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1 Introduction to Topology

1.1 Motivation and overview

What is topology? It is not geometry. Geometry is the study of “rigid” objects, distances,
curvature, and symmetries/isometries. On the other hand, topology is the study of “non-
rigid” phenomena, connectivity, and deformation (stretching, squeezing, etc.).

Example 1.1. Consider the difference between the surface of a tennis ball and the surface
of a soccer ball. Geometrically, the surfaces have different properties, but a topological
point of view would call them similar, or “the same.”

Example 1.2. Consider the difference between A, A, and A . Geometrically, these are
different shapes, but you might think of them all as the letter A. There is some common
property they all share that makes them appear like the shape of the letter A.

Example 1.3. Are the letters V and X the the same, topologically? Maybe not. You can
remove a point from the X and get 4 pieces, but you cannot do that with the V, no matter
how you stretch it.

What does “the same” mean? We will see two approaches to this:

1. “homeomorphism” (think reparameterising)

2. “homotopy equivalent” (think same number of holes).

Example 1.4. A metal washer and a toilet paper roll might be considered to have the
same number of holes.

Where does algebra come in? The idea is to encode information about your space using
algebra.

Example 1.5. We will find a map G that takes a topological space and associates a group.
Ideally, we want this to “respect” maps between spaces. So if f : X → Y is a continuous
map, then f∗ : G(X) → G(Y ) will be a homomorphism. We also want composition to
carry through; i.e. if f : X → Y and g : Y → Z are continuous, then (g ◦ f)∗ = g∗ ◦ f∗.

In this course, we will see two algebraic invariants:

1. Fundamental group π1(X)

2. Homology groups H∗(X).

They will fit in to the following outline of the course (probably):

1. Point-set topology (up to midterm 1)
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2. Fundamental group

3. Homology

4. Applications.

There are other approaches to topology. For example, people study differential topology
and analysis on topological spaces, which are both rich fields in their own right.

1.2 Topological spaces

Definition 1.1. Let X be a set. Then a topology on X is a collection of subsets of X,
called open sets, such that

1. The sets ∅ and X are both open.

2. Any union of open sets is an open set (even of uncountably infinitely many).

3. The intersection of finitely many open sets is open.

The set X, along with its topology is called a topological space.

Example 1.6. This is the usual topology on Rn (also called En).1 Call a set A ⊆ Rn open
iff for all x ∈ A, we can find an ε > 0 such that Bε(x) ⊆ A, where Bε(x) is the ball of
radius ε centered at x.

Let’s check the properties.

1. ∅ is vacuously open, and Rn itself is open because for x ∈ Rn, Bε(x) ⊆ Rn for all ε.

2. If A =
⋃
Ai and x ∈ A, then x ∈ Ai for some i. Ai is open so there exists some ε > 0

such that Bε(x) ⊆ Ai. So Bε(x) ⊆ Ai ⊆
⋃
Ai = A.

3. If A =
⋂n
i=1Ai and x ∈ A, then a ∈ Ai for i = 1, . . . , n. So for each i, there exists εi

such that Bεi(x) ⊆ Ai. Let ε = min(ε1, . . . , εn). Then Bε(x) ⊆ Bεi(x) ⊆ Ai for all i.
So Bε(x) ⊆

⋂n
i=1Ai = A, making A open.

Example 1.7. A metric space (X, d) automatically has a topology induced by the metric.
For x ∈ X, define Bε(x) = {y ∈ X : d(x, y) ≤ ε}.2 Then define the topology on X as in
the Rn example.

Remark 1.1. Different metrics might give the same topology.

Topologies induced by metrics are easier to visualize. However, there are “weirder”
topologies that do not necessarily correspond to a metric.

1The letter E here is for Euclidean.
2We could have used < here instead of ≤, but it does not matter because they produce the same topology.

6



Example 1.8. Let X be an space, and let the open sets be {∅, X}. This is called the
trivial or indiscrete topology.

Example 1.9. Let X be any space, say that every subset of X is open. This is called the
discrete topology.

Example 1.10. If X is a topological space and Y ⊆ X, then the subspace (or induced)
topology on Y has A ⊆ Y open iff A = Y ∩ U for some U ⊆ X open.

Definition 1.2. Let X be a topological space. A set B ⊆ X is closed if X \B is open.3

Example 1.11. Both ∅ and X are closed, in addition to being open.

Definition 1.3. If x ∈ X, a neighborhood of x is any open set A ⊆ X with x ∈ A.4

How do we show a set A is closed? Show that X \A is open. How do we show that a set
A is open? For every x ∈ A, find a neighborhood Ux such that Ux ⊆ A. Then A =

⋃
x∈A Ux

is a union of open sets, so it is open.

3This is sometimes called X −B, and is {x ∈ X : x /∈ B} .
4This term adds nothing new, but it is shorter and cleaner to say and write. Otherwise, we would always

have to talk about “an open set containing x.”
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2 Limit Points, Closure, and Continuity

2.1 Limit points and closure

Definition 2.1. Let A ⊆ X and p ∈ X. Then p is a limit point of A if every neighborhood
U of p satisfies U ∩ (A \ {p}) 6= ∅; i.e. U has a point of A besides p.

Remark 2.1. A limit point of a set may not be contained in the set.

Theorem 2.1. A ⊆ X is closed iff A contains all its limit points.

Proof. ( =⇒ ) If X is closed, then X \ A is open. So for any x ∈ X \ A, X \ A us a
neighborhood of x. But (X \ A) ∩ (A \ {x}) = ∅. So x is not a limit point of A. So any
limit point of A is in A.

(⇐= ) If A contains all its limit points, we want to show that X\A is open. If x ∈ X\A,
it is not a limit point, so there exists a neighborhood Ux of x with Ux ∩ (A \ {x}) = ∅. So
Ux ⊆ X \ A. Then X \ A =

⋃
x∈X\A Ux is a union of open sets making it open. So A is

closed.

Definition 2.2. If A ⊆ X, the closure of A is

A := A ∪ {limit points of A} .

Theorem 2.2. A is the smallest closed set containing A.

Proof. If A ⊆ B ⊆ X and B is closed, any limit point of A is a limit point of B. B is
closed, so B contains all its limit points; then B contains all the limit points of A. So
A ⊆ B.

We need to show that A is closed. Let x ∈ X \ A; then x is not a limit point of
A. So there exists a neighborhood Ux of x such that Ux ⊆ X \ A. We want to show
that Ux ⊆ X \ Ā. If y ∈ Ux is a limit point of A, then Ux is a neighborhood of y, and
Ux∩A = ∅. But y is a limit point, so such a neighborhood shouldn’t exist. So Ux∩A = ∅;
i.e. Ux ⊆ X \A. So X \A =

⋃
x∈X\A Ux, making it open. So Ā is closed.

Corollary 2.1. A ⊆ X is closed iff A = A.

Definition 2.3. A base of a topological space X is a collection of open sets such that if
A ⊆ X is open, A is a union of open sets in the collection.

Example 2.1. Rn with the usual topology has base {Bε(x) : x ∈ Rn, ε > 0}.5
5Last lecture, we used this notation to mean closed balls. Here, we mean open, so we are using the “<”

notation, rather than “≤.”
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2.2 Continuity

Definition 2.4. A function f : X → Y is continuous if f−1(A) ⊆ X is open whenever
A ⊆ Y is open.6

A continuous function is often called a map.

Theorem 2.3. If A ⊆ X has the subspace topology, then the inclusion i : A→ X, sending
a 7→ a, is continuous.

Proof. If U ⊆ X is open, then

i−1(U) = {a ∈ A : i(a) ∈ U} = A ∩ U,

which is open by the definition of the subspace topology.

Theorem 2.4. If f : X → Y and g : Y → Z are continuous, then so is g ◦ f : X → Z.

Proof. Note that (g ◦ f)−1 = f−1 ◦ g−1. If A ⊆ Z is open, then g−1(A) is open, as g is
continuous. So f−1(g−1(A)) is open, as f is continuous. This says that (g ◦ f)−1(A) is
open, so g ◦ f is continuous.

Corollary 2.2. If f : X → Y is continuous and A ⊆ X has the subspace topology, then
f |A : A→ Y is continuous, where f |A(a) = f(i(a)).

Theorem 2.5. The following are equivalent.

1. f : X → Y is continuous.

2. f−1(A) is closed whenever A ⊆ Y is closed.

3. If {Uα} is a base for the topology on Y , then f−1(Uα) is open for all α.

Proof. See textbook.

Example 2.2. Let X be a set with the discrete topology, let Y be any set with any
topology, and let f : X → Y be any function. Then f is continuous, as f−1(A) ⊆ X is
always open for any subset A ⊆ Y .

Example 2.3. Continuity from anaylsis is the same as continuity in topology, when they
both apply. If f : (X, dx) → (Y, dy) is a function of metric spaces, then f is “analysis
continuous” if for all x ∈ X and ε > 0, f(Bδ(x)) ⊆ Bε(f(x)). So if A ⊆ Y is open, we want
to show that f−1(A) is open. So if x ∈ f−1(A), then f(x) ∈ A. So if A open, there exists
some ε > 0 such that Bε(f(x)) ⊆ A. Since f is “analysis continuous,” there exists a δ > 0
such that f(Bδ(x)) ⊆ Bε(f(x)) ⊆ A. So Bδ(x) ⊆ f−1(A), and then f−1(A) is open. So if
f is “analysis continuous,” f is “topology continuous.” The converse is left as an exercise.

6While f might not have an inverse, we mean here that f−1(A) = {x ∈ X : f(x) ∈ A}.
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3 Homeomorphisms, Disjoint Unions, and Product Spaces

3.1 Homeomorphisms

How can we say that two topological spaces are “the same”?

Definition 3.1. A function f : X → Y is a homeomorphism if f is a continuous bijection
with a continuous inverse. We call X,Y homeomorphic spaces, denoted by X ∼= Y .

If f is a homeomorphism with inverse f−1, then if A ⊆ X is open, then (f−1)−1(A) ⊆ Y
is open (as f−1 is continuous). Since f = (f−1)−1, this means that a homeomorphism is a
bijection between the open sets in X and the open sets in Y .

Example 3.1. A continuous bijection might not have a continuous inverse. Let X = R
with the discrete topology and Y = R with the trivial topology. Let f : X → Y be defined
as f(x) = x. f is continuous, as f−1(∅) = ∅ is open, and f−1(R) = R is open. But
f−1 : Y → X takes f−1(x) = x, and (f−1)−1({1}) = {1} is not open in Y .

Example 3.2 (stereographic projection). Define the set S(n) = {(x1, . . . , xn+1) ∈ Rn+1 :
x21+ · · ·+x2n+1 = 1} be the n-dimensional sphere.7 Consider f : Sn \{(0, 0, . . . , 0, 1)} → Rn
(the domain missing the “north pole”) given as follows. Take x on the sphere and draw a
line containing x and the north pole; this line intersects the plane, and we set f(x) to be
this point of intersection.8 Check that this is a bijection.

We want to show that f is continuous. Let U ⊆ Rn be open. Let U ′ ⊆ Rn+1 be all the
half-lines from p to a point x ∈ U (not including p). Check that U ′ is open in Rn+1. Sn
has the subspace topology, so U ′ ∩ Sn is open in Sn. But f−1(U) = U ′ ∩ Sn. So f−1(U)
is open, making f continuous. A similar argument using U ′ shows that f−1 is continuous.
So f is a homeomorphism.

3.2 Creating new topological spaces

Using the idea of the subspace topology, we can create new topological spaces form larger
ones. How else can we construct topological spaces?

7The n-dimensional sphere sits in n + 1 dimensional space.
8I did not create this picture; I found it on Google.
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3.2.1 Disjoint unions of spaces

Definition 3.2. If X,Y are topological spaces, then the disjoint union X qY (also called
X + Y ) is the set X q Y with open sets Uα and Vβ, where Uα ⊆ X is open, Vβ ⊆ Y is
open, and unions of these sets are open.

Example 3.3. Let X = {1, 2, 3} with open sets ∅, X, and let Y = {3, 4, 5} with open sets
∅, Y, {3, 4}. Then

X q Y = {1, 2, 3x, 3y, 4, 5} ,

with open sets ∅, {1, 2, 3x} , {3y, 4, 5} , {3y, 4} , {1, 2, 3x, 3y, 4} , {1, 2, 3x, 3y, 4, 5}.

3.2.2 Products of spaces

Definition 3.3. If X and Y are topological spaces, then the product space X × Y is the
set

X × Y = {(x, y) ∈ X × Y : x ∈ X, y ∈ Y }

with a base for the topology given by {U × V : U ⊆ X open, V ⊆ Y open}.

Example 3.4. R2 ∼= R×R. Here, the set (0, 1)× (0, 1) is open and in the base. The open
unit ball is an open set, but it is not in the base; it is a union of infinitely many squares in
the base.

Product spaces come with projection maps p1 : X × Y → X and p2 : X × Y → Y ,
where p1(x, y) = x, and p2(x, y) = y.

Theorem 3.1. If X×Y has the product topology, then p1 and p2 are continuous, and take
open sets to open sets. Furthermore, the product topology is the smallest topology for which
p1 and p2 are continuous.

Proof. If U ⊆ X is open, then p−11 (U) = U × Y . But U is open in X and Y is open in Y ,
so U × Y is open in X × Y . So p1 is continuous. Similarly, p2 is continuous.

If A ⊆ X × Y is open, then A =
⋃

(Ui × Vi) for some open sets Ui ⊆ X and Vi ⊆ Y .
Then

p1(A) =
⋃
p1(Ui × Vi) =

⋃
Ui,

which is a union of open sets, making it open in X. The same argument works for p2.
Now assume X × Y has another topology where p1, p2 are continuous. Then if U ⊆ X

and V ⊆ Y are open, then p−11 (U) = U×Y and p−12 (V ) = X×V are open in this topology.
So (U × Y ) ∩ (X × V ) = U × V is open, and then any union

⋃
(Ui × Vi) is open in this

topology. So any open set in the product topology is open in this new topology.

Theorem 3.2. A function f : Z → X×Y is continuous iff p1◦f and p2◦f are continuous.
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Proof. ( =⇒ ) If f is continuous, then p1 ◦ f and p2 ◦ f are compositions of continuous
functions and are therefore continuous.

( ⇐= ) If p1 ◦ f and p2 ◦ f are continuous, we need to show that f−1(U × V ) ⊆ Z is
open for any open U ⊆ X, V ⊆ Y . But

f−1(U × V ) = f−1(p−11 (U) ∩ p−12 (V ))

= f−1(p−11 (U)) ∩ f−1(p−12 (V ))

= (p1 ◦ f)−1(U) ∩ (p2 ◦ f)−1(V ),

which is an intersection of open sets since p1 ◦ f and p2 ◦ f are continuous. So it is open.
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4 Identification Spaces and Attaching Maps

4.1 Identification spaces

How do we construct new topological spaces? We have already covered

1. subspaces

2. disjoint unions

3. product spaces9.

We will add identification spaces to the list. The ideas is that we start with a topological
space X and “identify”/“set equal”/“glue” some subsets.

Example 4.1. Let X be a rectangle, and glue the left side to the right side. We indicate
the gluing with arrows. Here, we get a cylinder.

Example 4.2. Let X be a rectangle, and glue the left and right sides, but with a twist.
We indicate this with the arrows on our diagram. We get a Möbius band.

9What we called the “product topology” is actually the box topology, but these two coincide for products
of finitely many spaces.
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Example 4.3. Let X be a rectangle, and glue the left and right sides with no twists. The,
glue the top and bottom together with no twists. We get a torus.

Example 4.4. Let X be a rectangle, and glue the top and bottom the same way, but glue
the left and right sides together with a twist. We get a Klein bottle, but this “cannot be
created in 3D.” More precisely, there is no continuous function f : Klein bottle→ R3 such
that f : K → f(K) is a homeomorphism.

Example 4.5. Let X be a rectangle, and glue the top and bottom with a twist and the
left and right sides together with a twist. We get something called the “projective plane
(RP 2), which is two Möbius strips glued along their boundary. This also cannot be created
in 3D.

14



Let’s give a more formal definition.

Definition 4.1. If X is a topological space, let a partition P be a collection of nonempty
subsets of X such that each x ∈ X is in exactly one subset Ax ∈ P. Write π : X → P
sending x 7→ Ax. Then make a new space Y (the identification space), by setting the
points of Y to be elements in P , and A ⊆ Y is open iff π−1(A) ⊆ X; i.e. π is actually a
map π : X → Y , and the topology on Y is the largest so that π is continuous. This is the
identification topology.

Example 4.6. Look at the uniq square [0, 1] × [0, 1] ⊆ R2. To make a cylinder, set P to
include the subsets:

• one singleton subset {x} for each x ∈ (0, 1)× [0, 1]

• {(0, y), (1, y)} for each y ∈ [0, 1]

Remark 4.1. In some of our other examples, we need to also put all four corners of the
rectangle into one subset.

Theorem 4.1. If Y is an identification space, and Z is any space, then f : Y → Z is
continuous iff f ◦ π : X → Z is continuous.

4.2 Attaching maps

Definition 4.2. Let X,Y be topological spaces, A ⊆ X be a subspace, and f : X → Y be
a continuous map. Start with X q Y , and let P have the subsets

• f−1(y) ∪ {y} for y ∈ f(A)

• {x} for each x ∈ X \A

• {y} for each y ∈ T \ f(A).

We call the identification space X ∪f Y ; here f is called the attaching map.

Here is a special example of this construction.

Definition 4.3. Let X be any space, A ⊆ X, Y = {∗} (a space containing only 1 point),
and f : A→ Y be a 7→ ∗.So P has

• {x} for x ∈ X \A

• A ∪ {∗}.

The identification space X ∪f Y is called the quotient space X/A.

Here, we have crushed A to a point.
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Example 4.7. Let X be an interval and A be the boundary (the two endpoints). Then
X/A is the circle S1.

Example 4.8. Let X be a disc and A be the boundary (a circle). Then X/A is the sphere
S2.

You might have more trouble believing this. Think of bending your disc into the shape
of the sphere, missing a patch at the top. If we condense the boundary to a single point,
this closes the sphere.

Example 4.9. Let X = Bn be an n-dimensional ball and A = Sn−1 be its boundary.
Then X/A ∼= Sn.

Remark 4.2. While these pictures may help with intuition, they are not exactly pre-
cise. We are not actually bending anything in our construction; we are identifying points
together.

Theorem 4.2. If f : X → Y is continuous and surjective, and if f maps open sets to open
sets (or closed sets to closed sets), then Y is an identification space, and f is the projection
map (π).

Proof. Define a partition P of X that has subsets f−1(y) for each y ∈ Y . Here, surjectivity
implies that f−1(y) 6= ∅ for every y. We want to show that the identification space from
P is homeomorphic to Y ; i.e. we want to show that the topology on Y is the larges so that
f is continuous. In other words, we need to show that if f−1(A) ⊆ X is open, then A ⊆ Y
is open.

Suppose f takes open sets to open sets. Since f is surjective, f(f−1(A)) = A. So if
f−1(A) is open, then A = f(f−1(A)) is open by hypothesis. The case of f sending closed
sets to closed sets is similar, except it includes taking complements.

Next time, we will show that if

X = Bn := {(x1, . . . , xn) ∈ Rn : x21 + · · ·+ x2n ≤ 1},

A = Sn−1 := {(x1, . . . , xn) ∈ Rn : x21 + · · ·+ x2n = 1},

then Bn/Sn−1 ∼= Sn.
Here’s something to think about before next lecture: crushing Sn−1 to a point is the

same as gluing 2 copies of Bn together along their boundaries. Why?
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5 Quotient Spaces and Introduction to Compactness

5.1 Quotient spaces (continued)

If we have a f : X → Y is surjective, then we can define a partition P on X by taking sets
f−1(y) for each y ∈ Y . So we can define an identification space Y ∗ from X and P. Last
time, we proved the following theorem.

Theorem 5.1. If f : X → Y is continuous, surjective, and maps open sets to open sets,
then Y ∗ ∼= Y .

We said last time that a quotient space X/A was the special case where A ⊆ X,
Y = {∗}, f : A→ Y , and X/A is the identification space X ∪f Y .

Proposition 5.1. For any n ∈ N with n > 1, Bn/Sn−1 ∼= Sn.

Proof. Recall from stereographic projection that, calling p the “north pole” on Sn, Sn \
{p} ∼= Rn. Let g : Rn → Sn \{p} be a homeomorphism. We also have that Bn \Sn−1 ∼= Rn
by the homeomorphism h : Bn \ Sn−1 → R given by x 7→ (1 + tan(‖x‖π/2))x. Show that
this is a homeomorphism (exercise).

Then define f : Bn → Sn by

f(x) =

{
p x ∈ Sn−1 = ∂Bn(boundary of Bn)

g(h(x)) x /∈ Sn−1 (i.e. x ∈ ˚(Bn)).

Show that f is continuous (exercise). Show that f takes open sets to open sets (also
exercise, but similar to the previous). Then the previous theorem implies that Y ∗ from f
is homeomorphic to Sn. But

f−1(y) =

{
singleton y 6= p

Sn−1 y = p,
,

so Y ∗ = Bn/Sn−1.

5.2 Compactness

5.2.1 Open covers and compactness

Definition 5.1. An open cover of a topological space X is a collection10 of open sets
{Ai} with Ai ⊆ X such that X =

⋃
iAi. If {Ai} and {Bj} are open covers of X, and

{Bj} ⊆ {Ai}, then {Bj} is called a subcover of {Ai}.
10This collection need not even be countable. We may have an uncountable collection of open sets in our

cover.
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Example 5.1. Let X be any space. Then {X} is an open cover.

Example 5.2. Let X = R, and take the collection {Ai} := {Bε(x) : ε > 0, x ∈ R}; this
is an open cover. Let {Bj} := {Bε(x) : ε > 0, ε ∈ Q, x ∈ Q}; then {Bj} is a subcover of
{Ai}.

Definition 5.2. A space X is compact if every open cover of X has a finite subcover.11

Example 5.3. We show that R with the usual topology is not compact. Let X = R and
Ai = (i− 1, i+ 1) for each Z. {Ai} is an open cover of R, but for i ∈ Z, i ∈ Aj =⇒ i = j.
So there are no subcovers of {Ai}; in particular, there are no finite subcovers. Similarly,
Rn is not compact.

Definition 5.3. A subset A ⊆ X is compact if it is compact with the subspace topology.

Theorem 5.2. If f : X → Y is continuous, and X is compact, then the image f(X) is
compact.

Proof. Assume that f is surjective; if not, just consider g : X → f(X) given by g(x) = f(x).
Let {Ai} be an open cover of Y = f(X). Since f is continuous, f−1(Ai) is open for each
Ai, and ∀x ∈ X, x ∈ f−1(Ai) for some i (as {Ai} is a cover for Y ). So {f−1(Ai)} is an
open cover of X, and by the compactness of X, there exists a finite subcover of X; i.e.
X = f−1(Ai1)∪· · ·∪f−1(Ain). Since f(f−1(Ai)) = Ai, we have Y = f(X) = Ai1∪· · ·∪Ain .
So {Ai1 , . . . , Ain} is a finite subcover of {Ai}. Since {Ai} was an arbitrary open cover, this
works for every cover. Hence, Y is compact.

Here is the flow of the previous proof in a picture:

X Y

open cover open cover

finite subcover finite subcover.

The following theorem has a similar structure to its proof.

Theorem 5.3. If X is compact, and B ⊆ X is closed, then B is compact.

Proof. Let {Ai} be an open cover of B. Then each Ai = A′i ∩ B for some A′i ⊆ X open,
and B ⊆

⋃
A′i. Note that {A′i} ∪ {X \ B} is an open cover of X; X \ B is open because

B is closed. X is compact, so there exists a finite subcover X = A′i1 ∪ · · ·A
′
in
∪ (X \ B);

the set X \ B may not be necessary, but it has empty intersection with B, so it doesn’t
matter if we keep it. Then B = Ai1 ∪ · · · ∪ Ain , and since {Ai} was a generic open cover,
we conclude that B is compact.

11Compactness is a property of the space itself, not of a particular cover.
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5.2.2 Hausdorff Spaces

Definition 5.4. A space X is Hausdorff if for all x, y ∈ X with x 6= y, there are neigh-
borhoods Ux of x and Uy of y such that Ux ∩ Uy = ∅.

Theorem 5.4. If X is Hausdorff, and A ⊆ X is compact, then A is closed.

We will delay proof of this until next time. For now, we will use this theorem to prove
the following theorem.

Theorem 5.5. If f : X → Y is a continuous bijection, X is compact, and Y is Hausdorff,
then f is a homeomorphism.

Proof. If f takes closed sets to closed sets, then f−1 is continuous, and we are done. If
B ⊆ X is closed, then B is compact. The function f is continuous, so f(B) ⊆ Y is compact.
Then, by the previous theorem, f(B) is closed.
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6 Compactness and Analysis

6.1 Compact subsets of Hausdorff spaces

Here is the theorem we promised to prove last time.

Theorem 6.1. If X is Hausdorff, and A ⊆ X is compact, then A is closed.

Proof. We will show that X \A is open. Let x ∈ X \A, and choose z ∈ A. X s Hausdorff,
so there exist neighborhoods Uz, Vz such that x ∈ Uz, z ∈ Vz, and Uz ∩ Vz = ∅. We can
vary z to get a collection {Vz : z ∈ A} of open sets. Then {Vz ∩A} is an open cover of A.
A is compact, so A = (A∩ Vz1)∪ · · · ∪ (A∩ Vzn) for some z1, . . . , zn ∈ A. This implies that
A ⊆ Vz1 ∪ · · · ∪ Vzn = V .

Since Uzi ∩Vzi = ∅, we know that U = Uz1 ∩· · ·∩Uzn is disjoint from V . So U ∩A = ∅;
i.e. U ⊆ X \A. Also, U is open (as an intersection of finitely many open sets), and x ∈ U ,
so we have an open neighborhood of x that is contained in X \ A. Since x was any point
in X \A, we conclude that X \A is open. Hence, A is closed.

6.2 Generalizations of theorems from analysis

6.2.1 The Bolzano-Weiertrass theorem

Recall the following theorem from analysis.

Theorem 6.2 (Bolzano-Weierstrass). Every bounded sequence in R has a convergent sub-
sequence.

Given a sequence (an), we can construct the set {an : n ∈ N} ⊆ R. We can think of
the limit of a sequence as a limit point of {an} (if {an} infinite). This gives rise to a more
general topological analogue of the Bolzano-Weierstrass theorem.

Theorem 6.3 (Bolzano-Weierstrass). If X is compact, and A ⊆ X is infinite, then A has
a limit point.

Proof. In pursuit of a contradiction, assume A has no limit points; we will show that
A must be finite. Given x ∈ X, it is not a limit point of A. So if x ∈ A, then we
can find a neighborhood Ux of x such that Ux ∩ (A \ {x}) = ∅; i.e. Ux ∩ A = {x}.
Likewise, if x /∈ A, we can find a neighborhood Ux of x such that Ux ∩ (A \ {x}) = ∅; i.e.
Ux ∩ A = ∅. Then {Ux} is an open cover of X, so X = Ux1 ∪ · · · ∪ Uxn , as X is compact.
But A = A ∩ X = (A ∩ Ux1) ∪ · · · (A ∩ Uxn). We had that |A ∩ Uxi | ≤ 1 for each i, so
|A| ≤ n <∞. This is a contradiction, as A was assumed to be infinite.
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6.2.2 Characterization of compactness

Theorem 6.4. If A ⊆ Rn is compact, then it is closed and bounded.

Proof. Rn is Hausdorff, so since A is a compact subset, it is closed. Since A ⊆
⋃∞
n=1Bn(0),

{A∩Bn(0)} is an open cover of A. A is compact, so A = (A∩Bn1(0))∪ · · · ∪ (A∩Bnk(0)).
Take N = max{n1, . . . , nk}. Then A = A ∩BN (0); i.e. A ⊆ BN (0), so it is bounded.

Recall the following theorem from analysis.

Theorem 6.5. If f : [a, b]→ R is continuous, then f is bounded and attains its bounds.

In the general topological setting, this becomes the following theorem.

Theorem 6.6. If X is compact, and f : X → R is continuous, then f is bounded and
attains its bounds.

Proof. The image f(X) is compact, so f(X) is closed and bounded by the theorem we just
proved. Since f(X) is bounded and nonempty, it has a supremum S and an infimum I.
We know that S and I are limit points of f(X) (if f(X) is finite, the supremum is just one
of the points). The set f(X) is closed, so it contains its limit points. So S, I ∈ f(X); i.e.
S = f(x0) and I = f(x1) for some x0, x1 ∈ X, so f attains its bounds.

6.3 Tychonoff’s product theorem (finite version)

We want to prove the converse to the previous theorem that sats compact =⇒ clsoed and
bounded in Rn. To do that, we will establish a more general theorem about compactness
of product spaces. First, we need a lemma.

Lemma 6.1. If {Ui} is a base for the topology of a space X, then X is compact iff every
open cover C of X such that C ⊆ {Ui} has a finite subcover.

Proof. ( =⇒ ) This follows from the definition of compactness.
(⇐= ) Let C be any open cover of X, and let B be a base. We build a new open cover C′.

For each A ∈ C, A =
⋃
i Ui, where Ui ∈ B. Let C′ := {Ui ∈ B : ∃A ∈ C such that Ui ⊆ A}.

By assumption, C′ has a finite subcover {Ui1 , . . . , Uin}. For each i = 1, . . . , n, Ui ⊆ Ai
for some Ai ∈ C, so X =

⋃n
i=1 Ui ⊆

⋃n
i=1Ai ⊆ X. So

⋃n
i=1Ai = X and C has a finite

subcover.

Theorem 6.7 (Tychonoff (finite version)). X × Y is compact iff X and Y are compact.

Proof. ( =⇒ ) We have continuous functions p1 : X × Y → X and p2 : X × Y → Y that
are surjective. So X = p1(X × Y ) and Y = p2(X × Y ) are compact.

( ⇐= ) Let C = {Ui × Vi} be an open cover of X × Y by open sets in the base of the
product topology from the definition. We will show that C has a finite subcover, and then
we will use the lemma.
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If x ∈ X, then p2|{x}×Y : {x} × Y → Y is a homeomorphism. Since Y is compact, so
is {x} × Y . So there exists a subcover Cx ⊆ C such that Cx = {Ux1 × V x

1 , . . . , U
x
nx × V

x
nx} is

finite, and {x} × Y ⊆
⋃nx
i=1 U

x
i × V x

i .
If Ux = Ux1 ∩ · · · ∩ Uxnx , then Ux × Y ⊆

⋃nx
i=1 U

x
i × V x

i . So for every x ∈ X, we get
an open set Ux ⊆ X; this makes {Ux : x ∈ X} an open cover of X. X is compact, so
X = Ux1 ∪ · · · ∪ Uxs . Then

X × Y =
s⋃
j=1

Uxj × Y =
s⋃
j=1

nxj⋃
i=1

U
xj
i × V

xj
i .

This is a finite union, so C has a finite subcover.
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7 Compactness and Connectivity in Rn

7.1 The Heine-Borel theorem and compactness in Rn

Theorem 7.1 (Heine-Borel). Any closed and bounded interval [a, b] ⊆ R is compact.

Proof. Give [a, b] ⊆ R the subspace topology, and let C be an open cover of [a, b]. Let
X = {x ∈ [a, b] : [a, x] is contained in the union of finitely many elements of C}. If b ∈ X,
then [a, b] = U1 ∪ · · · ∪ Un for Ui ∈ C, so {U1, . . . , Un} is a finite subcover of C.

Think of X ⊆ R. We know that a ∈ X, and [a, a] = {a} is contained in some U ∈ C
such that a ∈ U . Additionally, X is bounded above by b. So X has a supremum s ∈ R.
We want to show that s = b and that s ∈ X.

Certainly, s ≤ b, so s ∈ [a, b]. Let U ∈ C be an open set such that s ∈ U . If s < b, then
we can find some ε > 0 such that (s− ε, s+ ε) ⊆ U . If s = b, then we can find some ε > 0
such that (s − ε, s] ⊆ U ; this set is also open in the subspace topology on [a, b]. We can
find points of X arbitrarily close to s; i.e. we can find xε ∈ X such that |s− x| < ε/2. If
xε ∈ X, then [a, xε] ⊆ U1 ∪ · · ·Un for some Ui ∈ C. if s < xε, then [a, s] ⊆ [a, xε], so s ∈ X.
If s > xε, then [xε, s] ⊆ U . So [a, s] ⊆ U1 ∪ · · · ∪ Un ∪ U , which makes s ∈ X.

Also, if s < b, then [a, s + ε/2] ⊆ U1 ∪ · · · ∪ Un ∪ U . So s + ε/2 ∈ X, contradicting
the fact that s is the supremum of X. So s = b, which shows that C has a finite subcover.
Since C was arbitrary, we conclude that [a, b] is compact.

This implies the following theorem, which is more our end-goal.

Theorem 7.2. A ⊆ Rn is compact iff A is closed and bounded.

Proof. ( =⇒ ) We proved this last lecture.
(⇐= ) A is bounded, so A ⊆ [−s, s]n for some s > 0. Let C = [−s, s]n. The set [−s, s]

is compact in R by our previous theorem, so our product theorem for compact spaces says
that C ⊆ Rn is compact. Then A ⊆ C is closed in the subspace topology. As a closed
subset of a compact space, A is compact.

7.2 Connectivity

Definition 7.1. A space X is connected if whenever X = A ∪ B with A,B open and
A ∩B = ∅, then either A = ∅ or B = ∅.

Here are a few equivalent definitions:

1. If X = A ∪B with A,B open and nonempty, then A ∩B = ∅ or A ∩B = ∅.

2. If A ⊆ X is both open and closed, then A = X or A = ∅.

3. If A ⊆ X has empty boundary, then A = X or A = ∅.
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4. If f : X → {1, 2} is continuous, and {1, 2} has the discrete topology, then f is
constant.

Theorem 7.3. R is connected.

Proof. If R = A ∪ B with A,B open and A ∩ B = ∅, then R \ A = B and R \ B = A are
closed. Choose x ∈ A and y ∈ B, and assume (without loss of generality) that x < y. Let
X = {b ∈ [x, y] : [b, y] ⊆ B}. We know y ∈ B and y ∈ [x, y], so y ∈ X, making X 6= ∅.
Also, x is a lower bound for X. So I = inf X ∈ R exists. As the infimum of X, I is a limit
point of X. Since X ⊆ B, I is a limit point of B, so I ∈ B = B. This means I /∈ A. Since
B is open, we can find ε > 0 such that (I−ε, I+ε) ⊆ B. So [I−ε/2, y] ⊆ B, contradicting
the definition of I as the infimum of X.

Theorem 7.4. A nonempty X ⊆ R is connected iff X is an interval (i.e. X = (a, b) or
[a, b] or (a, b] or [a, b)).

Proof. (⇐= ) This is the same proof as the previous theorem.
( =⇒ ) If X is connected but X is not an interval, then there exist a, b ∈ X and

p ∈ R \X such that a < p < b. Let A = {x ∈ X : x < p}, and let B = {x ∈ X : x > p}.
Then A,B 6= ∅, as a ∈ A and b ∈ B. We have X = A ∪ B and A ∩ B = ∅, as x ∈ X
satisfies either x < p or x > p. To show that A is open, we show that B is closed. Since
p /∈ X, B ⊆ X only contains points larger than p; so B = B. This means that B is closed,
so A is open. Similarly, A is closed, so B is open. This contradicts X being connected.
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8 Connectivity, Path-Connectivity, Separation, and Metriza-
tion

8.1 Connectivity involving continuous functions and product spaces

Theorem 8.1. If f : X → Y is continuous, and X is connected, then f(X) is connected.

Proof. For simplicity, assume Y = f(X). If Y = A ∪ B with A,B open and A ∩ B = ∅,
then X = f−1(Y ) = f−1(A) ∪ f−1(B). We know that f−1(A) and f−1(B) are disjoint
(because A ∩ B = ∅) and open (because f is continuous). X is connected, so f−1(A) or
f−1(B) is ∅. Note that f(∅) = ∅ and f(f−1(A)) = A by the surjectivity of f , so A or
B = ∅.

Lemma 8.1. If {Ai} is a collection of connected subspaces of X, and ∩iAi 6= ∅, then⋃
iAi is connected.

Proof. Let p ∈
⋂
iAi. Suppose that

⋃
iAi = B ∪ C for open, disjoint B,C. Then p ∈ B

without loss of generality. For each Ai, Ai = (B ∩ Ai) ∪ (C ∩ Ai). These are disjoint
and open (in the subspace topology). For each Ai, Ai is connected, so B ∩ Ai = ∅ or
C ∩ Ai = ∅. But B ∩ Ai 6= ∅, as it contains p. So Ai ∩ C = ∅, meaning Ai ⊆ B. So⋃
iAi ⊆ B, which implies that C = ∅. So

⋃
iAi is connected.

Theorem 8.2. X and Y are connected iff X × Y is connected.

Proof. (⇐= ) The projection maps p1 : X × Y → X and p2 : X × Y → Y are continuous
and surjective, so by our previous theorem, X and Y are connected.

( =⇒ ) If x ∈ X, then {x} × Y ∼= Y (check this yourself). So {x} × Y is connected;
similarly, X × {y} ∼= X is connected for any y ∈ Y . Let Ax,y = (X × {y}) ∪ ({y} × Y ).
This is connected by our lemma, since (X × {y}) ∪ ({y} × Y ) = {(x, y)} 6= ∅. Fix y0 ∈ Y .
Then X × Y =

⋃
x∈X Aa,y0 , and

⋂
x∈X Aa,y0 = X × {y0} 6= ∅. So the lemma implies that

X × Y is connected.

Corollary 8.1. Rn is connected.

Proof. Use the fact that R is connected, and induct on n.

Corollary 8.2. Sn \ {point} is connected.

Proof. We already showed that Rn ∼= Sn \ {north pole}. It doesn’t matter which point we
remove.

Corollary 8.3. Sn is connected.

Proof. Sn = (Sn \ {north pole})∪ (Sn \ {south pole}), which are both connected and have
nonempty intersection. Our lemma from before shows that Sn is connected.
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8.2 Connected components

What if a space is not connected? We can try to find “maximal” connected pieces.

Definition 8.1. A (connected) component of a space X is a subspace A ⊆ X such that A
is connected, and if A ( B, then B is not connected.

Example 8.1. If X is connected, it has one component: the set X itself.

Example 8.2. The set [0, 1] ∪ [2, 3] has two components: [0, 1] and [2, 3].

Example 8.3. The set [0, 1) ∪ (1, 2] has two components: [0, 1) and (1, 2].

8.3 Path connectivity

Definition 8.2. A path in a space X is a continuous function γ : [0, 1] → X. A path is
said to be a path from γ(0) to γ(1); here, γ(0) is the beginning of the path, and γ(1) is
the end of the path.

Intuitively, people like to think of a “path” as the image of γ. But in fact, if we
parametrize γ differently, the path may be different, even though the image will be the
same (e.g. if the image is traversed more slowly with respect to t in one area).

Definition 8.3. A space X is path-connected if ∀x, y ∈ X with x 6= y, there exists a path
from x to y.

Theorem 8.3. If X is path-connected, X is connected.

Proof. If X = A ∪B with A,B nonempty, disjoint, and open, let x ∈ A and y ∈ B. Then
let γ : [0, 1] → X be a path from x to y. So [0, 1] = γ−1(A) ∪ γ−1(B), and these are
open because γ is continuous. These are also disjoint and nonempty (0 ∈ γ−1(A) and
1 ∈ γ−1(B)), contradicting the fact that [0, 1] is connected. So X is connected.

8.4 Separation and Metrization

This section won’t be tested, but it is included for interest. A good reference is Munkres
sections 31 to 34.

We have already discussed Hausdorff spaces. There are other types of separation axioms
for topological spaces.

Definition 8.4. A topological space X is regular if

1. {x} is closed for all x ∈ X.

2. For all x ∈ X and A ⊆ X closed with x /∈ A, there exist open sets Ux and UA with
x ∈ Ux, A ⊆ UA, and Ux ∩ UA = ∅.
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Definition 8.5. A topological space X is normal if for all pairs A,B ⊆ X that are closed
and disjoint, there exist open sets UA, UB such that A ⊆ UA, B ⊆ UB, and UA ∩ UB = ∅.

Theorem 8.4 (Urysohn’s metrization lemma). If X is regular, and there exists a countable
base or its topology, then X is metrizable; i.e. we can put a metric on X such that the
topology induced from (X, d) is the same as the original topology.

Remark 8.1. All metric spaces are regular, but not all metric spaces have a countable
base. This second part is harder to prove.
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9 Homotopy

9.1 Definition and examples

Recall that a path is a continuous function γ : [0, 1] → X. The idea here is that we have
two paths γ0 and γ1 in R2 with γ0(0) = γ1(0) and γ0(1) = γ1(1); i.e. the paths have the
same endpoints.

Our paths are different and may even have different images, but we want to say that one
can be continuously deformed into the other.

Intuitively, we want to create a family of paths {γt}t∈[0,1] “from γ0 to γ1.” You can
also say we want to interpolate continuously between γ0 and γ1. Think of {γt : t ∈ [0, 1]}
as one function γ : [0, 1]× [0, 1]→ X, where γ(s, t) := γt(s).

Definition 9.1. If f, g : X → Y are continuous, then a homotopy F from f to g is a
continuous function

F : X × [0, 1]→ Y,

where
F (x, 0) = f(x), F (x, 1) = g(x).

Here, we way that f is homotopic to g and write f ' g (or f 'F g).

For our paths, we want to fix the start and end, so γt(0) = γt(1) = γ0(1) for all t ∈ [0, 1].
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Definition 9.2. If A ⊆ X is a subset with f, g : X → Y continuous such that f(a) = g(a)
for all a ∈ A, then a homotopy F from f to g relative to A is a homotopy F from f to g
such that f(a, t) = f(a) for all a ∈ A. We write f 'F g rel A.

Example 9.1. Let f be any continuous function. Then f ' f via F (x, t) = f(x) for all
t ∈ [0, 1].

Example 9.2. If S1 ⊆ C is the set {eiθ : θ ∈ R} and if idS1 : S1 → S1 is the identity,
then idS1 'F idS1 , where F (eiθ,t) = ei(θ+2πt). Here, F rotates eiθ be 2πt radians, so
F (eiθ, 0) = F (eiθ, 1) = idS′ .

9.2 Homotopy on convex sets

Definition 9.3. A set A ⊆ Rn is convex if for all x, y ∈ A, the line segment {(1+ t)x+ ty :
t ∈ [0, 1]} ⊆ A.

Example 9.3. If Y ⊆ Rn is convex and f, g : X → Y are continuous, then F (x, t) =
(1− t)f(x) + tg(x) is a homotopy from f to g called the straight line homotopy.

Example 9.4. If Y is convex, p ∈ Y , f : X → Y is continuous, and g : X → Y is g(x) = p
for all x ∈ X, then f ' g via the straight line homotopy.

A more general notion than a set A being convex is the notion of a set being star-shaped,
which means that there is a point x ∈ A such that the line segment connecting x to any
y ∈ A is contained in A.

Example 9.5. Let X = R2 \ {(0, 0)}, let f : X → X be the identity, and let g : X → X
be g(x) = x/‖x‖. Then f 'F g, where F (x, t) = (1 − t)x + t(x/‖x‖). Note that X is not
convex, but the line segment between x and x/‖x‖ is in X.

9.3 Properties of homotopy

Homotopy defines a sort of equivalence between continuous functions.

Proposition 9.1. The relation f ' g on the set of continuous functions form X to Y is
an equivalence relation. (Similarly, f ' g rel A is also an equivalence relation.)

Proof. We check the three parts of the definition of an equivalence relation:

1. f ' f by our previous example.

2. If f 'F g, then g 'G f , where G(x, t) = F (x, 1− t).

3. If f 'F g and g 'G h, then let

H(x, t) =

{
F (x, 2t) t ∈ [0, 1/2]

G(x, 2t− 1) t ∈ (1/2, 1].

Then f 'H h.
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Compositions of continuous functions preserve homotopy in the ways you would want.

Proposition 9.2. If we have f, g : X → Y with f 'F g and h : Y → Z, then h◦f ' h◦g.
If j : Z → X, then f ◦ j ' g ◦ j.

Proof. For the first part, use the homotopy h ◦ F . For the second part, use the homotopy
G(x, t) = F (j(x), t).

9.4 Homotopy equivalence of spaces

Definition 9.4. If X and Y are topological spaces, then they are homotopy equivalent
if there exist continuous functions f : X → Y and g : Y → X such that g ◦ f ' idX
and f ◦ g ' idY . The function f is called a homotopy equivalence from X → Y , g is its
homotopy inverse, and we write X ' Y .

Proposition 9.3. The relation X ' Y is an equivalence relation.

Proof. We check the three parts of the definition of an equivalence relation:

1. X 'idX X.

2. Symmetry is built into the definition.

3. If X 'f Y with inverse g′ and Y 'g Z with inverse g′, then

(f ′ ◦ g′) ◦ (g ◦ f) = f ′ ◦ (g′ ◦ g) ◦ f
' f ′ ◦ idY ◦f
= f ′ ◦ f
' idX .

Similarly, (g ◦ f) ◦ (f ′ ◦ g) ' idZ , so g ◦ f is a homotopy equivalence from X to Z
with homotopy inverse f ′ ◦ g′.

Definition 9.5. If A ⊆ X, let i : A → X be the inclusion map (a 7→ a). If the map
i is a homotpoy equivalence (with homotopy inverse f : X → X), then we call the map
i ◦ f : X → X a deformation retract (or deformation retraction) of X onto A.

Example 9.6. R2 \ {(0, 0)} deformation retracts onto the unit circle.

Definition 9.6. If A = {x} ⊆ X, and there exists a deformation retract of X onto A,
then we say that X is contractible.

Example 9.7. Convex subsets Y of Rn are contractible. If p ∈ Y , then idX ' i ◦ f , where
i : {p} → Y is the inclusion map, and f : Y → P sends y 7→ p.
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10 The Fundamental Group

10.1 Group structure of homotopy classes

Recall that the relation f ' g rel A is an equivalence relation.

Definition 10.1. If X is a topological space, and p ∈ X is a point, we define the fun-
damental group of X based at p to be the set π1(X, p) of homotopy classes rel {0, 1} of
continuous paths from p to p; i.e.

π1(X, p) = {[γ] : (γ : [0, 1]→ X) is continuous, γ(0) = γ(1) = p},

and [γ] = [γ′] ⇐⇒ γ ' γ′ rel {0, 1}.
Proposition 10.1. π1(X, p) is a group under the group operation [α][β] = [α · β], where
α · β : [0, 1]→ X is

x 7→

{
α(2x) x ∈ [0, 1/2]

β(2x− 1) x ∈ (1/2, 1].

Proof. We need to check that this operation is well-defined, i.e. if [α] = [α′] and [β] = [β′],
then [α · β] = [α′ · β′]. So if α 'F α′ rel {0, 1} and β 'G β′ rel {0, 1}, let

H(x, t) =

{
F (2x, t) x ∈ [0, 1/2]

G(2x− 1, t) x ∈ (1/2, 1].

Then α · β 'H α′ · β′ rel {0, 1}, which is what we needed.
We need to check the group axioms:

1. Closure: From the definition, we get a path from p to p.

2. Identity: Let e : [0, 1]→ X be e(x) = p for all x ∈ [0, 1]. Then α · e is like α for t up
to 1/2, and then it just stays at p. We want to “slide” the 1/2 mark over closer to 1.
So let

F (x, t) =

{
α x ∈ [0, 1/2 + t/2]

p x ∈ (1/2 + t/2, 1].

Then α · e 'f α rel {0, 1}. Similarly, e · α ' α rel {0, 1}. So [α][e] = [α] = [e][α].

3. Inverses: Given a path α from p to p, let α−1[0, 1] → X is x 7→ α(1 − x); this is
running the path backwards. The idea here is that α · α−1 goes from p to p along
α and then goes backwards; we want to start going backwards at α(1− t) and then
increase t. So let

F (x, t) =

{
α((2− t)x) x ∈ [0, 1/2 + t/2]

α−1((2− 2t)x+ (2t− 1)) x ∈ (1/2 + t/2, 1].

Then α · α−1 'F e rel {0, 1}. Similarly, α−1 · α 'F e rel {0, 1}. So [α][α−1] = [e] =
[α−1][α].
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4. Associativity: The idea is that (α · β) · γ acts as α and then β on the first two
1/4 intervals and then γ on the last 1/2; α · (β · γ) acts as α for the first 1/2 and
then β and then γ on the later two 1/4 intervals. Instead of defining F directly, let
f : [0, 1]→ [0, 1] be

f(x) =


2x x ∈ [0, 1/4]

x+ 1/4 x ∈ (1/4 + 1/2]
x+1
2 x ∈ (1/2, 1].

Then ((α · β) · γ)(x) = (α · (β · γ))(f(x)). Note that since [0, 1] is convex, f ' id[0,1]

rel {0, 1} via the straight-line homotopy. So

(α · β) · γ = (α · (β · γ)) ◦ f
' (α · (β · γ)) ◦ id[0,1] rel {0, 1}
= α · (β · γ).

10.2 Changing the basepoint

Does the fundamental group depend on the choice of point p?

Definition 10.2. A ⊆ X is a path component if A is path-connected and for any B with
A ( B, B is not path connected.

If [γ] ∈ π1(X, p), then for all x ∈ [0, 1] γ(x) is in the same path component of X as p.
A priori, π1(X, p) depends on p and on the path component p is in.

Theorem 10.1. If X is path-connected, then π1(X, p) ∼= π1(X, q) for all p, q ∈ X.

Proof. We can compose paths γ, γ′ if γ(1) = γ′(0). Similarly to in the previous proof,

(γ · γ′)(x) =

{
γ(2x) x ∈ [0, 1/2]

γ′(2x− 1) x ∈ (1/2, 1]

specifies a well-defined and associative operation with inverses (up to homotopy). So choose
a path γ : [0, 1] → X with γ(0) = p and γ(1) = q. Define a map γ∗ : π1(X, p) → π1(X, q)
taking [α] 7→ [γ−1 · α · γ].

We need to check that γ∗ is well-defined: this is true as composition is well-defined on
homotopy classes. To check that γ∗ is a homomorphism, note that

γ−1 · (α · β) · γ ' (γ−1 · α) · (β · γ) rel {0, 1}
= (γ−1 · α) · e · (β · γ)

' (γ−1 · α) · (γ · γ−1) · (β · γ) rel {0, 1}
' (γ−1 · α · γ) · (γ−1 · β · γ) rel {0, 1},

so γ∗([α][β]) = γ∗([α])γ∗([β]). The homomorphism γ∗ is an isomorphism because it has the
inverse (γ−1)∗.
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This allows us to write π1(X) for a path-connected space X.
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11 Review: Identification Spaces and Embeddings

11.1 Identification spaces and continuity

11.1.1 Identification spaces and attaching maps

Let’s review the concept of an identification space.
Let X be a space with a partition P of X. We have a function p : X → P mapping x

to the element of P containing x. Define a space Y that has:

• Points are elements of P.

• Open sets are U ⊆ P such that p−1(U) is open.

Example 11.1. Let X = {1, 2, 3, 4} with the open sets {∅, {1}, {3}, {1, 3}, X}. Let

P = {{1, 4}, {2, 3}}.

Then p(1) = {1, 4}, p(2) = {2, 3}, p(3) = {2, 3}, and p(4) = {1, 4}.
What sets are open in Y ? We have p−1(∅) = ∅ ⊆ X, so ∅ is open in Y . Similarly,

p−1({{1, 4}, {2, 3}}) = X is open, so the whole space Y is open. However, p−1({1, 4}) =
{1, 4} ⊆ X is not open, so {1, 4} is not open in Y . Also, p−1({2, 3}) = {2, 3} ⊆ X is not
open, so {2, 3} is not open in Y .

So we can call this space Y = {a, b} with open sets {∅, Y }, where a = {1, 4} and
b = {2, 3}.

The function p : X → P corresponds to a map p : X → Y . Is p continuous? If U ⊆ Y
is open, then p−1(U) ⊆ X is open; so yes, p is continuous. In general, this is not the only
topology for which p is continuous, but it is the largest such topology.

Theorem 11.1. If X is a space, Y is an identification space (created from X), and Z is
another space with maps

X
p−→ Y

f−→ Z,

then f is continuous iff f ◦ p is continuous.

Proof. This follows straight from the definitions of continuity and the topology on Y .

f is continuous ⇐⇒ ∀U ⊆ Z open, f−1(U) ⊆ Y is open

⇐⇒ ∀U ⊆ Z open, p−1(f−1(U)) ⊆ X is open

⇐⇒ ∀U ⊆ Z open, (f ◦ p)−1(U) ⊆ X is open

⇐⇒ f ◦ p is continuous.
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11.1.2 The largest topology with respect to continuity

Here is question 1c from the 2016 midterm.

Let X = {1, 2, 3, 4, 5} with the topology with the base {{1}, {1, 2}, {3}, {4, 5}}. Let
f : X → {a, b, c} be

f(1) = f(3) = a, f(2) = f(4) = b, f(5) = c.

What is the largest topology on Y such that f is continuous?

We want U ⊆ Y open iff f−1(U) ⊆ X open. Let’s check a few sets:

• f−1({a}) = {1, 3} is open, so {a} is open.

• f−1({c}) = {5} is not open, so {c} is not open.

• f−1({b}) = {2, 4} is not open, so {b} is not open.

• f−1({a, c}) = {1, 3, 5} is not open, so {a, c} is not open.

• f−1({b, c}) = {2, 4, 5} is not open, so {b, c} is not open.

• f−1({a, b}) = {1, 2, 3, 4} is not open, so {a, b} is not open.

So the largest topology on Y making f continuous is {∅, {a}, Y }.

11.2 Embeddings

Definition 11.1. An embedding f : X → Y is a function such that if we consider this as
a map f : X → f(X), then f is a homeomorphism. Here, f(X) has the subspace topology.

Example 11.2. Let f : R→ R2 send x 7→ (x, 0). Then f is an embedding of the real line
into the plane.

Example 11.3. Let g : R → R be a continuous function. Then f : R → R2 sending
x 7→ (x, g(x)) is an embedding sending x to the graph of x.

Example 11.4. The following is not an embedding. Let f : [0, 1) → C2 send x 7→ e2πix.
Here, f is a continuous bijection onto its image, the unit circle in C. However, this is not a
homeomorphism because [0, 1/2) is open in the subspace topology on [0, 1), but f([0, 1/2])
is not open in S1 ⊆ C.

How do we make an embedding in this case? First, let f : [0, 1] → C be f(x) = e2πix.
However, this is not injective, so we use an identification space. Define the partition on
[0, 1]: P = {{x} : x 6= 0, 1} ∪ {{0, 1}} The identification space Y is homeomorphic to S1.
We showed this in class (B1/S0 ∼= S1).
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So we get an induced map f̃ : Y → C, where {x} 7→ f(x), {0, 1} 7→ f(0) = f(1), and
f(x) = f̃(p(x)) for all x ∈ [0, 1]

[0, 1] C

S1 ∼= Y

f

p
f̃

Here, f̃ is continuous iff f is continuous. We have f̃ : Y → C ∼= R2, where the domain is
compact (as the continuous image of a compact space) and the codomain is Hausdorff (as
a metric space), so f is a homeomorphism.
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12 Induced Maps and the Fundamental Group of S1

12.1 Induced maps

Recall that given a space X and p ∈ X, we can define the fundamental group based at p

π1(X, p) = {[γ] : (γ : [0, 1]→ X) is continuous, γ(0) = γ(1) = p},

where [γ] = [γ′] iff γ ' γ′ rel {0, 1}.
We also showed that the basepoint did not matter if the space was path-connected (i.e.

π1(X, p) ∼= π1(X, q)). The idea of this proof was that we take a path γ from p to q, and
given [α] ∈ π1(X, p), send [α] 7→ [γ−1 ·α ·γ]. This converts paths based at p to paths based
at q by running γ (and its inverse) at the beginning and end of the path. We called this
isomorphism γ∗; in general this map depends on γ.

Definition 12.1. If we have a continuous map f : X → Y such that f(p) = q, we get a
homomorphism f∗ : π1(X, p)→ π1(Y, q) sending [α] 7→ [f ◦ α]. We say f∗ is induced by f .

The proof that f∗ is a homomorphism is the same as the proof that γ∗ is a homomor-
phism, so we will not repeat it.

Theorem 12.1. If f : X → Y and g : Y → Z, then

(g ◦ f)∗ = g∗ ◦ f∗.

Proof. This follows from the definition and properties of compositions and homotopy.

Remark 12.1. The identitfy function idX : X → X induces an isomorphism π1(X, p) →
π1(X, p), the identity isomorphism. So if f : X → Y is a homeomorphism, then f−1∗ ◦ f∗ =
(idX)∗ and f∗ ◦ f−1∗ = (idX)∗, and we get that f∗ is an isomorphism from π1(X, p) →
π1(Y, f(p)).

12.2 The fundamental groups of contractible spaces and S1

Let’s find the fundamental group of some spaces.

Example 12.1. Let X be convex (or contractible). Then γ : [0, 1]→ X with γ(0) = γ(1) =
p is homotopic to γp : [0, 1]→ X which sends x 7→ p via the straight line homotopy.12 Recall
that this is

F (x, t) = (1− t)γ(x) + tγp(x).

Note that F (0, t) = (1 − t)γ(0) + tγp(0) = p and F (1, t) = p, so γ 'F γP rel {0, 1}. So
π1(X, p) ∼= 1, the trivial group.

12In a non-convex but contractible space, you may have to use a different homotopy.
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Let S1 = {eiθ ∈ C; θ ∈ R} be the circle. Let f : R → S′ be x 7→ e2πix, and let
γn : [0, 1]→ R be x 7→ nx. Then f ◦γn[0, 1]→ S1 mapping x 7→ e2πinx is a path in S1 from
1 to 1, and it wraps around the circle |n| times (counterclockwise if n > 0 and clockwise if
n < 0).

Theorem 12.2. The map φ : Z→ π1(S
1, 1) sending n 7→ [f ◦ γn] is an isomorphism.

Proof. First note that if γ′n : [0, 1] → R has γ′n(0) = 0 and γ′n(1) = n, then γn ' γ′n rel
{0, 1} (as R is convex). This implies that [f ◦ γn] = [f ◦ γ′n].

φ is a homomorphism: If m,n ∈ Z let σ : [0, 1] → R send x 7→ γn(x) + m. Note that
f ◦ σ = f ◦ γn, and γm · σ is a path from 0 to m+ n. So

φ(m+ n) = [f ◦ γm+n] = [f ◦ (γm · σ)]

= [(f ◦ γm) · (f ◦ σ)]

= [(f ◦ γm) · (f ◦ γn)]

= [f ◦ γm][f ◦ γn]

φ is surjective: We use a “path lifting” lemma: If σ is a path in S1 beginning at 1, then
there is a unique path σ̃ in R starting at 0 such thatf ◦ σ̃ = σ; the map σ̃ is called a lift
of σ. So if α ∈ π1(S1, 1), then there exists a path σ such that α = [σ]. From the lemma,
there exists a unique path σ̃ : [0, 1]→ R with σ̃(0) = 0 and f ◦ σ̃ = σ. So [f ◦ σ̃] = α, and
then φ(σ̃(1)) = α. So φ is surjective.

φ is injective: We use a “homotopy lifting” lemma: If σ, σ′ are paths from 1 to 1 in
S1 with σ 'F σ′ rel {0, 1}, then there exists a unique homotopy F̃ from σ̃ to σ̃′ such that
f ◦ F̃ = F ; here, F̃ is a lift of F . So if φ(n) = e ∈ π1(S1, 1), then f ◦ γn 'F e rel {0, 1},
where e : [0, 1]→ S1 sends x 7→ 1. The lemma implies that there exists a unique homotopy
F̃ such that f ◦ F̃ = F .

The domain of F̃ is the square [0, 1]× [0, 1]. We also know that F (0, t) = F (1, t) = 1 for
all t ∈ [0, 1] and that F (x, 1) = e(x) = 1 for all x ∈ [0, 1]. So if P is the union of the left,
top, and right edges of the square, then F (P ) = 1. Then F̃ (P ) ⊆ Z. But P is connected,
and Z is discrete, so F̃ (P ) is a singleton. Observe that σ(0) = σ̃(0) = 0, so F̃ (0, 0) = 0;
then F̃ (P ) = {0}. Also, F (x, 0) = γn, as the lift is unique. So n = γn(1) = F̃ (1, 0) = 0.
So φ(n) = e implies that n = 0, making φ injective.
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13 Lifting Lemmas and the Fundamental Groups of Sn and
T n

Many thanks to Jiabao Yang, who provided me with his notes, since I missed this lecture.

13.1 Lifting lemmas

While proving π1(S
1, 1) ∼= Z, we used two lemmas.

Lemma 13.1. If σ : [0, 1]→ S1 is a path in S1 starting at 1 ∈ S1, then there is a unique
path σ̃ : [0, 1]→ R such that σ̃(0) = 0 and f ◦ σ̃ = σ, where f : R→ S1 is f(x) = e2πix.

Proof. Consider an open cover S1 = U ∪V , where U = S1 \ {−1} and V = S1 \ {1}. Then

f−1(U) = R \ f−1({−1}) =
⋃
n∈Z

(n− 1/2, n+ 1/2),

where each interval (n− 1/2, n+ 1/2) ∼= U via the homeomorphism f |(n−1/2,n+1/2). Simi-
larly,

f−1(V ) =
⋃
n∈Z

(n, n+ 1),

where each interval (n, n + 1) ∼= V via the homeomorphism f |(n,n+1). Taking the path
σ : [0, 1] → S1, we have that since {U, V } is an open cover of S1, {σ−1(U), σ−1(V )} is an
open cover of [0, 1].

Claim: Since [0, 1] is a compact metric space, we can break [0, 1] into [t0, t1]∪[t1, t2] · · ·∪
[tm−1, tm], where 0 = t0 < t1 < · · · < tm−1 < tm = 1 and [ti, ti+1] ⊆ σ−1(U) or σ−1(V ).
Note that σ(0) = 1 ∈ U , so [t0, t1] ⊆ σ−1(U), or, equivalently, σ([t0, t1]) ⊆ U . We have a
homeomorphism (−1/2, 1/2) → U , so define σ̃(x) = (f |(−1/2,1/2))−1(σ(x)) for x ∈ [t0, t1].
Using induction, assume that σ̃ is defined on [t0, t1]. Then σ([t1, ti+1]) ⊆ U or V .

If σ([t1, ti+1]) ⊆ U and σ̃(ti) ∈ (n−1/2, n+1/2), define σ̃(x) = (f |(n−1/2,n+1/2))
−1(σ(x))

for x ∈ [ti, ti+1]. If σ([t1, ti+1]) ⊆ V and σ̃(ti) ∈ (n, n+1), define σ̃(x) = (f |(n,n+1))
−1(σ(x))

for x ∈ [ti, ti+1].

Lemma 13.2. If σ, σ′ are paths from 1 to 1 in S1 with σ 'F σ′ rel {0, 1}, then there exists
a unique homotopy F̃ rel {0, 1} from σ̃ to σ̃′ such that f ◦ F̃ = F , where σ̃, σ̃′ are the lifts
of σ, σ′.

Proof. The proof of this lemma is similar to that of the previous lemma, so we just provide
a sketch. Break the domain of the homotopy into small squares Si such that F (Si) is in U
or in V , and then define F̃ similarly to how we defined σ̃ in the previous lemma.

For more details, see the proof of lemma 5.11 in the Armstrong textbook.
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13.2 The fundamental groups of Sn and T n

We have shown that π1(S
1) ∼= Z. What about the fundamental group of Sn for n ≥ 2?

Definition 13.1. A space X is simply connected if π1(X, p) ∼= 1.

Theorem 13.1. Let X be connected, and X = U ∪ V open, simply connected, and path-
connected. Then for p ∈ U ∩ V , π1(X, p) ∼= 1.13

Proof. We want to show that each path σ in X from p to q is homotopic rel {0, 1} to
γ1 · γ2 · γ3 · · · γm for γi a path from p to p in U or in V . If so, then γi ' ep rel {0, 1}
(where ep(x) = p for all x) for all i = 1, . . . ,m, so σ ' ep rel {0, 1}. γi ' ep rel {0, 1} as
π1(U, p) ∼= π1(V, p) ∼= 1.

Given σ : [0, 1]→ X, choose 0 = t0 < t1 < · · · < tm−1 < tm = 1 such that σ([ti, ti+1]) ⊆
U or V (as in the lemma before). Let σi be the part of σ from σ(ti−1) to σ(ti). Let δi be
the path from σ(ti) to p such that

1. δi is in U if σi(ti) ∈ U ,

2. δi is in V if σi(ti) ∈ V ,

3. δi is in U ∩ V if σi(ti) ∈ U ∩ V .

So

σ ' σ1 · δ1 · δ−11 · σ2δ2 · δ
−1
2 · σ3 · δ3 · · · δm−1 · σm rel {0, 1}

= γ1 · γ2 · · · γm.

13This is a special case of the Seifert-van Kampen theorem.
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For each i, [γi] ∈ π1(U, p) or π1(V, p). But π1(U, p) ∼= π1(V, p) ∼= 1, so γi ' ep rel {0, 1}. So
σ ' ep rel {0, 1}, and we get that π1(X, p) ∼= 1.

Corollary 13.1. π1(S
n) ∼= 1 for n ≥ 2.

Proof. Sn = U ∪ V , where U = Sn \ {north pole} and V = Sn \ {south pole}. Then
U, v ∼= Rn, which is simply connected, and U ∩ V ∼= Rn \ {0} is path-connected for n ≥ 2.
We can then apply the theorem.

Theorem 13.2. π1(X × Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0).

Example 13.1. Let Tn = S1 × · · · × S1 be the n-dimensional torus. Then π1(Tn) ∼= Zn.
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14 Fundamental Groups of Product and Orbit Spaces

14.1 Fundamental groups of product spaces

Last time, we stated the following theorem.

Theorem 14.1. If X,Y are topological spaces, then π1(X × Y, (x0, y0)) ∼= π1(X,x0) ×
π1(Y, y0).

Proof. We have continuous maps p1 : X × Y → X and p2 : X × Y → Y . Define ψ :
π1(X × Y, (x0, y0))→ π1(X,x0)× π1(Y, y0) as

[α] 7→ ((p1)∗([α]), (p2)∗([α])) = ([p1 ◦ α], [p2 ◦ α]).

Injectivity: If p1 ◦ α 'F ex0 rel {0, 1} (where ex0 is the constant path at x0) and
p1 ◦ α 'F ex0 rel {0, 1}, then α '(F,G) e(x0,y0) rel {0, 1}. So if ψ([α]) = (e, e), then [α] = e.
So ψ is injective.

Surjectivity: If [β] ∈ π1(X,x0) and [γ ∈ π1(Y, y0), let α : [0, 1] → X × Y be α(t) =
(β(t), γ(t)) for t ∈ [0, 1]. Then ψ([α]) = ([β], [γ]). Hence, ψ is surjective, so ψ is an
isomorphism.

14.2 Orbit spaces

14.2.1 Definitions and examples of orbit spaces

Let G be a group. (G can be thought of as a topological group with the discrete topology)

Definition 14.1. A group G acts on a space X if for all g ∈ G, g defines a homeomorphism
fg : X → X such that

1. For the identity e ∈ G, fe = idX .

2. ∀g, h ∈ G, fgh = fh ◦ fg.

G acts properly discontinuously (called “niecly”) on X if G acts on X, and ∀x ∈ X and
g ∈ G with g 6= e, there exists an open neighborhood U of x such that U ∩ fg(U) = ∅.

The “nice” condition implies that if g 6= e, then fg(x) 6= x for each x ∈ X; i.e. there
are no fixed points.

Definition 14.2. Define an identification space X/G by choosing a partition P on X such
that x, y are in the same subset in P iff there exists some g ∈ G such that fg(x) = y. This
identification space is called an orbit space.

Example 14.1. Let X = R, and let Z act on R by fn(x) = x + n. The orbit space
R/Z ∼= S1, with the homeomorphism [x] 7→ e2πix.
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Example 14.2. Let X = R2, and let Z2 act on R by f(m,n)(x, y) = (x + m, y + n). The
orbit space R2/Z2 ∼= T 2, the torus.

This is because every (x, y) ∈ R2 is in the same equivalence class in the partition as
some (x′, y′) ∈ [0, 1] × [0, 1]. If (x, y) is in the box bounded by x = m, x = m + 1, y = n,
and y = n+ 1, then (x′ + y′) = f(−m,−n)(x, y) is in the desired unit square.

If we look at [0, 1] × [0, 1], the top and bottom edges get identified together by f(0,1),
and the left and right edges get identified together by f(1,0). Nothing else gets identified
(check this yourself), so we do indeed get the torus T 2.

Example 14.3. More generally, Rn/Zn ∼= Tn. Morally, this is because the action of Zn is
the product of n actions, each acting on one component of Rn

Example 14.4. The Möbius strip is homeomorphic to (R× [0, 1])/Z, where the action is
f1(x, y) = (x+ 1, 1− y) (and fn = f1 ◦ · · · ◦ f1 n times).

Example 14.5. The Klein bottle is homeomorphic to R2/G, where G = 〈r, u | rur = u〉,
and the action is fr(x, y) = (x+ 1, y), and fu(x, y) = (1− x, y + 1). The group elements r
and u mean moving over right one square or up on square.

Example 14.6. Projective space RPn ∼= Sn/(Z/2Z), where f1(x) = −x.

Example 14.7. The Lens space14 L(p, q) for p, q relatively prime and p > q ≥ 1 is
S3/(Z/pZ), where we think of S3 as the unit sphere in R4 = C2, and f1(z1, z2) =
(ei2π/pz1, e

i2πq/pz2).

14Professor Conway thinks about these in his research.
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Note that e2πi/2 = −1, so L(2, 1) ∼= RP 2, so this generalizes projective space in some
sense.

14.2.2 Fundamental groups of orbit spaces

Recall that simply connected means that π1(X) ∼= 1. Orbit spaces constructed from simply
connected spaces have a lot of structure.

Theorem 14.2. If G acts properly discontinuously (or “nicely”) on a space X, and X is
simply connected and path-connected, then π1(X/G) ∼= G.

Proof. Let p ∈ X, and let π : X → X/G be the projection map (from the definition of the
identification space). Let q = π(p). If γ : [0, 1] → X is a path from p to fg(p) (for some
g ∈ G), then (π ◦ γ)(1) = π(γ(1)) = π(fg(p)) = π(p) = q. So [π ◦ γ] ∈ π1(X/G, q).

X is simply connected, so any two such paths γ, γ′ are homotopic rel {0, 1}. So all we
care about from γ is γ(0) and γ(1). Then define φ : G→ π1(X/G, q) sending g 7→ [π ◦ γg],
where γg is a path in X from p to fg(p).

φ is a homomorphism: This is proved exactly like in the case R→ S1.
φ is surjective and injective: This is just like R → S1, but let’s give a little more

description. Use:

1. Path lifting lemma: If σ is a path in X/G with σ(0) = q, there exists a unique path
σ̃ in X such that σ̃(0) = p and π ◦ σ̃ = σ.

2. Homotopy lifting lemma: If F is a homotopy rel {0, 1} of paths σ, σ′ in X/G from q
to q, then there exists a unique homotopy F̃ in X from the lifts σ̃ to σ̃′ (coming from
path lifting) such that π ◦ F̃ = F .

The truth of these lemmas follows from the fact that the action is “nice.”

Corollary 14.1. π1(RPn) ∼= Z/2Z for n ≥ 2.

Corollary 14.2. π1(Möbius strip) ∼= Z.

Corollary 14.3. π1(Klein bottle) ∼= 〈r, u | rur = u〉.

Corollary 14.4. π1(L(p, q)) ∼= Z/pZ.
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15 Covering Spaces and Induced Maps of Homotopic Maps

15.1 Covering spaces

Recall from last time that if G is a group acting “nicely” on a space X, then we get
an identification space X/G and a projection map π : X → X/G. We saw that if X is
path-connected and simply connected, then π1(X/G) ∼= G. Here is a new point of view:

Definition 15.1. Given a space X, a continuous function π : X̃ → X is a covering (space)
map and say that X̃ is a covering space (or cover) of X if for all x ∈ X, there exists an
open neighborhood Ux of x such that π−1(Ux) =

⋃
α Ũα, each Ũα is open, Ũα ∩ Ũα′ = ∅,

and π|Ũα : Ũα → Uα is a homeomorphism.

Example 15.1. If G is a group acting nicely on X, then π : X → X/G is a covering space
map.

Assume X and X̃ are path-connected.15 Then the same proofs as before give the
following lifting lemmas.

Theorem 15.1 (path lifting). If p ∈ X and q ∈ π−1(p), then every path σ in X such that
σ(0) = p has a unique lift σ̃ in X̃ such that σ̃(0) = q.

Theorem 15.2 (homotopy lifting). If σ, σ′ are two paths in X from p to p, and σ 'F σ′

rel {0, 1}, thene there exists a unique lift F̃ of F to X̃ such that σ̃ 'F̃ σ̃
′ rel {0, 1}.

Definition 15.2. If π : X̃ → X is a covering space map, and π−1(x) is finite for all x ∈ X
(|π−1(x)| = n ∈ N), then we say that X̃ is an n-sheeted (or n-fold) covering space.

Check that if X and X̃ are path-connected, then this is well-defined.

Example 15.2. Let fnLS
1 → S1 send e2πix 7→ e2πinx (where n > 0 is an integer).

Then f−1n ({1}) = {1, e2πi/n, e2πi(2/n), . . . , e2πi(n−1)/n}, so |f−1n (1)| = n. Check that fn is a
covering map. Then S1 is an n-fold cover of S1 for any n ≥ 1.

Here, our theorem about orbit spaces doesn’t apply, but (fn)∗ : Z→ Z sending 1 7→ n
is an induced homomorphism between the fundamental groups. Note that the quotient
π1(S

1, 1)/(fn)∗(π1(S
1, 1)) ∼= Z/nZ, which has order n.

15.2 Induced maps of homotopic maps

Theorem 15.3. If f, g : X → Y and f 'F g, then g∗ : π1(X, p)→ π1(Y, g(p)) is equal to

π1(X, p) π1(Y, f(p)) π1(Y, g(p)),
f∗ γ∗

where γ : [0, 1]→ Y is the path γ(x) = F (p, x).
15If X, X̃ are not path connected, then each component of X will have a path-connected component of

X̃ as its covering space, so we might as well just talk about path-connected spaces.
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Proof. Let α : [0, 1]→ X with α(0) = α(1) = p be a path. Then g∗([α]) = [g ◦ α] , and

γ∗(f∗([α])) = γ∗([f ◦ α]) = [(γ−1 · (f ◦ α) · γ)].

We want to show that these two are equal. Let G : [0, 1] × [0, 1] → Y send (x, t) 7→
F (α(x), t). Drawing x on the horizontal axis and t on the vertical axis, we have the
following picture for G:
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Now define H : [0, 1]× [0, 1]→ Y according to the following picture:16

Then H(x, 0) = γ−1 · (f ◦ α) · γ, H(0, 1) = g ◦ α, H(0, t) = γ(1) = g(p), and H(1, t) =
γ(1) = g(p).

Corollary 15.1. If X and Y are path-connected and X ' Y , then π1(X) ∼= π1(Y ).

Proof. If f : X → Y and g : Y → X are maps such that g ◦ f ' idX and f ◦ g ' idY , then
the previous theorem tells us that (g ◦ f)∗ = g∗ ◦ f∗ = γ∗ ◦ (idX)∗ for some path γ. Then γ∗
and (idX)∗ are isomorphisms, so g∗ ◦f∗ is an isomorphism, as well. Since g∗ ◦f∗ is injective,
f∗ is injective. Additionally, since g∗ ◦ f∗ is surjective, g∗ is surjective. Similarly, f∗ ◦ g∗ is
an isomorphism, so f∗ is surjective, and g∗ is injective. So f∗ and g∗ are isomorphisms.

Example 15.3. S1 ' R2 \ {0}, the cyclinder, and the Möbius strip. So

π1(R2 \ {0}) ∼= π1(cylinder) ∼= π1(Möbius strip) ∼= Z.

Also, the cylinder is isomorphic to S1 × [0, 1], so

π1(cylinder) ∼= π1(S
1)× π1([0, 1])︸ ︷︷ ︸

∼=1

∼= π1(S
1) ∼= Z,

which gives us a consistent answer.

16An explicit formula for H is given in the proof of theorem 5.17 in the Armstrong textbook. These
pictures are also taken from the Armstrong textbook.
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16 The Brouwer Fixed Point Theorem and Introduction to
Manifolds

16.1 The Brouwer fixed point theorem

One of the reasons why people study algebraic topology is that it can tell us things unrelated
to topology itself. Here is one such theorem.

Theorem 16.1 (Brouwer). If f : Bn → Bn is continuous, then f has a fixed point; i.e.
∃x ∈ Bn such that f(x) = x.

To prove this, we need the following proposition:

Proposition 16.1. There does not exist a continuous map f : Bn → Sn−1 such that
f(x) = x for all x ∈ ∂Bn = Sn−1.

Proof. We did the proof of the case n = 2 on homeowork 6, and we will show this for n > 3
later. For n = 1, if f : [0, 1]→ {0, 1} is continuous, then f([0, 1]) is connected, so f is not
surjective.

Now let’s prove the fixed point theorem.

Proof. (Brouwer fixed point) Proceed by contradiction. If f(x) 6= x for all x ∈ Bn, define
g : Bn → Sn−1 by drawing a ray from f(x) to x and defining g(x) to be the intersection of
the ray with the sphere (that is not equal to f(x)).

Note that g(x) = x for all x ∈ Sn−1. Check for yourself that g is a continuous function (try
coming up with a formula for it). But such a g cannot exist by the previous proposition.

16.2 Introduction to Manifolds

Definition 16.1. A topological space X is second-countable if there exists a countable
base for its topology.
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Definition 16.2. A manifold of dimension n (or an n-manifold) is a topological space X
such that:

1. X is Hausdorff.

2. X is second-countable.

3. ∀x ∈ X, there is an open neighborhood Ux of x and a homeomorphism φ : Ux → Rn.

The pair (Ux, φ) is called a chart.

Remark 16.1. Why do we have the first two conditions? The second-countable condition
excludes “weird” spaces like the “long line.” The Hausdorff condition excludes spaces like
the “line with 2 origins.” This is X = R ∪ {0′}, where a set U ⊆ X is open if

• U ⊆ R, and U is open in the usual topology on R.

• U = (U ′ \ {0}) ∪ {0′}, where U ′ ⊆ R is open in the usual topology on R, and 0 ∈ U ′.

This is second-countable, and around x = 0′, (x−ε, x+ε) ∼= R and ((−ε, ε)\{0})∪{0} ∼= R,
so it satisfies the 3rd condition of being a manifold.

Example 16.1. Rn is an n-manifold.

Example 16.2. Sn is an n-manifold. If x ∈ Sn, then Sn \ {−x} is an open neighborhood
of x that is homeomorphic to Rn.

Example 16.3. If X is an n-manifold, and U ⊆ X is an open subspace, then U is an
n-manifold.

Proposition 16.2. If X is an n-manifold, and Y is an m-manifold, then X × Y is an
(n+m)-manifold.

Example 16.4. Tn is an n-manifold.

Proposition 16.3. If X is an n-manifold, and G acts “nicely” on X, then X/G is an
n-manifold.

Proof. Given x ∈ X, let Ux be an open neighborhood of x such that fg(Ux) ∩ Ux = ∅
∀g 6= 0. Then if π : X → X/G is the natural projection map, then π|Ux : Ux → π(Ux) is a
homeomorphism. The rest of the proof may be assigned for homework.

Example 16.5. RPn is an n-manifold.

Example 16.6. L(p, q) is a 3-manifold.

Example 16.7. The Klein bottle and the torus are 2-manifolds.
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Definition 16.3. An n-manifold with boundary is a topological space X such that

1. X is Hausdorff.

2. X is second-countable.

3. ∀x ∈ X, there exists an open neighborhood Ux of x and a homeomorphism φ : Ux →
Rn or φ : Ux → Rn+, where Rn+ = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}.

The pair (Ux, φ) is still called a chart. The interior of X is

int(X) = {x ∈ X : ∃ chart (Ux, φ) s.t. Ux ∼= Rn}.

The boundary of X is

∂X = X \ int(X) = {x ∈ X : ∃ chart (Ux, φ) s.t. φ(x) ∈ {xn = 0}}.

Remark 16.2. Often, authors will talk about manifolds with boundary just as “mani-
folds.” You should always check to see which terminology is being used in whatever you
are reading. There have been published results that are incorrect because they cited a
result from literature without checking to make sure that the source was using the correct
definition of “manifold” for their usage.

Definition 16.4. A manifold X (with boundary) is called closed if it is compact and
∂X = ∅.

Proposition 16.4. If X is an n-manifold with boundary, then ∂X is an (n−1)-manifold.

Example 16.8. Bn is an n-manifold with boundary, and ∂Bn = Sn−1.

Proposition 16.5. If X,Y are two n-manifolds with boundary, and f : ∂Y → ∂X is a
homeomorphism, then X ∪f Y is an n-manifold.

Example 16.9. If X and Y are two n-manifolds, choose x ∈ X, y ∈ Y and charts
(Ux, φ), (Vy, φ). Choose U ⊆ Ux and V ⊆ Vy such that U ∼=φ B

n and V ∼=ψ Bn. Then
X ′ = X \ int(U) and Y ′ \ int(V ) are n manifolds with boundary, and ∂X ′, ∂Y ′ ∼= Sn−1.
Choose a homeomorphism f : ∂Y ′ → ∂X ′. Then the connected sum of X and Y is
X ′#Y ′ := X ′ ∪f Y ′. (If X and Y are path-connected, then different choices of x, y, U , V ,
and f give homeomorphic manifolds.)
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Theorem 16.2. (Generalized Poincare ((((((Conjecture Theorem for topological manifolds) If
X is a closed, connected n-manifold, and X is homotopy equivalent to Sn, then X is
homeomorphic to Sn.

The n = 1, 2 cases are “classical,” and we will prove this by classifying such 1 and
2-manifolds. The n = 3 case was proved by Perelman in 2003, which won him a Fields
medal and other prizes, all of which he rejected. The n = 4 case was proved by Freedman
in 1982, and the n ≥ 5 case was proven by Smale in 1960-1961.
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17 Classification of 0- and 1-Manifolds

Many thanks to Jiabao Yang, who provided me with his notes, since I missed this lecture.

17.1 Classification of 0-manifolds

Theorem 17.1 (Generalized Poincarè Conjecture). If X is a closed, connected n-manifold,
then X ' Sn =⇒ X ∼= Sn.

We will prove the cases n = 1, 2 by classifying such 1- and 2-manifolds.

Theorem 17.2. All connected 0-manifolds are homeomorphic to {0}.

Proof. If X is a 0-manifold, then for each x ∈ X, there exists and open neighborhood Ux
of x and a homeomorphism φ : Ux → R0 (we called (U, φ) a chart). But R0 = {0}, and
if Ux ∼= {0}, then Ux ∼= {x}. Note that this does not say that every neighborhood is one
point; it says that there exists one neighborhood that is one point. So for each x ∈ X, {x}
is open, which means that X is a discrete space.17 The connectedness of the space forces
it to contain only 1 point.

So if X is a connected, closed 0-manifold, then the statement X ' S0 =⇒ X ∼= S0

vacuously holds true as there does not exist such an X such that X ' S0.

17.2 Classification of 1-manifolds

Lemma 17.1. Let X be connected. If (U, φ) and (V, ψ) are charts on X and U, V ∼= R,
then U ∩ V has at most two connected components. If U ∩ V 6= ∅,

1. There is 1 connected component =⇒ W = U ∪ V ∼= R.

2. There are 2 connected components =⇒ U ∪ V ∼= S1.

Proof. If U ∩ V 6= ∅ and U ∩ V is connected, then φ(U ∩ V and ψ(U ∩ V ) are connected.
So they are equal to (a, b) and (c, d), respectively for some a, b, c, d ∈ R∪{±∞} (by one of
our previous theorems about connected subsets of R). If U ⊆ V or V ⊆ U , we are done, as
W = U or W = V . So assume neither is true, and consider ψ ◦φ−1 : (a, b)→ (c, d). This is

17In fact, every second countable (and hence countable) discrete space is a 0-manifold.
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a homeomorphism. Assume ψ ◦ φ−1 is increasing (if not, replace (U, φ) by (U,− idR ◦φ)).

Claim: We can assume that a ∈ R, b = ∞, c = −∞, and d ∈ R. If the claim is true,
then assume a < d (otherwise, compose φ with a translation). Let f : (a,∞)→ (a, d) and
g : (−∞, d)→ (a, d) be homeomorphisms such that

(g ◦ ψ)(x) = (f ◦ φ)(x) ∀x ∈ U ∩ V.

Then define χ : U ∩ V → R be

χ(x) =


φ(x) x ∈ U \ V
(f ◦ φ)(x) x ∈ U ∩ V
ψ(x) x ∈ V \ U.

Check yourself that χ is a homeomorphism.

Proof of claim: First note that a < b =⇒ a 6= ∞ and that c < d =⇒ c 6= ∞. If a, c
are both finite, the consider ã = φ−1(a) and c̃ = ψ−1(c). If ã 6= c̃, then X is Hausdorff, so
there exist disjoint neighborhoods Uã, Uc̃ of ã and c̃, respectively. So (ψ ◦φ−1)(a) = ψ(ã) ∈
(c, d) \ ψ(Uc̃ ∩ V ). Then ψ ◦ φ−1 is increasing, but (ψ ◦ φ−1)(a) is outside a neighborhood
of c in (c, d). So ψ ◦ φ−1 cannot be surjective, and ã = c̃. Now ã = c̃ ∈ U ∩ V , but
a = φ(ã) /∈ φ(U ∩ V ), which is a contradiction. So one of a, c is infinite. Similarly, only
one of b, d is ∞. If a = −∞ and b = −∞, then U ⊆ V , and if c = −∞ and d = ∞, then
V ⊆ U . So either:
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1. a ∈ R, b =∞, c =∞, and d ∈ R,

2. a = −∞, b ∈ R, c ∈ R, and d =∞.

In the second case, just switch the names of U and V . This proves the claim.
If U ∩ V has 2 connected components W1 and W2, then since U and V are connected

but U ∩ V is not, we must have U 6⊆ V and V 6⊆ U . As above,

φ(W1) = (a, b), φ(W2) = (a′b′),

ψ(W1) = (c, d), ψ(W2) = (c′, d′).

We can assume that φ(W1) = (a,∞) and φ(W1) = (−∞, d) for some a, d,∈ R. Similar
analysis holds for W2, so we conclude that

φ(W2) = (−∞, b′) ψ(W2) = (c′,∞)

for some b′, c′ with b′ < a and d < c′. So we can write down a homeomorphism U∩V → S1.
Write S1 = Ũ ∪ Ṽ , where

Ũ = {e2πix : x ∈ (1/4, 1)}, Ṽ = {e2πix : x ∈ (−1/4, 1/2)}.

Then write a homeomorphism such that U → Ũ and V → Ṽ .

If U ∩ V has 3 connected components W1,W2,W3, then φ(Wi) ⊆ R has to be bounded
for some i. But this is not possible (we skip the details due to lack of time).

We can now prove the desired classification theorem.

Theorem 17.3. If X is a connected 1-manifold (perhaps with boundary), then X is home-
omorphic to R, S1, [0, 1], or [0, 1).

Proof. Pick a chart (U, φ) in X such that φ : U → R and such that (U, φ) is maximal; i.e. if
(V, ψ) is another chart ψ : V : R, then U ∩V = ∅ or has two components. If X 6∼= S1, then
ant other V as above must be disjoint. If X = U , then X ∼= R. If not, there exists a point
p ∈ X \ U such that a chart (V, ψ) around p has V ∩ U 6= ∅ (as X is connected). V must
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be homeomorphic to R+, and U ∩ V = V \ {p}. If X = U ∪ {p}, write a homeomorphism
X ∼= [0, 1).

We will redo this proof next lecture, but here is the idea. If X 6∼= [0, 1), then X ∼= [0, 1];
otherwise, we will get a contradiction.
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18 Surfaces and Cellular Decomposition

18.1 Non-Hausdorff orbit space of a nice action

In Problem 2b on Homework 7, there was a problem that was incorrect based on the
definitions we gave in class. The problem said “If X is an n-manifold with no boundary,
and G acts nicely on X, then X/G is an n-manifold.” It turns out that for X/G to be
Hausdroff, you need additional conditions on the action.

Example 18.1. Here is a counterexample to the problem as it was written, where the orbit
space X/G is not Hausdorff. Let Z act nicely on X = R2\{(0, 0)} by fn(x, y) = (2nx, 2−ny).
Claim: In X/Z, the images of (1, 0) and (0, 1) cannot be separated by open sets. The idea
is that if you let U(0,1) be a small open ball around (0, 1) and apply f1 repeatedly to U(0,1),
the ball gets moved downward toward y = 0 and stretched wider and wider. So the image
of this ball will intersect any neighborhood of U(1,0), and the claim holds.

18.2 Surfaces

Definition 18.1. A surface is a 2-manifold (with or without boundary).

Proposition 18.1. If S is a compact surface, then ∂S ∼= A1q· · ·qAn, where Ai ∼= S1 ∀i.

Proof. From a proposition mentioned in class (and proved in HW7), we get that if S is
a compact surface, then ∂S is a compact 1-manifold with no boundary. Then from our
classification theorem, there is only one closed, connected 1-manifold, S1.

So let S̃ = S ∪f (D1 q · · · q Dn), where Di
∼= B2 (= D2) for all i and the dom(f) =

∂D1 q · · · q ∂Dn and f |∂Di : ∂Di → Ai is a homeomorphism. Note that S̃ is a closed
surface.

Example 18.2. In the following image, S is called a “pair of pants.”18

18Aptly named.

56



This means that to classify compact surfaces, we can restrict to closed surfaces.

Definition 18.2. A cellular decomposition of a closed surface S is a collection {Pi, φi)},
where Pi ⊆ R2 is a filled-in polygon region (e.g. a filled in pentagon) and φi : Pi → S such
that

1. ∀x ∈ S, x ∈ φi(Pi) for some i.

2. φi|int(Pi) : int(Pi)→ S is an embedding.

3. φi|int(e) : int(e)→ S is an embedding for each edge e ⊆ Pi.

4. If Ai,j = φi(Pi) ∩ φj(Pj) 6= ∅ for some i 6= j, then either φ−1i (Ai,j) and φ−1j (Ai,j)

are entire edges of Pi and Pj , or A is a singleton with φ−1i (Ai,j) and φ−1j (Ai,j) being
vertices.

Example 18.3. Our identification space drawings with the square each constitute a cel-
lular decomposition with a single polygon.

Example 18.4. Here is a cellular decomposition of S2 into three bi-gons.
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18.3 Outline of the classification of 2-manifolds

Here is a fact we will not prove.

Theorem 18.1. Every surface admits a cellular decomposition. If S is compact, then it
admits a finite cellular decomposition.

We will work

Theorem 18.2. If S is a closed, connected surface, then

S ∼= S2#T 2# · · ·#T 2︸ ︷︷ ︸
n

#RP 2# · · ·#RP 2︸ ︷︷ ︸
m

,

where n or m could be 0.

This is only half of a structure theorem. In Homework 8, we will prove the following
fact.

Theorem 18.3.
T 2#RP 2 ∼= RP 2#RP 2#RP 2.

We will prove that S2, T 2# · · ·#T 2, and RP 2#RP 2 are all distinct, which will give us
our classification.

Corollary 18.1 (Classification of 2-manifolds). If S is a closed, connected surface, then
either

1. S ∼= S2,

2. S ∼= T 2# · · ·#T 2, or

3. S ∼= RP 2#RP 2.

18.4 Single-polygon cellular decomposition and words

We will use the following:

1. If e1 ⊆ P1 and e2 ⊆ P2 are edges such that φ1(e1) = φ2(e2), then we can glue P1 to
P2 along e1 and e2 to get a new polygon (P, φ) (where φ is φ1 on P1 and φ2 on P2)
and replace (P1, φ1), (P2, φ2) by (P, φ).

2. We can cut Pi into two pieces along a diagonal.

Lemma 18.1. Suppose S is connected and closed. Then S has a cellular decomposition
(P, φ) with a single polygon.
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Proof. S is compact, so choose a finite cellular decomposition {(Pi, φi)}. Since S is con-
nected and is a manifold, there exist (P1, φ1) and (P2, φ2) such that φ1(e1) = φ2(e2) for
some edges e1 ⊆ P1 and e2 ⊆ P2. Then we can glue P1 and P2 together along e1 and e2
and reduce the number of polygons in our decomposition. By repeating this process, we
arrive at a single polygon.

Given (P, φ), label the edges of P as follows: if φ(e1) = φ(e2), label them the same,
and put arrows indicating an orientation so that the arrows in S agree. We can describe
(P, φ) by reading odd the labels counterclockwise to get a word, where the arrow gives a
if the arrow goes counterclockwise and a−1 if the arrow goes counterclockwise. Any cyclic
permutation of letters is equivalent.

Example 18.5.

We will write S as its word. So in the above example, S ∼= ba−1b−1ca−1c.

Example 18.6.
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The following lemma says that adding a connecting a sphere to our surface essentially
does nothing to it.

Lemma 18.2. If S ∼= Xaa−1, and X 6= ∅, then S ∼= X.

Proof. We have the following picture. Cut along γ to get two polygons.

Note that φ(γ) is a closed loop in S, as the endpoints of γ are at vertices v1, v2 with
γ(v1) = γ(v2). Now glue a D2 to each copy of γ. Notice that γ separates S into two
disjoint connected components (since a only appears on one side of γ and no other letters).
So S ∼= S′#S′′. We now just need to show that one of these pieces is S2; we will do this
later.
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19 Simplification of Cellular Decompositions

19.1 Removing S2, RP 2, or T 2

So far, we have shown that every connected, closed surface S is described by a cellular
decomposition with a single polygon. We also said that a pair (P, φ) of a polygon and a
gluing map corresponds to a word, where we read the labels of a word counterclockwise.

We also said that we can:

1. divide the polygon along a diagonal and reglue other edges,

2. flip a polygon over, and other homeomorphisms of R2.

Let’s continue the proof from last time.

Lemma 19.1. If S = Xaa−1, where X 6= ∅, then S = X.

Proof. We cut along a loop γ in S.

The triangle piece (call it S′) is homeomorphic to a cone with circular boundary γ. This

61



is homeomorphic to D2.

Notice that if we glue a D2 to S \ int(S′) and another D2 to S′, then we get:

1. from S \ int(S′): S′′

2. from S′: S2,

and S′′#S2 ∼= S. So by HW7 problem 3, S′′ ∼= S. Glueing a disc S2 glued along γ is
homeomorphic to (S \ int(S′))/γ. This is

Alternatively, we can also think about it like moving in the vertex and folding the
polygon in on itself.
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Lemma 19.2. If S = Xaa, then S ∼= RP 2, where S1 = X.

Proof. This has the same proof as the previous lemma. S ∼= S1#S2, where S2 = aa.

Lemma 19.3. If S = Xaba−1b−1, then S ∼= T 2#S1, where S1 = X.

Proof. This has the same proof as, well. S ∼= S1#S2, where S2 = aba−1b−1.

Remark 19.1. As you can see here, we have been omitting the actual homeomorphisms.
It is expected that you should be able to come up with them yourself, given some time to
think about it. In general, in mathematics, it is common to omit rigorous formalism when
everyone involved is expected to be familiar enough with the concepts.19

19.2 Rearranging and decomposition of words

Lemma 19.4. If S = XaY a, and X,Y 6= ∅, then S = bbXY −1.

Proof. Given our polygon, cut along b to get two pieces. Then translate the right hand
piece under the left, and reflect it along a vertical axis to get the a edges pointing in the
same direction. Then glue it back together.

19This is Professor Conway’s philosophy. Personally, I prefer to always prove statements in excruciating
detail.
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Lemma 19.5. We can assume that φ(v) = φ(v′) for all vertices v, v′ of P .

Proof. If v, v′ are vertices connected by an edge e, and φ(v) 6= φ(v′), then φ|e : e → S is
an embedding. Then we can contract φ(e) to a point.

Check that we can construct (P ′, φ′) from (P, φ) be contracting edge e and the correspond-
ing edge e′ with the same label and (P ′, φ′) is a cellular decomposition of S. Then if all
pairs of adjacent vertices in P satisfy φ(v) = φ(v′), then it is true for all vertices in P .

Lemma 19.6. If S = WaXbY a−1Zb−1, then S ∼= T 2#S1, where S1 = ZY XW .

Proof. Given our polygon, cut along c to get two pieces.

Then glue along a, and then cut along d.
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Then, if we glue along b, we get the word Y XWZd−1cd−1c.

So our previous torus lemma gives us that S ∼= T 2#S1, where S1 = Y XWZ = ZY XW .

Theorem 19.1. If S is a closed, connected surface, then

S ∼= S2#T 2# · · ·#T 2︸ ︷︷ ︸
m

#RP 2# · · ·#RP 2︸ ︷︷ ︸
n

,

where m and n can equal 0.

Proof. Anytime we see XaY a, use two lemmas to write S ∼= S1#RP 2. By repeating this,
we write S ∼= RP 2# · · ·#RP 2#S1, where S1 is described by a word X such that a and
a−1 appear for every letter (and not adjacently); note that adjacent pairs aa−1 give us S2,
and connect summing with S2 does nothing (unless S2 is the only piece).

If there are no letters a and b such that WaXbY a−1Zb−1 appears, then we have S =
XY , where the letters in X are disjoint from the letters in Y (check this yourself). So S
looks like this:
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By our vertex lemma, φ(γ) is a closed loop. If the letters of X and Y are disjoint, then γ
separates S into 2 pieces. So similar to in our sphere lemma, S ∼= S1#S2, where S1 = X
and S2 = Y . So either by this argument or by our previous lemmas, we write S as the
connected sum of simpler pieces (T 2 or S1, S2). Eventually we will run out of letters and
will have S2 or T 2.
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20 Free Products and the Seifert-van Kampen Theorem

20.1 Free products and free groups

So far, we have proven the following “almost-classification.”

Theorem 20.1. If S is a closed surface, then

S ∼= S2, S ∼= T 2# · · ·#T 2, or S ∼= RP 2# · · ·#RP 2.

We want to prove that these are all distinct. Let’s give these names.

Definition 20.1. For g ∈ N, let

Sg := T 2# · · ·#T 2︸ ︷︷ ︸
g

, Ng := RP 2# · · ·#RP 2︸ ︷︷ ︸
g

.

We call g the genus of the surface.

We will prove that genus is well-defined by showing that S2, Sg, and Ng are all different.
The idea is to calculate π1(S) and show that these are different for these surfaces. We know
that:

π1(S
2) ∼= 1, π1(T

2) = Z2

π1(RP 2) ∼= Z2, π1(K) = π1(N2) ∼= 〈r, u | rur = u〉 .

First, let’s review some group theory. We can generate a group by a presentation, which
includes generators and relations between them.

Example 20.1. Here is a group with two generators and one relation.〈
a1, a2 | a1a2a−11 a−12 = 1

〉 ∼= Z2.

Definition 20.2. Let G = 〈a1, . . . , an | r1 = 1, . . . , rm = 1〉 and G′ = 〈b1, . . . bn′ | s1 =
1, . . . , sm′ = 1〉 be finitely generated groups. Then the free product of G and G′ is

G ∗G′ = 〈a1, . . . , an, b1, . . . bn′ | r1 = 1, . . . , rm = 1, s1 = 1, . . . , sm′ = 1〉 .

Definition 20.3. The free group on n generators is the group Fn = 〈a1, . . . , an〉 (no
relations).

The free group on 1 generator is F1
∼= Z. By induction, we see that the free group on

n generators is Fn ∼= Fn−1 ∗ Z ∼= Z ∗ · · · ∗ Z︸ ︷︷ ︸
n

.
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20.2 The Seifert-van Kampen theorem

Recall a theorem we proved earlier.

Theorem 20.2. If X = A ∪B with A and B open, simply connected, and path-connected
and A ∩B path-connected, then π1(X) ∼= 1.

This is a special case of a more general result.

Theorem 20.3 (Seifert-van Kampen20). Let X = A ∪ B with A and B open and path-
connected, p ∈ A ∩B, A ∩B be path-connected, and let

iA : A ∩B → A, iB : A ∩B → B

be the inclusion maps. Then

π1(X, p) ∼=
π1(A, p) ∗ π1(B, p)

N
,

where N is the smallest normal subgroup containing the elements (iA)∗(g)[(iB)∗(g)]−1 for
all g ∈ π1(A ∩B, p).

The reason we want to quotient out by this subgroup is that we want to say that
(iA)∗(g)[(iB)∗(g)]−1 is trivial in π1(X, p). That is, (iA)∗(g) = (iB)∗(g). We have to manu-
ally insert this relation because the free product of G and G′ does not include any relations
relating elements of G to elements of G′.

So if
π1(A, p) = 〈a1, . . . , an | r1 = 1, . . . , rm = 1〉 ,

π1(B, p) = 〈b1, . . . bn′ | s1 = 1, . . . , sm′ = 1〉

π1(C ∩B, p) = 〈g1, . . . g` | t1 = 1, . . . , tk = 1〉 ,

then

π1(X, p) = 〈a1, . . . , an, b1, . . . bn′ |r1 = 1, . . . , rm = 1, s1 = 1, . . . , sm′ = 1,

(iA)∗(g1) = (iB)∗(g1), . . . , (iA)∗(g`) = (iB)∗(g`)〉.
20This was apparently proven independently by both Seifert and van-Kampen. Sometimes, it is just

called the van Kampen theorem.
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20.3 Applications of the Seifert-van Kampen theorem

We will not prove the Seifert-van Kampen theorem, but here are some examples.

Example 20.2. Let X2 be the 1 point union of two circles, and split into A and B as
follows.

Then A ' S1, B ' S1, and A ∩ B ' {p}. Since π1(A ∩ B) ∼= 1, the normal subgroup
N = 1. So π1(X2, p) ∼= π1(A, p) ∗ π1(B, p) ∼= Z ∗ Z ∼= F2 = {a1, a2}. The element ai = [σi],
where σi is a path from p to p that goes once around the i-th circle.
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Let X3 be the 1 point union of three circles, and split into A and B as follows.

We know that A ' S2, B ' S1, and A ∩B ' {p}. As before, π1(A ∩B, p) ∼= 1, so N = 1.
So π1(X3, p) ∼= π1(X2) ∗ π1(S1) ∼= F2 ∗ Z ∼= F3.

Similarly, by induction, if Xn is the 1 point union of n circles, then π1(Xn, p) ∼= Fn =
〈a1, . . . , an〉, and ai = [σi], where σi is a path p to p that goes around the i-th circle once.

Example 20.3. We can form X = S2 from two punctured tori.

This can be a bit confusing, so for surfaces, we will instead use polygons.
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Example 20.4. Let’s decompose the torus into a punctured torus and a disc.

As we did on a homework, A deformation retracts to the edges (by widening the hole),
which is actually the one-point union of two circles. B deformation retracts to a single
point, and A ∩B ' S1. We have that

(iA)∗ : π1(A ∩B)︸ ︷︷ ︸
∼=Z

→ π1(B)︸ ︷︷ ︸
∼=1

sends n 7→ 1,

(iB)∗ : π1(A ∩B)︸ ︷︷ ︸
∼=Z

→ π1(A)︸ ︷︷ ︸
∼=〈a,b〉

sends 1 7→ aba−1b−1,

which goes counterclockwise around the square. So

π1(T
2) ∼=

π1(A) ∗ π1(B)

N
∼= 〈a, b | (iA)∗(1) = (iB)∗(1)〉
=
〈
a, b | aba−1b−1 = 1

〉
= 〈a, b | ab = ba〉
∼= Z2.

This is the third way we have calculated π1(T
2). The first was that we treated T 2 as

S1 × S1, and the second was that we treated T 2 as the orbit space R2/Z2.

71



Example 20.5. Look at S2 = T 2#T 2. The single-cell cellular decomposition for S2 is

Define A and B similarly to how we did for the torus.
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Then A deformation retracts onto the edge, which is X4, the one-point union of 4 circles.
B deformation retracts to a point, and A ∩ B ' S1. So (iB)∗(1) = 1, and (iA)∗(1) =
aba−1b−1cdc−1d−1 (going around the octagon once). So

π1(S2) ∼=
〈a, b, c, d〉 ∗ 1

N
∼= 〈a, b, c, d | (iA)∗(1) = (iB)∗(1)〉
∼=
〈
a, b, c, d | aba−1b−1cdc−1d−1 = 1

〉
,

which is not a group we recognize. In general, we can get

π1(Sg) ∼= 〈a1, . . . , a2g | a1a2a−11 a−12 · · · a2g−1a2ga
−1
2g−1a

−1
2g = 1〉.

Example 20.6. We can do the same thing with Ng.

We get that
π1(Ng) ∼=

〈
a1, . . . , ag | a21a22 · · · a2g = 1

〉
.

How do we know if any of these groups are the same? We will abelianize them.
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21 Abelianization and Other Algebraic Topology Topics

Many thanks to Jiabao Yang, who provided me with his notes, since I missed this lecture.

21.1 Abelianization

Last lecture, we encountered a problem: groups can be complicated, and we can’t tell
whether they are different or not based on group presentations.21 The solution, in our
case, is that abelian groups are not as complicated.

Definition 21.1. If G is a group, then its Abelianization Ab(G) is G/N , where N is the
smallest normal subgroup of G containing g1g2g

−1
1 g−12 for all g1, g2 ∈ G.

If G = 〈a1, . . . , an | r1 = 1, . . . , rm = 1〉, then we add n(n− 1)/2 relations to get

Ab(G) = 〈a1, . . . , an | r1 = 1, . . . , rm = 1, a1a2 = a2a1, a1a3 = a3a1, . . . , an−1an = anan−1〉 .

Example 21.1.

Ab(F2) = Ab(〈a1, a2〉) = 〈a1, a2 | a1a2 = a2a1〉 ∼= Z2.

Here is a fact we will not prove.

Theorem 21.1. IF G ∼= G′, then Ab(G) ∼= Ab(G′).

The converse is not true, however.

Example 21.2. F2 6∼= Z2, but Ab(F2) ∼= Z2 ∼= Ab(Z2).

Example 21.3. Let A5 be the alternating group on five elements. This is nontrivial, but
Ab(A5) ∼= 1.

Here is another fact we will not prove.

Proposition 21.1. If ri = 1 is a relation in G, then any permutation of the letters of ri
is an equivalent relation in Ab(G).

Example 21.4. Let G =
〈
a, b | abab−1 = 1

〉
. Then

Ab(G) =
〈
ab | abab−1 = 1, ab = ba

〉
=
〈
ab | aabb−1 = 1, ab = ba

〉
=
〈
ab | a2 = 1, ab = ba

〉
∼= Z/2Z× Z.

So Ab(
〈
a, b | abab−1 = 1

〉
) ∼= Ab(

〈
a, b | a2 = 1

〉
).

21In general, this problem is undecidable.
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So if we reorder the group before abelianization, we get the same group (up to isomor-
phism) after abelianization.

Example 21.5.

Ab(π1(Sg)) = Ab(〈a1, . . . , a2g | a1a2a−11 a−12 · · · a2g−1a2ga
−1
2g−1a2g

−1 = 1〉)
∼= Ab(〈a1, . . . , a2g | a1a−11 a2a

−1
2 · · · a2g−1a

−1
2g−1a2ga2g

−1 = 1〉)

This relation just becomes 1 = 1, so we can ignore it.

= Ab(〈a1, . . . , a2g〉)
= Z2g.

So π1(Sg) for different g are different, as after abelianization, the Ab(π1(Sg)) are not
isomorphic for different g.

Example 21.6.

Ab(π1(Ng)) = Ab(
〈
a1, . . . , ag | a21a22 · · · a2g = 1

〉
) ∼= Zg−1 × Z/2Z,

where if Zg−1 × Z/2Z = Ab(
〈
b1, . . . , bg | b2g = 1

〉
), then the isomorphism sends bi 7→ ai for

i = 1, . . . , g − 1 and bg 7→ a1a2 · · · ag (check this yourself).

Since Ab(π1) is distinct for every surface in our list, we conclude that no two of
S2, S1, S2, . . . , N1, N2, . . . are homeomorphic. So we have proved the Poincarè conjecture
for n = 2!

21.2 Miscellaneous topics in algebraic topology

The rest of this lecture is non-testable material but is included for interest.

21.2.1 Euler characteristic and orientibility

Here are two more things about surfaces:

1. Euler characteristics: χ(S) = “# vertices” - “# edges” + “# polygons” in a cellular
decomposition. Check that all operations won’t change this invariant.

2. orientibility: does a Möbius band embed in your surface (chapter 7 in Armstrong)

Using these two ideas, we can classify surfaces without using fundamental groups.

21.2.2 Homology

Definition 21.2. If X is a path-connected topological space, the first homology group of
X is H1(X) = Ab(π1(X)).

If X is not necessarily path-connected, H0(X) ∼= Z#path-components.
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21.2.3 Low and high dimensional topology

In general, we can classify the study of manifolds by their dimension:

• n ≤ 3: low dimensional topology (not enough room to go wrong, not weird)

• n = 4: most weird things happen (enough room to go wrong, not enough room to fix
them)

• n ≥ 5: high dimensional topology22 (enough room to go wrong, enough room to fix
them)

21.2.4 Higher homotopy groups

Choose 1 ∈ S1 and p ∈ X. Then

π1(X, p) = {homotopy classes rel {1} of continuous maps S1 → X s.t. 1 7→ p}.

Definition 21.3. Let x0 ∈ Sn and p ∈ X. The n-th homotopy group of X based at p is

πn(X, p) = {homotopy classes rel {x0} of continuous maps Sn → X s.t. 1 7→ p}.

What is the group operation? First, let Sn ∼= Bn \ ∂Bn and Bn ∼= [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
In

.

So a map f : Sn → X such that f(x0) = p can be thought of as a map

In Bn Sn X.
φ p f

We have a projection map p : Bn → Sn, and we can let x0 = p(∂Bn). The map |phi : InBn

is a homeomorphism.
Now, given f, g ∈ πn(X, p), let f · g ∈ πn(X, p) be

(f · g)(x1, . . . , xn) =

{
f(2x1, x2, . . . , xn) x1 ∈ [0, 1/2]

g(2x1 − 1, x2, . . . , xn) x1 ∈ (1/2, 1]

Example 21.7. Let n = 2. Then this looks like

,

22This is Professor Conway’s area of research.
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and f · g evaluates to p on the set

.

Theorem 21.2. (πn(X, p), ·) is an Abelian group for all n ≥ 2.

Proof. Here is an intuitive sketch of why this is true. For n ≥ 2, we can moe pieces around
in a different direction.

,

Theorem 21.3. Paths from p to q induce isomorphisms πn(X, p) to πn(X, q), so if X is
path-connected, we can write πn(X).

Theorem 21.4. For all n > 1, πn(S1) ∼= 1.

Proof. Here is the idea. Let g : Sn → S1. Find the lift g̃ of g. R is contractible, so g̃ is
null homotopic. So g is, as well.

Theorem 21.5. For all i < n, πi(S
n) ∼= 1.

Proof. Here is the idea. Show that any g : Si → Sn is homotopic to h : Si → Sn and
Sn \h(Si) 6= ∅. Choose q in the complement. Then h is really a map Si → Sn \ {q} ∼= Rn.
Rn is contractible, so h (and hence g) is null homotopic.

Theorem 21.6. πn(Sn) ∼= Z and is generated by [idSn ].

We can use this ro prove Brouwer’s fixed point theorem in all dimensions. Homology
is an easier way to do so.

What about πn(Sk) for n > k > 1? This is HARD. For the last 60 years, algebraic
topologies have tried to solve this; now people are bored.
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Example 21.8.
π3(S

2) ∼= Z,

π4(S
3) ∼= Z/2Z,

π14(S
4) ∼= Z/120Z× Z/12Z× Z/2Z.

There seems to be no general formula, but there exist techniques and subtle patterns,
such as πn+1(S

n) ∼= Z/2Z for all n ≥ 3.

78



22 Review: Free Products, Surfaces, and Orbit Spaces

22.1 Free products vs Cartesian products

What is the difference between Z2 and F2? Z2 = Z× Z, while F2 = Z ∗ Z. The difference
is that in Z2, we assume that elements commute, while they do not in F2. If we write out
the presentations, we have

Z = 〈a〉 , F2 = 〈a, b〉 .

The elements of F2 are a, b, a−1b, aba2b3a−7b4, . . . .

Z2 = 〈a, b | ab = ba〉 .

The elements of Z2 are a, b, a−1b, a−4b8, . . . , noting now that a and b commute. So we have
elements of the form ambn for n,m ∈ Z.

Here is one of the practice problems for Midterm 2. It says to compute the Abelianiza-
tion of the following group.

G =
〈
a, b, c | ab2a−1 = 1, ac−1 = 1

〉
The second relation says that a = c, so we can replace all instances of c by a.

=
〈
a, b | ab2a−1 = 1

〉
The remaining relation says that ab2 = a, which then simplifies to b2 = 1.

=
〈
a, b | b2 = 1

〉
= Z︸︷︷︸

a

∗Z/2Z︸ ︷︷ ︸
b

So then
Ab(G) =

〈
a, b | b2 = 1, ab = ba

〉 ∼= Z× Z2.

This generalizes to the following fact.

Theorem 22.1.
Ab(G1 ∗G2) ∼= Ab(G1)×Ab(G2).
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22.2 Recognizing surfaces using the Seifert-van Kampen theorem

How can we tell what a surface is given a cellular decomposition?

Our first way to do this is to use our lemmas about the word of a cellular decomposition.
Another is to use the Seifert-van Kampen theorem to separate the surface into parts.

B ∼= D2 ' point

A ∩B ∼= S1 × (0, 1) ' S1

A ' H,

where H is the boundary of this hexagon.
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To figure out what H is homotopy equivalent to, glue the a sides together.

The two vertices of the b edges are the same, and the two vertices of the c edges are the
same, so glue them together.
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Then we can overlap the b loops together and the c loops together to get

Shortening the side labeled a gives us

So we get that

π1(A ∩B) ∼= Z = {[γ]n : n ∈ Z}, π1(A) ∼= F2 = 〈b, c〉 , π1(B) ∼= 1.

If i1 : A ∩B → A and iB : A ∩B → B are the inclusion maps, then

π1(X) ∼=
π1(A) ∗ π1(B)

N
∼= F2/N = 〈b, c | (iA)∗([γ]) = (iB)∗([γ])〉

Note that iA([γ]) is going once around the border of the hexagon. So, looking at our
pictures, we get that this is going around loop b twice and then loop c twice.

π1(X) ∼=
〈
b, c | b2c2 = 1

〉
.
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What group is this?

Ab(π1(X)) =
〈
b, c | b2c2 = 1, bc = cb

〉
=
〈
b, c | (bc)2 = 1, bc = cb

〉
=
〈
bc, c | (bc)2 = 1, (bc)c = c(bc)

〉
= Z/2Z× Z.

So by our classification theorem for surfaces, X ∼= RP 2#RP 2.

22.3 Homotopy equivalence and the fundamental group

If X ' Y , then is π1(X, p) ∼= π1(Y, q)? This only holds true in general when X and Y are
path-connected. You have to make sure that p and q are on the same connected component.

Example 22.1. Here is an example where the statement does not hold. Let X ∼= Y ∼=
D2 q S1.

Then π1(X, p) ∼= 1, but π1(Y, q) ∼= Z.

However, taking care with the basepoints, we do have the following theorem.

Theorem 22.2. If f : X → Y is a homotopy equivalence, then π1(X, p) ∼= π1(Y, f(p)).

22.4 Covering spaces and orbit spaces

Here is Problem 3b from the 2016 midterm: “Give a covering space of RPn.”

The easiest answer to give is RPn itself because X
idX−−→ X is a covering map. We could

also have RPn q · · · q RPn.
If we want a nontrivial, path-connected covering space, we should use Sn. There is an

action of Z/2Z = {0, 1} on Sn given by

f0 = idSn , f1(x) = −x.

Then RPn ∼= Sn/(Z/2Z) under this action. To show that the action is nice, take the U
to be the interior of a hemisphere (say, the upper hemisphere) containing x; then f1(U) is
the lower hemisphere, which is disjoint.

We also had the following theorem to help us figure out the fundamental group of RPn.
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Theorem 22.3. If π1(X) ∼= 1 and G acts nicely on X, then π1(X/G) ∼= G.

Here some of the orbit spaces we talked about:

RPn ∼= Sn/(Z/2Z), Tn ∼= Rn/Zn

For the midterm, you should also know about Bn = Dn, Sn, Rn, the surfaces Sg, and Ng,
the Klein bottle, and the Möbius strip.

Why doesn’t the Möbius strip M deformation retract onto ∂M ∼= S1? π1(M) ∼= Z,
and π1(∂M) ∼= π1(S

1) ∼= Z. However, if i : ∂M → M were a homotopy equivalence, then
i∗ : π1(∂M)→ π1(M) is an isomorphism. Check that i∗ is multiplication by 2 (or −2) and
therefore can’t be an isomorphism.
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23 Knot Theory

23.1 Knot equivalence and isotopy

We have been using arguments with less rigor for two reasons.

1. The details are very similar to things we’ve already done the details for.

2. We have limited time to tackle as many interesting concepts as we can.

We may have to sacrifice rigor here, as well, for the same reasons.

Definition 23.1. A knot is a subspace of R3 that is homeomorphic to S1.

Definition 23.2. A link is a subspace of R3 that is homeomorphic to S1 q · · · q S1.

We can’t draw in 3D, so we need to draw projections of knots to the plane and keep
track of over/under crossings.

Example 23.1.

What about the difference between these knots?23

23Knot drawing is an acquired skill. There is a video online of William Thurston drawing the trefoil and
figure-eight knot at the same time, one with each hand. The skill cap is high.
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Definition 23.3. Two knots K1 and K2 are equivalent if there exists a homeomorphism
f : R3 → R3 such that f(K1) = K2.

This definition doesn’t really get at the intuition people naturally have. When people
think about knots, they think about rotating and bending knots and loops. However, here
is another consideration.

Example 23.2. Take a right-handed trefoil and mirror it across a vertical axis to get a
left-handed trefoil.

These trefoils are equivalent by reflection of R3. Although, one cannot “slide one onto the
other” (not obvious).

What is a better notion of equivalence? We need to be careful:
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Example 23.3. There exists a continuous family of knots interpolating between the trefoil
and the unknot. Keep shrinking the tangled part of the knot.

This works for any knot, not just the trefoil.

Here is a better definition.

Definition 23.4. Two knots K1 and K2 are called isotopic if there exists a homotopy
F : R3 × [0, 1]→ R3 such that

1. For every t ∈ [0, 1], F (x, t) : R3 → R3 is a homeomorphism.

2. F (x, 0) = idR3

3. F (K1, 1) = K2.

Note that isotopic knots are equivalent.

Theorem 23.1. K1,K2 are isotopic iff K1,K2 are equivalent via a homeomorphism f that
is ambient isotopic to idR3

Example 23.4. The right-handed and left-handed trefoil knots are not isotopic.

23.2 Tame knots

Knots, like topological spaces, can be very weird. We only care about knots that are
equivalent to polygonal knots.

Definition 23.5. A polygonal knot is a knot that is comprised of finitely many line seg-
ments. Such knots are called tame; otherwise, the knot is called wild.
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Example 23.5. Here are polygonal knots equivalent to the trefoil and the unknot, respec-
tively.

Example 23.6. Here is an example of a wild knot.

From now on, we will only talk about tame knots. The following theorem says that we
can draw tame knots, although we will not prove it.24

Theorem 23.2. Every (tame) knot is isotopic to one whose projection to the (x, y)-plane
is nice, i.e. with finitely many double points (two line segments intersecting), no triple (or
more) points, and no tangencies.

If you have studied any differential topology, this is saying that we want intersections
to be transverse to each other.

23.3 Reidemeister moves

There are “moves” on a projection that don’t change the isotopy class of the corresponding
knot.

24Professor Conway says we won’t prove this because it’s not fun, and we’re having fun right now.
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Definition 23.6. The Reidemeister moves are the following transformations of a projec-
tion of a knot:

• (R0) We can use any “isotopy in the plane” (homeomorphism of R2 that is homotopic
to idR2)

• (R1) We can loop or unloop part of a knot.

• (R2) We can move part of a knot under another part.

• (R3) We can slide part of a knot around if it is below or above a crossing of two other
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parts of the projection.

Theorem 23.3 (Reidemeister (1927),Alexander-Baird-Briggs (1926)25). If two nice pro-
jections are of isotopic knots, then the projections are related by a finite sequence of Rei-
demeister moves (and lots of R(0)).

How many moves does it take? We know that it is ≤ 22
. .
.
2n

, where n is the number of
crossings X in both diagrams and the number of 2s is 101000000n.26

How do we understand knots from their projections, then? We want to define invariants
of isotopy classes of knots by defining invariants of nice projections that don’t change when
doing R1-R3.

23.4 Tricolorability

The idea is to color the arcs of a nice projection in a certain way. We will count the number
of ways we can do such a coloring of a given knot. We will explicitly define what an arc is
next time.

Example 23.7. The trefoil knot has 3 arcs, indicated by how we draw it.

25The proofs were done independently.
26This is the most current bound, as of 2014.

90



Definition 23.7. A tricoloring of a projection is a coloring of the arcs of the projection
(red/green/blue or 1/2/3) such that at each crossing, either each color is the same, or all
are different.

Definition 23.8. A trivial coloring is one that uses one color.

Definition 23.9. A knot is tricolorable if there exists a (nice) projection that has a non-
trivial tricoloring.

Example 23.8. The trefoil knot is tricolorable.
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24 Knot Colorings

24.1 Tricolorings

Let’s start off by giving a rigorous definition of arc.

Definition 24.1. Given a nice projection, each double point xi ∈ R2 has 2 preimages in
K: (x, y, z1) and (x, y, z2), where z1 < z2.

Take a neighborhood Ai ⊆ K for (x, y, z) such that Ai ∼= (0, 1) (and is small). Then an
arc is a connected component of K \ (A1 ∪ · · · ∪An).

Now that we have this definition, we won’t use it ever again.27

We defined arcs to talk about tricoloring. Recall that a knot is tricolorable if there
exists a nice projection of the knot with a non-trivial tricoloring.

Example 24.1. Let’s try to make tricolorings of the unknot, trefoil knot, a modified (by
R1) trefoil knot, and a figure-eight knot. If we start with the added loop on the modified
trefoil, we must have only 1 color on that crossing (since there are only two arcs involved
in the crossing, we cannot have 3 colors). If we start with one arc in the figure-eight knot

27I personally lament the sentiment behind this.
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and color it blue, we can see that there is no nontrivial tricoloring.

How do we know that we didn’t just choose a bad projection of the figure-eight knot?
What if another projection is tricolorable?

Proposition 24.1. If a knot is tricolorable, then any nice projection of it (and any knot
isotopic to it) has a nontrivial tricoloring.

Proof. We need to check that the existence of nontrivial tricolorings is independent of
projection. So we show it doesn’t change under Reidemeister moves.

1. (R1): If we have a self loop crossing, it can only have 1 color because there are only
two arcs involved. So
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2. (R2): There are two main cases; we leave the rest as an exercise.

In each case, there is only one choice for the tricoloring of the modified picture; this
means that there is a bijection between the tricolorings.

3. (R3) The ends have to be the same color before and after the Reidemeister move so
we can “patch in” this section into the knot. This gives us one possible coloring in
each case given a coloring before doing the Reidemeister move.
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This proof actually shows the following.

Corollary 24.1. The number of tricolorings of a projection of a knot K is independent of
the projection.

We also get the following corollary.

Corollary 24.2. The trefoils are not isotopic to the unknot or to the figure-eight knot.

Proof. The trefoil is tricolorable. The unknot has a projection with no nontrivial colorings,
so the proposition implies that the unknot is not tricolorable. The figure-eight knot has a
projection

with a, b, c, d ∈ {1, 2, 3}. If a = b, then one of the crossings makes a = c. Then another
crossing gives a = d, so we get the trivial coloring. If a 6= b, say a = 1 and b = 2, then the
first crossing gives us c = 3. Another crossing then gives us d = 2. But a third crossing
contains b, c, and d, so we have a crossing with 2, 3, and 2, which is impossible. Since
this projection of the figure-eight knot has no nontrivial tricoloring, the proposition implies
that the figure-eight knot is not tricolorable.

This result leaves us with a question: is the unknot isotopic to the figure-eight knot?

24.2 n-colorings

Let’s generalize the idea of 3-colorings.

Definition 24.2. An n-coloring of a nice projection is a choice of color 1, . . . , n for each
arc such that at each crossing
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we have 2c ≡ a + b (mod n). A trivial n-coloring is a one with only one color. A knot is
n-colorable if there exists a nontrivial n-coloring of a nice projection of a knot isotopic to
K.

For n = 3, 2c − b − a ≡ 0 (mod 3) iff a = b = c or {a, b, c} = {1, 2, 3}. Check this
yourself.

Theorem 24.1. K is n-colorable iff any nice projection of K has a nontrivial n-coloring.
The number of n-colorings of a nice projection of K is independent of the projection.

Proof. The proof is the same as the 3-coloring case. Check (R1)-(R3).

Corollary 24.3. The figure-eight knot is not isotopic to the unknot.

Proof. The unknot is not 5-colorable. The figure-eight knot, however, is 5-colorable. Check
that the following 5-coloring works.

Note that we don’t have to use all 5 of the colors to get a nontrivial 5-coloring.

Remark 24.1. There exist nontrivial knots that are not n-colorable for any n.

Example 24.2. Here is a nontrivial knot that is not n-colorable for any n. It is called the
Whitehead double of the trefoil.
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Our goal for the next few lectures is to relate n-colorings to algebraic topology. We
will show that the set of n-colorings is almost in bijection with the set of homomorphisms
π1(R3 \K)→ D2n, where D2n is the dihedral group of symmetries of the n-gon.

D2n =
〈
r, α | r2 = 1, αn − 1, αr = rα−1

〉
.

We will calculate π1(R3 \ K) from a projection. It will have 1 generator xi for every
arc. We will look at homomorphisms φ : π1(R3 \K)→ D2n sending xi 7→ rαci , where ci is
the color for arc i.
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25 Knot Colorings in Algebraic Topology

25.1 Knot groups

Our goal is to relate n-colorings to algebraic topology. We will show that n-colorings of K
correspond (almost) to homomorphisms π1(R3\K)→ D2n; we will actually be overcounting
by n. D2n is the group of symmetries of a regular n-gon,28

D2n =
〈
r, α | αr = rα−1, r2 = 1, αn = 1

〉
.

We will work out π1(R3 \K) to be the following.

Definition 25.1. The knot group of K is constructed by:

1. Take a nice projection of K.

28Some people call this group Dn. You should always be clear with your notation when discussing this
group.
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2. Put a direction on the knot.

3. Number the arcs 1, . . . , n.

4. π1(R3 \K) is generated by x1, . . . , xn (one for each arc).

5. For each crossing, we get a relation:

This says that xc is a conjugate of xb.

We can also define this for oriented links, but we will not prove that here.

Example 25.1. Let K be the unknot. K has one arc and no crossings, so

π1(R3 \K) ∼= 〈x1〉 ∼= Z.
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Example 25.2. Let K be the trefoil knot. This has 3 arcs and 3 crossings.

π1(R3 \K) ∼= 〈x1, x2, x3 | x1x3 = x3x2, x2x1 = x1x3, x3x2 = x2x1〉

Note that x3 = x2x1x
−1
2 , so x3 is a redundant generator.

∼=
〈
x1, x2 | x1x2x1x−12 = x2x1x

−1
2 x2, x2x1 = x1x2x1x

−1
2

〉
Write a = x1, b = x2, and simplify.

∼= 〈a, b | aba = bab, bab = aba〉

These relations are redundant.

∼= 〈a, b | aba = bab〉 .

In general, it is hard to tell apart groups like this by their generators. Before, we used
Abelianization to tell apart fundamental groups. However, that approach doesn’t work
here.

Proposition 25.1. Let K be a knot. Then

Ab(π1(R3 \K)) ∼= Z.

Proof. Every relation is xaxb = xbxc. This reorders to xaxb = xcxb, which gives us that
xa = xc. Check that all generators are identified this way.

Regardless, we are looking at the right object.

Theorem 25.1 (Gordon-Luecke, 1989). π1(R3 \ K1) ∼= π1(R3 \ K2) iff K1 and K2 are
equivalent.

So this fundamental group determines the knot up to isotopy or mirroring.
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25.2 Correspondence between knot colorings and fundamental group ho-
momorphisms

Theorem 25.2. Let K be a knot. Then there is a correspondence between n-colorings of
K and homomorphisms π1(R3 \K)→ D2n (except for n homomorphisms).

Proof. Given an n-coloring that sends arc i to color `i ∈ {1, . . . , n}, construct the ho-
momorphism π1(R3 \ K) → D2n, via xi 7→ rα`i . We need to check the relations. At a
crossing

we know that xbxa = xaxc. We get

xbxa 7→ rα`brα`a = rrα−`bα`a = r2α`a−`b = α`a−`b ,

xaxc 7→ rα`arα`c = rrα−`aα`c = r2α`c−`a = α`c−`a .

We want α`a−`b = α`c−`a ; i.e. we need `a − `b ≡ `c − `a (mod n). This is equivalent to
2`a ≡ `b + `c (mod n), which is the requirement for an n-coloring.

The argument is similar for the other crossing type. So we have a homomorphism. We
can also go backward (homomorphism to coloring), but only if for all i, φ(xi) = rα`i for
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some `i; `i will be the color of arc i.If φ(xa) = α`i for some a, we need φ(xaxc) = φ(xcxb).

Count how many reflections we have on the left hand side and on the right.

LHS # refls. φ(xc)

1 rα`c

0 α`c

RHS # refls. φ(xc) φ(xb)

0 rα`c rα`b

1 rα`c α`b

1 α`c rα`b

0 α`c α`b

In either case, φ(xb) = α`b for some `b. Follow our knot around, doing the same analysis
at every crossing. Then φ(xi) = α`i for all i.

Now φ(xaxb) = φ(xcxb) iff α`aα`c = α`cα`b . This is the condition that `a ≡ `b (mod n).
Check that this makes φ(xi) = φ(xj) for al i, j. So ignore these homomorphisms (there are
n of them). Hence,

|{n-colorings of K}| = |{homomorphisms π1(R3 \K)→ D2n}| − n.

Here is an application of this result.

Example 25.3. Let K be a knot siting on a torus that gives the element 3, 4 ∈ π1(T 2);
this goes 3 times around the torus and 4 times through the center hole. We can show that
π1(R3 \K) ∼=

〈
a, b | a3 = b4

〉
.

K is not n colorable for any n. If φ : π1(R3 \K)→ D2n is a homomorphism such that
φ(a) = rαi and φ(b) = rαj , we need that φ(a)3 = φ(b)4. But φ(a)3 = rαirαirαi = rαi and
rαjrαjrαjrαj = 1. So we have a contradiction.
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