

By stationarity, this only depends on t− s.

Definition 20.3. A wide sense stationary (WSS) process is a process for which
Rx,x(t, s) depends only on t− s (and E[X(t)] is constant).

Definition 20.4. The power spectral density of the noise is

Sx,x(ω) =

∫ ∞
−∞

Rx,x(t)e−iωτ dτ,

the Fourier transform of the autocorrelation function.11

If we input a WSS into a linear time invariant filter, which outputs a WSS, then we
have the following magic formula:

Sy,y(ω) = |H(ω)|2Sx,x(ω).

We should think of Sx,x as telling us how much noise sits at each frequency.

11Professor Anantharam uses j instead of i, but I disagree.
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Definition 20.5. If Sx,x(ω) is constant, then (X(t), t ∈ R) is called white noise. If in
addition, (X(t), t ∈ R) is a Gaussian process, i.e. (X(t1), . . . , X(td)) is jointly Gaussian for
all t1, . . . , td, we call this white Gaussian noise.

Assuming E[X(t)] = 0 for all t, this is characterized by the properties

1. ∫ ∞
−∞

X(t)f(t) dt ∼ N(0, σ2, if

∫ ∞
−∞

f2(t) dt,

2. ∫ ∞
−∞

f(t)g(t) dt = 0 =⇒
∫ ∞
−∞

X(t)f(t) dtq
∫ ∞
−∞

X(t)g(t) dt.

20.2 Connection between WSSs and AWGNs

Last time, we saw that the Shannon capacity of a Power-constrained AWGN is

1

2
log

(
1 +

P

σ2

)
bits per use.

This is interesting because it is a model for if you input a power-constrained waveform
X (bandlimited to W Hz and time limited to T seconds) and the noise Z is additive and
white Gaussian noise. Here, the output is Y (t) = X(t) + Z(t).

The number of degrees of freedom, which represents the dimension of our input, is
intuitively 2WT . Nyquist sampling theory tells us that 2W samples per second is needed
to recover a signal which is bandlimited to W . The Landau-Pollack paper makes this
precise via prolate spheroidal functions.

The functions for which a fraction of at least 1 − ε2
T of the entropy should be on

[−T/2, T/2] and which are bandlimited to W can be expressed in terms of 2WT +constant
prolate spheroidal functions, capturing at least 1 − cε2

T of the energy. Here, εT → 0 as
T →∞.

The number of uses of the AWGN is replaced by 2WT , and the power on a per use
basis is replaced by power on a per degree of freedom basis. Let P denote power on a per
unit time basis; then the power on a per degree of freedom basis is P

2W . The noise power σ2

on a per use basis is replaced by the noise power per degree of freedom, N0
2 . The formula

we get is

1

T

(
2WT

1

2
log

(
1 +

P/(2W )

(N0/2)

))
= W log

(
1 +

P

N0W

)
bits per unit time.

Remark 20.1. Here is a practically important observation for space communication: For
fixed P ,

lim
W→∞

W log

(
1 +

P

N0W

)
=

P

N0
log2 e ≈ 1.44

P

N0
bits per second.
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So even with infinite bandwidth, the communication rate is power-limited.

In situations where bandwidth is limited (e.g. terrestrial communication), we call R/W
(denoted r) is called the spectral efficiency (bits/sec per Hz), and P/(N0R) (denoted
Eb/N0) is called the signal to noise per bit; here R is the rate of communication.
Shannon’s theorem for the white Gaussian noise waveform channel can be written as saying:
We must have

r < log

(
1 +

Eb
N0

r

)
.

This is considered a very insightful restatement of R < W log(1 + P
N0W

). Here is a graph
(in a log-log scale) of the region in which communication is possible:

What is astonishing is that you need at least a minimum value of Eb/N0 to communicate
at all!

20.3 The Shannon capacity of a parallel Gaussian channel

Leading up to the waveform channel Shannon capacity over colored noise, we’ll first study
the parallel Gaussian channel model. At each channel use, say at time i, we have a

vector of inputs (X
(1)
i , . . . , X

(K)
i ), each of which has some added independent Gaussian

noise Z
(k)
i . We receive a vector of outputs (Y

(1)
i , . . . , Y

(K
i ). Here, Z

(k)
i ∼ N (0, σ2

k) are
independent over i and k for k = 1, . . . ,K and i = 1, 2, . . . .

When coding at block-length n, we require for each message m ∈ [Mn] that

n∑
i=1

K∑
k=1

(x
(k)
i (m))2 ≤ nP.
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where the term in the sum is the total energy in the codeword for message m.

Theorem 20.1. In the parallel Gaussian channel model, the Shannon capacity is

sup∑K
k=1 E[(X(k))2]≤P

I(X(1), . . . , X(K);Y (1), . . . , Y (K))

We will discuss this further next time.
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21 Shannon Capacity of the Parallel Gaussian Channel Model
and Power-Constrained Waveform Channels with Col-
ored Noise

21.1 Shannon capacity of the parallel Gaussian channel model

Last time, we began discussing the parallel Gaussian channel model. We are doing com-

munication at times i = 1, . . . , n. At time i, we can send inputs X
(1)
i , . . . , X

(K)
i , and the

the receiver receives Y
(1)
i , . . . , Y

(K)
i ¡ where Y

(k)
i = X

(k)
i +Z

(k)
i , and the Z

(k)
i ∼ iidN (0, σ2

k).
The power constraint is that for each message m ∈ [Mn], the codeword

x
(1)
1 (m) · · · x

(1)
n (m)

...
...

x
(K)
1 (m) · · · x

(K)
n (m).


must satisfy

n∑
i=1

K∑
k=1

(x
(k)
i )2 ≤ nP.

Theorem 21.1. The Shannon capacity is

sup∑K
k=1 E[(X(k))2]≤nP

I(X(1), . . . , X(K);Y (1), . . . , Y (K)).

Proof. We can prove via the usual method of a random coding argument for achievability
and Fano’s inequality for the converse.

Choosing the inputs to be independent Gaussians is best (to maximize the mutual
information), say X(k) ∼ N (0, Pk) (we must have

∑K
k=1 Pk ≤ P ). This leads to the

problem

max∑K
k=1 Pk=P

K∑
k=1

1

2
log

(
1 +

Pk
σ2
k

)
.

Use the Lagrange multiplier technique: The Lagrangian is

L(P1, . . . , Pk, λ) =
K∑
k=1

1

2
log

(
1 +

Pk
σ2
K

)
+ λ

(
K∑
k=1

Pk − P

)
.

Then

∂L
∂Pk

= (log2 e) ·
1/σ2

k

2(1 + Pk/σ
2
k)

+ λ
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=
log2 e

2
· 1

σ2
k + Pk

+ λ

We also need to bring in the non-negativity constraints. With these taken into account,
the optimality criterion is that at the optimum, ∂L

∂Pk
must be ≤ 0 with strict inequality

allowed only at P ∗k = 0. This leads to

log2 e

2

1

σ2
k + P ∗k

≤ −λ∗

for all k¡ with strict inequality only if P ∗k = 0. That is, σ∗k+P ∗k = constant, except possibly

for k such that P ∗k = 0. This is waterfilling the available power P =
∑L

k=1 P
∗
k on the noise

power. Imagine filling up the following bucket with water:

21.2 Power-constrained waveform channels with colored noise

What does this have to do with waveform channels in colored noise?

Definition 21.1. For a discrete time stationary process (Uk, k ∈ Z), the autocorrelation
function is

RU,U (m,n) := E[UmUn].

This is dependent only on m− n, and we may call it RU,U (m− n).

Definition 21.2. We call (Un, n ∈ Z) wide sense stationary (WSS) if RU,U (m,n) is
dependent only on m− n and if E[Un] is constant.

Definition 21.3. The power spectral density of the process (Un, n ∈ Z) (assuming the
sampling time is T ) is

SU,U (f) =
∞∑

n=−∞
RU,U (n)e−i2πfnT ,
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which is periodic with period 2π/T .

The coefficient of the autocorrelation function can be recovered as

1

2W

∫ W

−W
e−in

πf
W SU,U (f) df. where W =

π

T
.

If the parallel Gaussian channel model is viewed as coming from quantizing the commu-
nication bandwidth into K levels with the noise power roughly flat over those levels, this
leads to the capacity formula for power-constrained waveform channels with colored noise:

C =

∫ W

−W

1

2
log

(
1 +

max{ν − SU,U (f), 0}
SU,U (f)

)
df,

where ν is chosen by waterfilling as the unique level with
∫

max{ν − SU,U (f), 0} df = P .
Observe that if you consider the Toeplitz matrix

R
(n)
U,U =


RU,U (0) RU,U (1) · · · RU,U (n− 1)

RU,U (1)
. . .

. . .
... RU,U (1)

RU,U (n− 1) · · · RU,U (1) RU,U (0)

 ,

then w>R
(n)
U,Uw = E[(

∑n1
`=0 e`U`)

2]. This matrix is positive semidefinite, so it has nonneg-
ative, real eigenvalues τn,1, . . . , τn,n.

Theorem 21.2 (Szegö). The fraction of these eigenvalues that lie in (f0, f0 + ε) for any
f0 converges to a limit in the sense that for any function F : R+ → R that is continuous,

1

n

n∑
k=1

F (τn,k)→
T

2π

∫ π/T

−π/T
F (S(f)) df.

Where does this theorem come from? Think about this in terms of eigenvalues:

R
(n)
U,Uw

(n)
k = τn,kw

(n)
k , w

(n)
k =


w

(n)
k,1
...

wk,n


normalized to make ‖w(n)

k ‖2 = 1. Associate to this

ψ
(n)
k (f) =

n∑
`=1

w
(n)
k,` e

−i `πf
W ,
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which is a periodic function of period 2W . Then∫ W

−W
|ψ(k)
n (f)|2 df = ‖w(n)

k ‖
2
2 = 1,

and

1

2W

∫ W

−W
|ψ(n)
k (f)|2SW (f) df =

1

2W

∫ W

−W

n∑
`=1

n∑
j=1

w
(n)
k,`w

(n)
k,j e

−iπf
W

(j−`)SW (f) df

= (w
(n)
k )>R

(n)
U,U (w

(n)
k )

= τn,k.
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22 Network Information Theory

In this lecture, we will be discussing multiuser/network information theory. There
is a recent book on it by Abbas El Gamal and Young-Han Kim.

22.1 Shannon capacity region of a multiuser DMC

In the multiple access channel model, there are multiple transmitters and a single
receiver. For example, we could think of a cell tower receiving multiple signals. The
channel is modeled as in the DMC case and also as in the power constrained Gaussian
channel model. We will study the Shannon capacity region in Shannon’s block coding
formulation. Good news: This is known, unlike many problems in network information
theory.

Consider the 2 transmitter case:

• X1 is the input alphabet of transmitter 1.

• X2 is the input alphabet of transmitter 2.

• Y is the output alphabet.

• The channel model in a simple use is (p(y | x1, x2) ≥ 0,
∑

y p(y | x1, x2) = 1 ∀x1, x2).

• The encoding map of transmitters 1 and 2 are

e(1)
n : [M (1)

n ] 7→ X n1 , e(2)
n : [M (2)

n ] 7→ X n2 ,

and the decoding map is

dn : Yn 7→ [M (1)
n ]× [M (2)

n ].

Like a Pavlovian dog, let’s turn the Shannon crank.

Definition 22.1. If there exists ((e
(1)
n , e

(2)
n , dn), n ≥ 1) such that

lim inf
n

1

n
logM (1)

n ≥ R1,

lim inf
n

1

n
logM (2)

n ≥ R2,

P(dn(e(1)
n (W1,n), e(2)

n (W2,n)) 6= (W1,n,W2,n)→ 0,

where Wi,n ∼ Unif[M
(i)
n ], and W1,nqW2,n, we say that the rate pair (R1, R2) is achievable.
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Theorem 22.1. The closure12 of the set of achievable rate pairs is the closed convex hull
of the union of all the sets of rate pairs of the type

Rp(x1)p(x2) = {(R1, R2) :R1 < I(X1;Y | X2),

R2 < I(X2;Y | X1),

R1 +R2 < I(X1, X2;Y )}

for some p(x1)p(x2), where p(y | x1, x2) is given by the channel.

In general, each of these regions looks like a polyhedron.

Remark 22.1. A more elegant way to write this region is as

{(R1, R2) :R1 < I(X1;Y | X2, Q),

R2 < I(X2;Y | X1, Q),

R1 +R2 < I(X1, X2;Y | Q)},

where the joint distribution is

p(q)p(x1 | q)p(x2 | q)p(y | x1, x2),

and Q ∈ Q, a finite set of size ≤ 4.

Proof. Achievability is via a random coding argument. Given p(x1)p(x2) and (R1, R2)inRp(x1)p(x2)

and clock length n, transmitter 1 constructs the random codebook

X1,1(1) · · · X1,n(1)
...

...
X1,1(m1) · · · X1,n(m1)

...
...

X1,1(d2n(R1−δ)e) · · · X1,n(d2n(R1−δ)e)

 ,

and transmitter 2 constructs the random codebook

X2,1(1) · · · X2,n(1)
...

...
X2,1(m1) · · · X2,n(m1)

...
...

X2,1(d2n(R2−δ)e) · · · X2,n(d2n(R2−δ)e)

 .

12We take the closure because this is an engineering class, where we don’t want to bother with the
boundary.
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Let W1,n = Unif([M
(1)
n ]) and W2,n = Unif([M

(2)
n ]), where M

(1)
n = 2nR1 and M

(2)
n = 2nR2 .

Then decode via

dn(Y n) =


(m1,m2) if there is a unique (m1,m2) such that

((X1)n1 (m1), (X2)n1 (m2), Y n
1 ) is ε-jointly weakly typical

arbitrary if there is no such (m1,m2) or more than 1 such (m1,m2).

Then, by symmetry,

P(dn(e(1)
n (W1,n), e(2)

n (W2,n)) 6= (W1,n,W2,n))

= P(dn(e(1)
n (1), e(2)

n (1)) 6= (1, 1))

≤ P(Ec1,1) +
∑
i 6=1

P(Ei,1) +
∑
j 6=1

P(E1,j) +
∑

i 6=1,j 6=1

P(Ei,j),

where Ei,j is the event that ((X1)n1 (i), (X2)n1 (j), Y n
1 ) us ε-jointly weakly typical. Then

P(E1,1)→ 0 by the weak law of large numbers, and

P(Ei,1) =
∑

((x1)n1 ,(x2)n1 ,y
n
1 )∈A(n)

ε

p((x1)n1 )p((x2)n1 , y
n
1 )

≤ |A(n)
ε |2−nH(X1)2nε

≤ 2nH(X1,X2,Y )2nε2−nH(X2,Y )2nε2−nH(X1)2nε

= 2−nI(X1;X2;Y )23nε

= 2−nI(X1;Y |X2)23nε

because I(X1;X2) = 0. Hence,∑
i 6=1

P(Ei,1) ≤ 2n(R1−δ)2−nI(X1;X2|Y )23nε,

so if R1 < I(X1;X2 | Y ) − 3ε + δ, then this goes to 0 as n → ∞. We can apply a similar
argument to P(E1,j).

When i 6= 1 and j 6= 1,

P(Ei,j) ≤
∑

((x1)n1 ,(x2)n1 ,y
n
1 )∈A(n)

ε

p((x1)n1 )︸ ︷︷ ︸∏n
t=1 pX1

(x1,t)

p((x2)n1 )︸ ︷︷ ︸∏n
t=1 pX2

(x2,t)

p(yn1 )

≤ |A(n)
ε |2−H(X1)2−nε2−nH(X2)2nε2−nH(Y )2nε

≤ 2n(H(X1,X2,Y )−H(X1)−H(X2)−H(Y ))24nε.

This tells us that if R1 +R2 ≤ I(X1, X2;Y )−4ε+2δ, then
∑

i 6=1,j 6=1 p(Ei,j)→ 0 as n→∞.
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For the converse, we use Fano’s inequality 3 times. For any ((e
(1)
n , e

(2)
n , dn), n ≥ 1,

nR1 + o(n) = logd2nR1e
= H(W1)

= I(1;Y n
1 ) +H(W1 | Y n

1 )

≤ I(W1 | Y n
1 ) + nεn,

where εn → 0 from Fano’s inequality because H(W1 | Y n
1 ) ≤ H(W1,W2 | Y n

1 ) and

H(W1,W2 | Y n
1 ) ≤ h(p

(n)
error) + n(R1 +R2)p

(n)
error.

≤ I((X1)1n(W1);Y n
1 )

= H((X1)n1 (W1))−H((X1)n1 (W1) | Y n
1 ) + nεn

= H((X1)n1 (W1) | (X1)n1 (W2))−H((X1)n1 (W1) | Y n
1 , (X2)n1 (W2)) + nεn

= I((X1)n1 (W1);Y n
1 | (X2)n1 (W2)) + nεn

= H(Y n
1 | (X2)n1 (W2))−H(Y n

1 | (X1)n1 (W1), (X2)n1 (W2)) + nεn

≤
n∑
i=1

H(Yi | (X2)n1 (W2))−
n∑
i=1

H(Yi | X1,i(W1), X2,i(W2)) + εn

=
n∑
i=1

I(Yi;X1,i | X2,i) + nεn.

We get R1 ≤ 1
n

∑n
i=1 I(Yi;X1,n | X2,i) + εn and similar bounds for R2 and R1 +R2.

22.2 Achievable rate pairs of a multiuser AWGN channel

In the case of Gaussian noise, we have input X1 with power constraint P1 and input X2

with power constraint P2. WIth N (0, σ2) noise, the result is more explicit:

Theorem 22.2. With Gaussian noise, the set of achievable rate pairs is{
(R1, R2) :R1 ≤

1

2
log

(
1 +

P1

σ2

)
R2 ≤

1

2
log

(
1 +

P2

σ2

)
R1 +R2 ≤

1

2
log

(
1 +

P1 + P2

σ2

)}
.
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23 Two Receiver Broadcast Channels

23.1 Degraded two receiver broadcast channels

The two receiver broadcast channel (for a discrete memoryless channel) is defined via

• p(y1, y2 | x), which is nonnegative with
∑

y1,y2
p(y1, y2 | x) = 1 for all x,

• Input alphabet x ∈X ,

• Output alphabet Y1 of receiver 1,

• Output alphabet Y2 of receiver 2,

• Memorylessness of the channel, given by

p(y1,[1:n], y2,[1:n] | x[1:n]) =
n∏
i=1

p(y1,i, y2,i | xi),

where y1,[1:n] is new notation for (y1)n1 ,

• Encoding map en : [M
(1)
n ]× [M

(2)
n ]→X n of block length n,

• Decoding map dn : Y n → [M
(1)
n ]× [M

(2)
n ] of block length n,

• Rate region given by the closure of the set

{(R1, R2) : ∃((en, dn), n ≥ 1) s.t. lim inf
n

1
n logM (1)

n ≥ R1,

lim inf
n

1
n logM (2)

n ≥ R2,

lim
n→∞

P (dn(en(W1,n,W2,n)) 6= (W1,n,W2,n)) = 0, }

where W1,n ∼ Unif([M
(1)
n ]),W2,n ∼ Unif([M

(2)
n ]).

The bad news is that finding the rate region has been an open problem for about 50
years. A special case where the rate region is known is called the stochastically degraded
case.

Definition 23.1. p(y1, y2 | x) is called physically degraded if

p(y1, y2 | x) = p(y1 | x)p(y2 | y1).

It is called stochastically degraded if there exists some distribution p′(y2 | y1) such that

p(y2 | x) =
∑
y1

p(y1 | x)p′(y2 | y1).
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The physical degradation condition means that we have the Markov chain X−Y1−Y2.
The stochastic degradation condition does not require X−Y1−Y2 but is “equivalent” since
the rate region only depends on p(y1 | x) and p(y2 | x).

Example 23.1 (Stochastically but not physically degraded channel). Let X = Y1 = Y2 =
{0, 1}, and suppose that Y1 = X ⊕ Z, where Z ∈ {0, 1}, P(Z = 1) = a = 1 − P(Z = 0).
Here, 0 < a < 1. Also, let Y2 = Z, where Z q X. This is not a physically degraded
channel, since X − Y1 − Y2 is false (e.g. knowing both X and Y1 determines Y2). But it is

stochastically degraded because we can replace Y2 by Z ′, where Z ′
d
= Z, Z ′ q (X,Z).

Example 23.2 (Broadcast channel that is not stochastically degraded). Let X = Y1 =
Y2 = {0, 1} with p(y1 | x) given by a Z-channel and p(y2 | x) given by a different Z-channel.

We claim that there cannot be any p′(y2 | y1) such that the stochastic degradation
condition holds, i.e.

p(y2 | x) = sumy1p(y1 | x)p′(y2 | y1).

If such a p′ existed, then

0 = pY2|X(1 | 0)

= pY1|X(1 | 0)p′(1 | 1) + pY1|X(0 | 0)p′(1 | 0).

That is,
0 = p′(1 | 1) + (1− a)p′(1 | 0),

so
p′(1 | 1) = p′(1 | 0) = 0,

which makes
p′(0 | 1) = p(0 | 0) = 1.

Then p(y2 | x) =
∑

y1
p(y1 | x)p′(y2 | y1) gives the the wrong channel.
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23.2 Capacity region for a stochastically degraded broadcast channel

Theorem 23.1. The capacity region for independent private messages over a stochastically
degraded broadcast channel is the closure of the convex hull of

{(R1, R2) : R2 ≤ I(U ;Y2), R1 ≤ I(X;Y1 | U)}

for some p(x)p(x | u)p(y1, y2 | x), where U ∈ U and |U | ≤ max{|X |, |Y1|, |Y2|}.

Think of these U variables as information that receiver 1, the stronger receiver, can use
to get a better signal.

Proof. We will use a random coding achievability argument. The codebook is going to be
comprised of 2n(R1−δ)2n(R2−δ) codewords in X n, organized as 2n(R2−δ) clusters, each with
2n(R1−δ) codewords.

Generate 2n(R2−δ) independent sequences (U1(m2), . . . ,Wm(m2)) with 1 ≤ m22n(R2−δ),

and entries
iid∼ p(u). For eachm2, generate 2n(R1−δ) sequences (X1(m1,m2), . . . , Xn(m1,m2))

with 1 ≤ m1 ≤ 2n(R1−δ) and, for each m1, joint law
∏n
i=1 p(xi | Ui(m2)) (independently

over m1).
To send (m1,m2) the transmitter sends (X1(m1,m2), . . . , Xn(m1,m2)). Receiver 2, re-

ceiving (Y2,1, . . . , Y2,n), determines all m2 such that (U[1:n](m2), Y2,[1:m]) is ε-jointly weakly
typical. If there is only one such message, it decodes as m2. If there are none or more
than one such message, it decodes arbitrarily. Receiver 1, receiving (Y1,1, . . . , Y1,n), finds
all (m1,m2) such that (U[1:n](m2), X[1:n](m1,m2), Y1,[1:n]) is ε-jointly weakly typical. If
there is only one such message, it decodes as m1. If there are none or more than one such
message, it decodes arbitrarily.

If we take the probability over the random codebook, W1, and W2, symmetry gives us

P(dn(en(W1,n,W2,n)) 6= (W1,n,W2,n))] = P(dn(en(1, 1)) 6= (1, 1)),

so we can condition on the message pair (m1,m2) = (1, 1) being sent.

The error events for receiver 2 are

E(2)
n = {(U[1:n](1), Y2,[1:n]) /∈ A

(n)
ε,(U,Y2)}, E

(2)
n,i = {(U[1:n](i), Y2,[1:n]) ∈ A

(n)
ε,(U,Y2)}

for i 6= 1. By the weak law of large numbers,

P(E(2)
n )

n→∞−−−→ 0

On the other hand,

P(E
(2)
n,i ) ≤ 2−nI(U ;Y2)23nε,

so we want 2n(R2−δ)2−nI(U ;Y2)2n3ε → 0, i.e. R2 < U(U ;Y2)− 3ε+ δ.
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The error events for receiver 1 are

E(1)
n = {(U[1:n](1), X[1:n](1, 1), Y1,[1:n]) /∈ A

(n)
ε,(U,X,Y1)}, E

(1)
n,i = {(U[1:n](i)Y1,[1:n]) ∈ A

(n)
ε,(U,Y2)}

for i 6= 1. By the weak law of large numbers,

P(E(1)
n )

n→∞−−−→ 0.

On the other hand,

P(E
(1)
n,i ) ≤ 2−nI(U ;Y1)23nε.

There are 2n(R2−δ), and I(U ;Y1) ≥ I(U ;Y2), so the earlier condition on R2 ensures∑
i 6=1 P(E

(1)
n,i )→ 0.

For j 6= 1, we also have the error event

E
(1)
n,1,j = {(U[1:n](1), X[1:n](j, 1), Y1,[1:n]) ∈ A

(n)
ε,(U,X,Y1)}.

Then

P(E
(1)
n,1,j) =

∑
u[1:n],x[1:n],y1,[1:n]∈A

(n)
ε

2−nH(U,Y1)2nε2−nH(X|U)2nε

The size of A
(n)
ε is ≤ 2nH(U,X,Y1)2nε.

≤ 2−nI(X;Y1|U)2n4ε.

The converse part of the proof is homework.

23.3 Capacity region for a stochastically degraded Gaussian broadcast
channel

The Gaussian case (with power constrained to P , receiver 1 noise N (0, σ2
1), and receiver

noise N (0, σ2
2) with σ2

2 > σ2
1) is automatically stochastically degraded.

Theorem 23.2. The rate region is the union of the sets of the form

{(R1, R2) : R2 ≤ C((1− α)P, αP + σ2
2), R1 ≤ C(αP, σ2

1)}

over 0 < α < 1, where

C(P, σ2) =
1

2
log

(
1 +

P

σ2

)
.
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24 The Relay Channel Model, One Shot Information The-
ory, and Rate Distortion Theory

24.1 The relay channel model

The basic relay channel model (in the discrete memoryless case) has a transmitter, a relay,
and a receiver. In a single channel use, the transmitter inputs X. The relay receives Y1

(which depends on X and X1) and sends X1, and the receiver receives Y , which depends
both on X and X1.

The channel is described by p(y, y1 | x, x1) with y ∈ Y, y1 ∈ Y1, x ∈X , and x1 ∈X .
We use our Shannon persona to study the Shannon capacity asymptotically as block

length goes to ∞. The new twist is that in deciding the k-th input with 1 ≤ k ≤ n, the
relay can use the past k − 1 observations. The overall probability distribution is

p(m)p(x[1:n] | m)
n∏
i=1

p(x1,i | y1,1, . . . , y1,i−1︸ ︷︷ ︸
y1,[1:i−1]

)
n∏
i=1

p(yi, y1,i | xix1,i)

in either a deterministic or random coding scheme (for proof purposes), where m ∈ [Mn] =
[2nR].

In a fixed coding scheme,

p(x[1:n] | m) = 1{en(m)=x[1:n]},

where en : [Mn]→X n is an encoding map, and

p(x1,i | y1,[1:i−1]) = 1{fi(y1,[1:i−1])=x1,i),

where f1, . . . , fn are the relay’s encoding rules. We also need the decoding map dn : Y n →
[Mn].

The Shannon capacity region, defined as usual as the supremum of rates at which the
error probability (asymptotically in n) goes to zero, is unknown. Here is a basic theorem
in this area.
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Theorem 24.1 (Cut-set bound).

C ≤ sup
p(x,x1)

min{I(X,X1;Y ), I(X;Y, Y1 | X1)}.

The bound in terms of I(X,X1;Y ) should be thought of as the case where the trans-
mitter and the relay can communicate freely; here is the following cut-set in a picture:

The bound in terms of I(X;Y, Y1 | X1) should be thought of as the case where the relay
and the receiver can communicate freely. This cut-set looks like

The first term is more straightforward, while the second is more interesting. We’ll omit
the details of the proof and include them in a handout later.

24.2 One shot information theory

One shot information theory (in the discrete memoryless case) involves a single use of a
DMC. A message m ∈ {1, . . . , L} is encoded as x(m) ∈ X , received as y via [p(y | x)]

through the channel, and decoded as d(y) = m̂. We want to study pe := P(Ŵ 6= W ) as a
function of L, where W ∼ Unif({1, . . . , L}).

Theorem 24.2 (Poisson matching lemma). For any input distribution distribution pX ,

pe ≤ E
[
1− 1

1 + L2−iX;Y (X;Y )

]
,

where iX,Y (x; y) := log
pX,Y (x,y)
pX(x)pY (y) .
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This uses a Poisson process on X × [L]×R+. You may think of this as one copy of R+

for each x ∈ X, 1 ≤ m ≤ 1 and an independent rate 1 Poisson process on each line. That
is, the points are placed with iid Exp(1) interarrival times.

Example 24.1. Here is what this looks like when |X | = 5 and L = 4.

This Poisson structure is shared randomness between transmitter and receiver. The
transmitter knows m and scales up the profile (px(x), x ∈ X ) in the m-th group until it
hits a point in the Poisson process. If that is in line x, input x into the channel. The
receiver scales up the distribution 1

LpX|Y (x | Y ) (which is computed from pX and pY |X
using Bayes’ rule) until it heats a point of the Poisson process. Then the receiver returns
m̂, which is the block of lines in which the hit occurs.

24.3 Rate distortion theory

Rate distortion theory is a “Shannon mindset theory” which tries to do an asymptotic
version of vector quantization. Here is the basic vector quantization problem. Say Z ∈ Rd
is random, and you are allowed to place L points z1, . . . , z: ∈ Rd. The aim is to minimize
E[min1≤`≤L(Z − z`)2].

Given z1, . . . , zL, Rd gets decomposed into Voronoi cells, which are the points closest
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to a given z`.

But given a region D, the best choice of z ∈ Rd to map that region to will be the one that
minimizes E[(Z − z)2

1{Z∈D}].
In the rate distortion formulation, the block length is n, the alphabet is X , and the

finite source sequence x[1:n] ∈ X n can be represented by 2nR points via fn : X n →
{1, . . . , 2nR}. The decompressor sees fn(x[1:n]) and reproduces it as x̂[1:n] ∈ X̂ n via gn :

[2nR]→ X̂ n. The aim is to minimize

E

[
1

n

n∑
i=1

d(Xi, X̂i)

]
.

Here, X1, . . . , Xn are iid, d : X × X̂ → R is some distortion measure, and X̂[1:n] =
gn(fn(X[1:n])).
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25 Rate Distortion Theory

25.1 Shannon’s rate distortion theorem

In rate distortion theory,, we have an iid X -valued source X1, . . . , Xn. At the compressor,
we have

fn : X n → {1, 2, . . . , 2nR}.

Assume fn(Xn) is perfectly received at the decompressor. The decompressor uses a map

gn : {1, . . . , 2nR} → X̂ n, where X̂ could be different from X . Call (fn, gn) a (2nR, n)

distortion code. We are also given a cost metric d : X ×X̂ → R+ called the distortion
measure.

Definition 25.1. (R,D) is called achievable if there exists ((fn, gn), n ≥ 1) of (2nR, n)
distortion codes such that

lim sup
n

1

n
E[d(Xn, gn(fn(Xn)))] ≤ D,

where d(xn, x̂n) denotes
∑n

i=1 d(xi, x̂i).

Theorem 25.1 (Shannon’s rate distortion theorem). Let

R(I)(D) = min
p(x̂|x):

∑
x,x̂ d(x,x̂)p(x)p(x̂|x)≤D

I(X; X̂),

where p(x) is the marginal distribution of the source. (R,D) is achievable if R > R(I)(D)
and not achievable if R < R(I)(D).

We write R(I)(D) as R(D), the rate distortion function.

Example 25.1 (Bernoulli source). Let X = {0, 1} with p(1) = p and p(0) = 1 − p,

reproduction alphabet X̂ = {0, 1}, and distortion measure d(0, 0) = 0 = d(1, 1), d(0, 1) =
1 = d(1, 0). Here,

R(D) =

{
h(p)− h(D)Y 0 ≤ D ≤ min{p, 1− p}
0 otherwise

To see this, if D > min{p, 1−p} then if p < 1/2, represent all binary sequences of length
n by 0n; if p > 1/2, represent all binary sequences of length n by 1n. If d ≤ min{p, 1− p},
we can choose the optimizing p(x̂ | x) by defining the corresponding p(x | x̂) via a binary
symmetric channel with crossover probability D (p(x̂) has to be chosen correctly to get the
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correct p(x)).

We must have
p
X̂

(1)(1−D) + (1− p
X̂

(1))D = p

which gives

p
X̂

(1) =
p−D
1− 2D

.

This makes sense because D ≤ min{p, 1− p} and D ≤ 1/2.
If we made this choice, then

I(X; X̂) = H(X)−H(X | X̂)

= h(p)− h(D).

To show that this is the best choice, we need to show that I(X; X̂) ≥ h(p)− h(D) for all
other choices of p(x̂ | x). This holds because for any other choice of p(x̂ | x),

I(X̂;X) = H(X)−H(X | X̂)

= h(p)−H(X | X̂)

= h(p)−H(X ⊕ X̂ | X̂)

≥ h(p)−H(X ⊕ X̂)

≥ h(p)− h(D).

25.2 Proof of the rate distortion theorem

Let’s prove the theorem.

Proof. Converse: We want to show that if R < R(I)(D)¡ then (R,D) is not achievable.
First, observe that R(I)(D) is a convex function of D (using I(X; X̂) is convex in [p(x̂ | x)]
for fixed (p(x), x ∈X )). Consider any sequence ((fn, gn), n ≥ 1) of (2nR, n) rate distortion
codes. Then

nR ≥ H(X̂n)

≥ I(Xn; X̂n)
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= H(Xn)−H(Xn | X̂n)

Use the chain rule

= H(Xn)−
n∑
i=1

H(Xi | Xi−1, X̂n)

=
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi | Xi−1, X̂n)

Conditioning on more decreases the entropy, so

≥
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi | X̂i)

=
n∑
i=1

I(Xi; X̂i)

If Di denotes E[d(Xi, X̂i)], then I(Xi; X̂i) ≥ R(I)(Di).

≥
n∑
i=1

R(I)(Di)

By convexity of R(I),

= nR(I)(D).

Achievability: We use a random coding argument. Given p(x, x̂), define the set

A
(n)
d,ε :=

{
(xn, x̂n) : (xn, x̂n) ∈ A(n)

ε ,

∣∣∣∣∣ 1n∑
i

d(xi, x̂i)− E[d(X, X̂)]

∣∣∣∣∣ < ε

}
.

We can show that P((Xn, X̂n) ∈ A(n)
d,ε ) → 1 as n → ∞, where (Xi, X̂i) are iid ∼ p(x, x̂).

We can also show that

(1− ε)2nH(X,X̂)2−nε ≤ |A(n)
d,ε | ≤ 2nH(X,X̂)2nε,

where the lower bound holds for all sufficiently large n. If Xnq ˜̂Xn

, where Xn is iid ∼ p(x)
and X̂n is iid ∼ p(x̂), then

(1− ε)2−nI(X;X̂)2−n3ε ≤ P(Xn,
˜̂
X
n

∈ A(n)
d,ε ) ≤ 2−nI(X;X̂)2n3ε.

So generate 2nR sequences  X̂1(1) · · · X̂n(1)
...

...

X̂1(2nR) · · · X̂n(2nR)


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with entries iid over the coordinates and ∼ p(x̂). To construct fn : X n → {1, . . . , 2nR},
on seeing xn, find a row ` such that (xn, X̂n(`)) ∈ A(n)

d,ε if such exists. Then define gn :

{1, . . . , 2nR} → X̂ n by gn(`) is row `.
We claim that if R > I(X; X̂), then P(row exists for Xn) → 1 as n → ∞. If R >

I(X; X̂) + 3ε, then (
1− (1− ε)2−nI(X;X̂)2−3nε

)2nR

→ 0.

This completes the proof.

25.3 The rate distortion function with a Gaussian source

For an iid Gaussian source X1, . . . , Xn iid ∼ N (0, σ2), X = X̂ = R, and distortion
d(x, x̂) = (x − x̂)2 with the goal of asymptotical per letter distortion at most D (i.e.
1
n E[

∑n
i=1(Xi − X̂i)

2] ≤ D with X̂n = gn(fn(Xn))), we have

R(I)(D) =

{
1
2 log σ2

D if D < σ2

0 if D > σ2.

The first case is achieved via Z ∼ N (0, σ2−D), where X̂qZ. Here, I(X; X̂) = h(X)−h(X |
X̂) = 1

2 log σ2

D .
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26 Convex Dual of the Cumulant Generating Function and
Sanov’s Theorem

26.1 The cumulant generating function and convex duality

Suppose X ∈ Rd is a random variable.

Definition 26.1. The map θ 7→ E[eθ
>X ] with θ ∈ Rd is called the moment generating

function.

Definition 26.2. The map θ 7→ logE[eθ
>X ] with θ ∈ Rd is called the cumulant gener-

ating function.

If we differentiate the moment generating function with respect to θ and set θ = 0, we
get the moments of X. Likewise, doing the same to the cumulant generating function gives
us the cumulants of X. One advantage of working with the cumulant generating function
is that it is convex.

We have dealt with finite (and countable) random variables and some densities. For a
finite random variable X ∈ X with |X | = d,it is interesting to consider Z ∈ Rd where
Z = ei with probability pi (here, ei is the i-th basis vector). Then

logE[eθ
>Z ] = log

d∑
i=1

pie
θi

because θ>ei = θi for i = 1, . . . , d.
To any (extended real-valued) convex function there is a dual13 convex function on Rd.

Example 26.1. Let d = 1 and consider f(x) = x2/2. Consider a line ax of slope ax and
look at the height that separates the line from the function. Find the point at which this
height is the greatest to calculate the dual f̂(a) := supx∈R ax− f(x).

Here, we can calculate f̂(a) = a2/2. In a related sense to how the Gaussian is self-dual for
the Fourier transform, this function is self-dual for the Frenchel-Legendre transform.

13This is somtimes called Fenchel duality, Legendre duality, or Fenchel-Legendre duality.
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Example 26.2. Let f(x) = ex. To find f̂(a), since f ′(x) = a for x, if a > 0, this occurs if
x = ln a, and if a ≤, this is impossible. So we get

f̂(a) = sup
x

(ax− ex)

=


a ln a− a a > 0

0 a = 0

∞ a < 0.

What if d > 1?

Definition 26.3. Suppose Φ : Rd 7→ R∪{∞} is convex. Its Fenchel-Lengendre dual is

Φ̂(a) := sup
x∈Rd

a>x− Φ(x)

for a ∈ Rd.

Again,
Φ̂(a) = a>xa − Φ(xa),

where xa is defined by ∇Φ(xa) = a (if xa exists). It can be shown that

Φ(x) = sup
a
x>a− Φ̂(a).

To check this where Φ expresses all derivatives, write

Φ(x) ≥ x>a− Φ̂(a) ∀x, a ⇐⇒ Φ̂(a) ≥ a>x− Φ(x) ∀x, a.

Proposition 26.1. Let X take values in X with |X | = d and pi = P(X = i). Let Z = ei
iff X = i (i.e. P (Z = ei) = pi for 1 ≤ i ≤ d). Then the Fenchel dual of Φ(θ) = lnE[eθ

>Z ]
is

Φ̂(a) =

{
D(a || p) if a is a probability distribution

∞ otherwise.

Proof. Here,

ΦZ(θ) = ln

d∑
i=1

pie
θi ,

so

∇ΦZ(θ) =

 p1eθ1∑d
i=1 pie

θi

...

 .
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This expresses only gradients that are probability distributions (means where pi 6= 0). We
have

Φ̂X(a) = a>pa − ln
d∑
i=1

pie
θai ,

where θa is defined in terms of a via ∇Φ(θa) = a, i.e. pie
θi is proportional to ai (i.e.

θi = ln ai
pi

+ constant). The constant is log
∑d

i=1 pie
(θa)i = 0.

=
d∑
i=1

ai ln
ai
pi
−
��

�
��

�
��
�*0

ln

(
d∑
i=1

pie
ln
ai
pi

)
= D(a || p).

26.2 Large deviations and Sanov’s theorem

Roughly speaking, a basic large deviations theory result is of the form: If Z1, Z2, . . . are
iid Rd-valued with logE[eθ

>Z ] denoted ΦZ(θ) and E[Z1] = 0 ∈ Rd, then for any open set
A ⊆ Rd,

lim inf
n→∞

− 1

n
logP

(
Z1 + · · ·+ Zn

n
∈ A

)
≤ inf

z∈A
Φ̂Z(z).

Here is a special case.
If X1, X2, . . . , are i.i.d. X -valued with X = {1, 2, . . . , d} and Z1, Z2, . . . are i.i.d. Rd-

valued creased from X1, X2, . . . , then observe that Z1+···+Zn
n is equivalent to the empirical

distribution of (X1, . . . , Xn), i.e. Z1+···+Zn
n =

∑d
i=1

N(i|xn)
n ei. Let Pxn := (N(i|xn)

n , i =
1, . . . , d). So for any open subset A ⊆ simplex in Rd,

lim inf
n
− 1

n
logP(PXn ∈ A) ≤ inf

a∈A
D(a || p).

Recall that if xn = (x1, . . . , xn) ∈ X n with X finite and if P denotes the set of

probability distributions on X, then pxn ∈ P denotes (N(x|xn)
n , x ∈ X ) and Pn denotes

the set of all such Pxn . For an n-type P ∈ Pn, the typicality set for P refers to
T (P ) := {xn ∈X n : Pxn = P}. For Q ∈ P,

Q(xn) =

n∏
i=1

q(xi)

=
∏
x∈X

q(x)N(x|xn)

= 2−n(H(Pxn )+D(Pxn ||Q)).
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We also proved that for P ∈ Pn,

Pn(T (P )) ≥ Pn(T (P̃ )) ∀P̃ ∈ Pn,

|Pn| ≤ (n+ 1)|X |, and for P ∈ Pn,

1

(n+ 1)|X |
2nH(P ) ≤ |T (P )| ≤ 2nH(P ).

Theorem 26.1 (Sanov). Let X be finite, X1, X2, . . .
iid∼ Q, and E ⊆ P. Assume that E

is the closure of its interior. Then

lim
n→∞

1

n
logQn(PXn ∈ E) = −D(P ∗ || Q),

where
P ∗ = arg min

P∈E
D(P || Q).

Remark 26.1. Since E is closed and D(· || Q) is continuous, this argmin exists. P ∗ is
called the I-projection of Q onto E.

Proof. For the upper bound,

Qn(PXn ∈ E) = Qn(PXn ∈ E ∩ Pn)

≤ (n+ 1)|X |2−nD(P ∗||Q)

For the lower bound, for any P (n) ∈ Pn ∩ E,

Qn(PXn ∈ E) ≥ Qn(T (P (n)))

≥ 1

(n+ 1)|X |
2−nD(P (n)||Q).

Choose P (n) → P ∗.

Here is a nice observation about the I-projection of Q onto a convex set E.

Proposition 26.2. For all P ∈ E,

D(P || Q) ≥ D(P || P ∗) +D(P ∗ || Q).
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This tells us that we should think of D(P || Q) as the square of a distance.

Proof. Consider the relative entropy D(λP + (1−λ)P ∗ || Q) for λ ∈ [0, 1]. Differentiate in
λ. It must be nonnegative.
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27 I-Projection in Sanov’s Theorem and Hypothesis Testing

27.1 Properties of I-projection in Sanov’s theorem

Last time, we proved Sanov’s theorem:

Theorem 27.1 (Sanov). Let X1, X2, . . .
iid∼ Q be X -valued random variables, and let Pxn

be the type of xn: Pxn(x) = N(x|xN )
n . Let P be the set of probability distributions on X ,

and assume that E ⊆ P is the closure of its interior. Then

lim
n→∞

1

n
logQn(PXn ∈ E) = −D(P ∗ || Q),

where
P ∗ = arg min

P∈E
D(P || Q).

P ∗ is called the I-projection of Q onto E.

Definition 27.1. Let X be finite. Given Q ∈ P and h : X → R, the probability
distribution of the form

Q(x)eλh(x)∑
a∈X Q(a)eλh(a)

is called an exponential transform of Q.

Proposition 27.1. Suppose E is defined as

E =

{
P :

∑
x

gj(x)P (x) ≥ αj , j = 1, . . . , k

}
.

Then P ∗ will be an exponential transform of Q.

Proof. Assume Q(x) > 0 for all x. We want

max
∑
x

P (x) log
P (x)

Q(x)
,

subject to 
∑

a P (a)gj(a) ≥ αj , j = 1, . . . , k

P (x) ≥ 0 x ∈X∑
x P (x) = 1.

where the variables are (P (x), x ∈X ) and Q ∈ P is fixed. The correct Lagrangian is

∑
x

P (x) log
P (x)

Q(x)
+

k∑
j=1

λj

(∑
x

P (x)gj(x)− αj

)
−
∑
x

µxP (x) + ν

(∑
x

P (x)− 1

)
.
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Write the KKT conditions for this:
λ∗j ≥ 0,

µ∗x ≥ 0,

λ∗j

(
αj −

∑
x

P ∗(x)gj(x)

)
= 0 ∀j,

µ∗xP
∗(x) = 0 ∀x.

Differentiate this to get

log
P ∗(x)

Q(x)
+ 1 +

∑
j

λjgj(x)− µ∗x + ν∗ = 0 ∀x.

Since P ∗(x) cannot be 0 for any x, we must have µ∗x = 0.

We also can show the following.

Theorem 27.2.

lim
n→∞

Qn(X1 = a | PXn ∈ E) = P ∗(a) ∀a ∈X .

Proof. Given δ > 0, let A = {P ∈ E : D(P || Q) ≤ D(P ∗ || Q) + 2δ}. The Sanov theorem
calculation tells us that

Qn(E \A) ≤ (n+ 1)|X |2−n(D∗(P ||Q)+2δ).

For large enough n,

Qn(A) ≥ 1

(n+ 1)|X |
2−n(D∗(P ||Q)+δ).

This proves that
Qn(PXn ∈ A | PXn ∈ E)

n→∞−−−→ 1.

If E is convex, we can use D(P || P ∗) + D(P ∗ || Q) ≤ D(P || Q) for all P ∈ E to show
that

Qn(D(PXn || P ∗) ≤ 2δ | PXn ∈ E)
n→∞−−−→ 1.

Then use Pinsker’s inequality:

D(P1 || P2) ≥ 1

2 ln 2
‖P1 − P2‖21 ∀P1, P2.
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27.2 The Neyman-Pearson framework of hypothesis testing

Here is the Neyman-Pearson formulation of hypothesis testing with two hypotheses H1

and H2. Under H1, assume that X1, X2, . . . , are iid X -valued with Xi ∼ P1. Under H2,
assume that X1, X2, . . . , are iid X -valued with Xi ∼ P2. Given a “threshold” T , define

An(T ) =

{
xn :

Pn1 (xn)

Pn2 (xn)
> T

}
.

Definition 27.2. A hypothesis test is a function X n → {1, 2}.

Equivalently, it means we choose a set B ⊆X n on which to decide H1, and on Bc we
decide H2.

Let 1B denote the indicator function of B. Observe that

(1An(T )(x
n)− 1B(xn))(Pn1 (xn)− TPn2 (xn)) ≥ 0 ∀xn.

Summing this up over xn,∑
xn∈An(T )

P1(xn)

︸ ︷︷ ︸
1−Pn1 (Xn /∈ An(T ))︸ ︷︷ ︸

α∗

−T
∑

xn∈An(T )

Pn2 (xn)

︸ ︷︷ ︸
β∗

−
∑
xn∈B

Pn1 (xn)︸ ︷︷ ︸
1−α

+T
∑
xn∈B

Pn2 (xn)︸ ︷︷ ︸
β

≥ 0.

We get
T (β − β∗)− (α∗ − α) ≥ 0,

so if α ≤ α∗, then β ≥ β∗. Hence, if one tries to minimize P(error | H2) given a bound on
P(error | H1), then we use a threshold test.

Theorem 27.3 (Stein’s lemma). For any ε > 0, let

βεn := min
B⊆X n

{βn : αn ≤ ε}.

Then

lim
n→∞

1

n
log βεn = −D(P1 || P2).

The intuition is that for all δ > 0, the ball Cn = {P ∈ P : D(P || P1) ≤ δ} has
Pn1 (Cn)→ 1 as n→∞ and

lim inf
n→∞

− 1

n
logPn2 (Cn) ≥ D(P1 || P2)− η,

where η → 0 as δ → 0.
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27.3 The Bayesian framework of hypothesis testing

In the Bayesian view of hypothesis testing, π1 is the prior probability of H1, and π2 is the
prior of H2. The optimal test is to decide H1 if

π1P
n
1 (xn)

π2Pn2 (xn)
≥ 1.

This is related to information geometry, which is about the space of probability distribu-
tions with separation defined by relative entropy. If P1, P2 ∈ P, then there is a statistically
natural path connecting them, parameterized by λ ∈ [0, 1], where

Pλ(x) =
P λ1 (x)P 1−λ

2 (x)∑
a P

λ
1 (a)P 1−λ

2 (a)
.

Pλ arises by studying the minimum of D(P || P2) subject to D(P || P2)−D(P || P1) = K.
Why this constraint? This is because{

xn :
P1(xn)

P2(xn)
≥ T

}
=

{
xn : D(Pxn || P2)−D(Pxn || P1) ≥ 1

n
log T

}
.

Theorem 27.4. Assume that π1 > 0 and π2 > 0. Let α∗n = Pn1 (An(π2
π1

)c), and let β∗n =
Pn2 (An(π2

π1
)). Then

lim
n→∞

1

n
log(π1α

∗
n + π2β

∗
n)→ −D(Pλ∗ || P2),

where D(Pλ∗ || P2) = D(Pλ∗ || P1).
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