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1 Functions of Bounded Variation and Distribution Func-

tions

1.1 Functions of bounded variation

First, let’s review the idea of functions of bounded variation.

Definition 1.1. Let —0o < a < b < co. We say that f : [a,b] — R is of bounded
variation and write f € BV([a,b]) if

n—1
supsup{z |f(zi) — flic1)|ra=xo <21 <+ <Tpy = b} < 00

i=1
We call this supremum the total variation norm and write it as || f|[7v((a,p))-

If f:]a, 0] — R, we write f' = fl .+ fig where [[fl ]+ [|fhnl < oo

abs

Definition 1.2. We sat that F': R — C is of bounded variation if

SUP { || F'||7v (o)) * —00 < o < 21 < 00} < 00,

Z0,T1

Set Tr(z) = sSuPyy<y | F'lTv([z0,2])- This is a monotone increasing function. Observe
that F' € BV(R) means that lim, . Tr(x) < oo.
We can normalize functions of bounded variation.

Definition 1.3. NBV(R) is the set of F' € BV(R) such that

1. F'is right continuous.
2. limg,,_o F(z) = 0.

Definition 1.4. If 14,1, are two signed Borel measures on R of finite total mass, v =
V1 + iy is called a complex Borel measure.

Remark 1.1. Signed measures can take the values 00, but we require them to be finite
here.

Proposition 1.1. If F € NBV(R), then there ezists a unique Borel complex measure pp
on R such that F(x) = pp((—oo,z]). Conversely, every Borel complex measure is of the
form up.

Theorem 1.1 (integration by parts). Let F,G € BV([a,b]), where —co < a < b < 0.
Assume F is right continuous and G is continuous. Then

/( @)+ [ G dur) = FOGEH) - Fa)d()

Remark 1.2. One uses the notation

/(a,b] Fz)pc() :/ F(z)dG(x).

(a,b]



1.2 Distribution functions
Throughout this section, (X, M, i) is a measure space, and 0 < p < oo.

Definition 1.5.

LP(X,p) = {F:X—>(C:Fis measurable,/ |F|pd,u<oo}.
X

Pl = ( |F<x>\pdu<x>)l/p.

Remark 1.3. We will write LP or LP(u) for LP(X, p).

We write

Proposition 1.2 (Chebyshev’s inequality). Fiz o > 0.

/X F@)P dp(z) > aPu({|F| > a}).

Proof.
[ PPz [ FePdue = [ o)z otu(IF] > o). O
X {IF|>a} {IF|>a}

Remark 1.4. If F' € LP, then

sup o’ u({|F| > a}) < | F[[}, < oc.
a>0

Definition 1.6. Let F' : X — C be measurable. The distribution function of F' is
Ar 1 (0,00) = [0, 00] defined as Ap(a) = p({|F| > a}).

Proposition 1.3. Let F,G :— C be measurable.
1. Ap is monotone decreasing.
2. If |F| < |G|, then A\p < Aq.
3. If H:=F + G, then Ag(a) < Ap(a/2) + Ag(a/2).

4. If F, : X — C are measurable functions such that |F,| < |Fy41| < |F| for all n, and
lim, |F,| = |F|, then lim, A\p, = Ap.

Proof. Define E(a, F') = {|F| > a} for a > 0.
1. If 0 < aq < ag, then E(ag, F) C E(aq, F). So

Ar(ag) = p(E(az, F)) < p(E(on, F)) = Ar(oa).



2. If |F| < |G, then for a > 0, E(a, F) C E(o, G).

3. If |[H| > «, then |F|+ |G| > |F + G| = |H| > a. Then |F| > «a/2 or |G| > a/2. So
E(a,H) C E(a/2,F)U E(a/2,G). So

w(E(e, H)) < p(E(a/2, F)) + p(E(a/2, G)).

4. Let (Fy), be as above. Then A, < Ap,,, < Ap. Hence, lim, Af, exists and is < Ap.
To get the reverse inequality, we use

E(a,F) = | J E(o, F).
n=1

To get the C containment, if [F(z)| > «, then there exists n such that |F,(z)| > a.
Note that E(a, F),) C E(a, Fyy1) C E(a, F) for all n. Since p is a measure,

W(B(a, F)) = p (U E(a,m) = lim p(E(a, Fy)). =
n=1

Definition 1.7. Weak LP, denoted LP(u,weak), os the set of measurable functions F :
X — C such that [F], < oo, where

[Fl, = sup ofAp(a).
a€e(0,00)

Remark 1.5. LP(u) C LP(u, weak).

These are not the same. What is the difference? We will show that being in weak L? is
equivalent to [ a? !Ap(a)da < co. So F € LP means that o?~*A\p € L'((0,00)), while
F € LP(u, weak) means that o’ \p € L*°(0, 00).



2 Integration With Push-Forward Measures and Distribu-
tion Functions

2.1 Integration with push-forward measures

Let (X, M, u) be a measure space, and let 0 < p < oo.

Definition 2.1. Let (Y, N, v) be another measure space, and let T' be a measurable map.
We say that T pushes p forward to v if v(B) = u(T1(B)) for all B € N.

Proposition 2.1. T pushes i forward to v if and only if

/dez/—/Xfonu,

Proof. We can restate the condition in the definition as

/deV:/XfOTdu,

where f = 1. By linearity, this holds for when f is a simple function. This means that if
f:Y — [0, 0] is v-measurable, then fY fdv= fX foT du. By linearity, this holds for all
felLl O

for all f € L'(v).

Recall that if ' € NBV(R), there exists a unique Borel complex measure such that
pr((—00,2]) = F(z).

Proposition 2.2. Assume f : X — C is measurable and A\¢(a) < oo for all « > 0. If
¢ :(0,00) — R is Borel, then

/quo|frdu:/0°o¢<a>du_Af<a>.

In other words, |fl.p = p1—x,

Proof. Tt suffices to show the proposition when ¢ = 1 and E C (0,00) is Borel. In fact,
it is not a loss of generality to further assume E = (a,b], where —co < a < b < oco. We
need to check that p_.(E) = p(x : {|f(z)| € E}). We have

p({z: |f(@)] € B}) = p({z :a < |f(z)| < b})
= p({za <[f(2)]}) —p({z b <[f(z)})
= Ar(a) = Ap(b)
= p-x;((a,b])
= p-x, (E). O
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2.2 Integration with respect to distribution functions
Proposition 2.3. Let f: X — C be a simple function such that f € LP(u).
1. For all 0 < &1 < 2, Ay € BV([e1,e2]).
2. -
[ AP du@) =p [ "o (@) da.
b's 0

Here is a wrong proof: Let ¢(t) = |[t|P. Then, using integration by parts,
[ ondn= [ o@a-xp =~ [ gla)-rpda+ el
X 0 0 \f-f
paP™

Proof. Write f =", a;14,, where the A; are measurable and pairwise disjoint. We can
also assume a; are distinct. We have |f|P =3, |a;|P14,, so

>l () = [ 1f7du < oc.
i=1 X

Let I = {a; : a; #0}. Then || f||V, > |ai|Pp(A;) for all a; € I. So

wl U <iem Y |1‘ 7.

a; el arel

If @ > max;=1,_p |ai| :==7, then Af(a) = 0. If a >0, {|f| < a} CU,,e5 Ais s0 Ap(a) <.
If &1 < e < o0, then Aglj, ., has range contained in [0,7]. This proves that \; €
BV([€1,€2]).

Let b < 7. Then by the previous proposition,

Jran= [~ ardus @)
2/ of dp_y, (@)

0

00
b

b
— 1 P (_
_6111gO Ela d(=Ay)
b
= lim — [ o '(=)\;)(a)da + [—aPXrfa

e1—0 €1

b
= p/ P\ (a) da.
0

€1

Indeed, since A¢ is bounded, lim, g a?A¢(a) = 0. O

8



Corollary 2.1. Let f € LP(u). Then

o0
[ urdu=p [~ o) da
X 0

Proof. Let f, : X — C be a sequence of simple functions such that |f,| < |f.| < |f| for all
n and |limy,|f,| = |f|- By the previous proposition,

/ Ifnlpduzp/ Py, (@) da.
X 0

Since Ay, < Ay, < Ay and lim, Ay, = Ay, we apply the dominated convergence theorem
to conclude the proof, O



3 Cutoff functions, The Riesz-Thorin Theorem, and Strong
and Weak Type

3.1 Cutoff functions

Definition 3.1. For f: C — R, A > 0, the cutoff function ¢4 € C(C,C) is

K 2| < A
¢alz) = {Az/]z\ 2] > A.

Note that ¢4(C) = B4(0) and ¢4(R) C R.
Theorem 3.1. Let f: X — C be measurable, and for A > 0, set
ha=daof,  ga=[f—ha
Then

M) = {gf(a) S @ =Alat )

Proof. Let a > 0. Since |ha| < A, {ha > a} = @ if a > A. This shows Ay, (o) = 0. If
0 <a <A, then {|ha| > a} = {|f| > a}, so A\p, (o) = A¢(a).

Note that
ga=f—paof = 9A|=f—¢>A0f={0 f 7| <4
F— Al 1> A
Hence,
|gA|={0 e
Ifl—=A [fl= A
So if & > 0, then {|ga| > a={|f|—A>a} ={|f| <a+ A} O

3.2 The Riesz-Thorin interpolation theorem

Throughout this section (interpolation of L spaces), (X, M, u) and (Y, N, v) are measure
spaces.
Let p<g<r. If t >0, then

o> 1
<
? 0<0<1.

So for any t € R, |t|9 < [¢t|P + [¢|” for all £. Hence, if f : X — C is p-measurable, then
If12 < |fI"+ |fP. We get the following.

10



Proposition 3.1. L"(p) N LP(u) C L9(p).

Recall that v is called semifinite if for any £ € A such that v(E) = oo, there exists
F € N such that F C F and 0 < v(F) < co.

Theorem 3.2 (Riesz-Thorin interpolation theorem). Let 1 < pg,qo,p1,q1 < oo, and fur-
ther assume that v is semifinite if qo = q1 = co. Fort € (0,1), define p; and q; as

11—t ¢ 11—t ¢

Dt po P @ 0 Q1

Assume T : LPO(p) + LP*(u) — LP(v) + L% (v) is a linear operator such that there are
My, My > 0 such that

1T £l o vy < Mol £l £eo () 179l Lar vy < Millgll zes ()
for every f € LPo(u) and g € LP (u). Then
ITh| ot iy < My~ M| o (0
for all h € LPt(p).

Remark 3.1. It it not surprising that this is bounded. The particular bound is the
important part.
[Th|™ <|Th|" +[Th|",

SO
TN e < NTPN a0 + ITAI 0 < Mg°lIAI T + M (IR, -

We will not prove this theorem, as it involves a lemma that is technical and not very
instructive.

3.3 Strong type and weak type

Let D be a vector subspace of the set of (X, M, 1) measurable functions, and let F be the
set of (Y, N, ) measurable functions.

Definition 3.2. We say that T': D — F' os sublinear if
LAT(f + 9l <|TFl+ [Ty
2. |T(cf)] = c|Tf]

for all f,g € D and ¢ > 0.

11



Definition 3.3. Let T : D — F be a sublinear map, and let 1 < p,q < co. We say that T'
is (p, q)-strong type if there exists ¢ > 0 such that

1T flle < el fllze

for all f € D. We say that T is (p, ¢)-weak type if there exists ¢ > 0 such that

[Tflg < el £l

for all f € D, provided that ¢ < co. We say that T" is (p, o0)-weak type if T is (p, c0)-
strong type.

Remark 3.2. If f € D but f ¢ LP(u), then the right hand side is oo, satisfying the
inequality. So we could replace the condition with f € LP(u).

We can rewrite the strong type condition as

q / a® A (py(a) da < ¢ (p / o~ () da)
0 0

Proposition 3.2. Assume f: X — C is measurable and 1 < p < co. Then

a/p

171, = p /0 " As(0) a.

Proof. If f € LP(u), we have already proved this. Otherwise, suppose f = > a;14,,
where the A; are measurable and pairwise disjoint. Since

oo = [|fI17s = D lailPu(As),
i=1

there is i such that p(A;) = co. We have Ay > A1, - But Ajg; )1, (o) = 0o if a € (0, ]ay]).
Now for general f, approximated it form below by step functions and apply the dominated
convergence theorem. O

12



4 Minkowski’s Inequality and The Marcinkiewicz Interpola-
tion Theorem

4.1 Minkowski’s inequality

Let f: X — C be measurable. For A > 0, set ha = ¢pa0 f, ga = f — ha, where

E |z] < A
PA) =2 o A

||
Then
Af(a) 0<a< A
Ap, (@) = , Aga () = Ar(A+ ).
halc) {0 a> A ga () f( )
Recall Minkowski’s inequality:

Theorem 4.1 (Minkowski’s inequality). Let 1 < r < oo, and let f : X xY — [0,00].

Then
L. |f(w,y)\’”du(a:)>l/T at) = ([ ([ f(:v,y)dV(y)ydu(x))l/r_

4.2 The Marcinkiewicz interpolation theorem

Theorem 4.2 (Marcinkiewicz interpolation theorem). Let § be the set of measurable func-

tions on Y. Let 1 < pg,p1,q0,q1 < o0 be real numbers such that py < qo, p1 < q1, and

qo # q1. Let t € (0,1), and let p,q be defined as

1 1—-t¢ t 1 1—t¢ t
= —|— =

)

b Po b1 q q0 q1

Assume that T : LPo(pu) + LP'(u) — F be sublinear and of weak type (qo,po) and (q1,p1)
(there are co,c1 > 0 such that if qo,q1 # 00, (aqo)\T(f))l/qo <ol fllp, and (oz‘h)\T(f))l/‘ﬂ <
cil|fllpy)- Then the following hold:

1. T is strong type (p,q) (there exists B, > 0 such that | T f|lq < Byl||f|lp for all f €
LP(p))-

2. If po < oo, then limy,_,,, Bp|lpo — p| < co. If p1 < oo, then lim,,,, Bp|p1 — p| < oo.
If po = o0, (Bp) remains bounded as p — po. If p1 = oo, (Bp) remains bounded as
D — Dp1-

Proof. We skip the proof in the case p; = pg. Let us assume qg, q1 < oc.

13



Consider

4 _q 1_1 1 (=t oty 1_1
Pod—9q0 _ Po9qo qo _ 9 w 9 _9 w w "al _9ew a
_ - P _ 1 1 1™ 1 (1=t ty— 5,1 _ 1°
doP—Po d0 Po Po 1 p Po p p Po (Po Pl) ppo P1
Also consider . .
Prg—aq1 99 @
_ I
qp—p Ppo P
Set
L_P0d—d _P1d—a
qo P — Po qQqp—p
We have
> 1 > 1 > 1
HQAVE%ZPO/ a0 /\gA(a)dQZPO/ alo™ /\f(AJrOé)dOf:po/A (B=A)P°""Ap(B) dB
0 0
So
< o1
lgallzs < po /A B™=1A5(8) db.
We have

[hallby = p1 /000 Ay (@)aPr ™ da = py /OA A (a)a?t da.
We also have
71l = [ ot Arpy@)da =a [ 28 Ar(25) d(25).
Since f = ga + ha, we get that |Tf| = [T(ga + ha)| < |Tga| + |Thal, So
ANrg(28) < A1, (B) + Arn, (B)-
This lets us get
711 <27 [ 57 Oy (8) + X (9)) d

Use the weak-type condition with f replaced by g4 and with f replaced by ha to
conclude that

o0
_ _ co\ 7 c1\P1
7615, <27 [ ar () oally + ()" Ihallz) da
0 0 [0

oo [o.¢]
=2 [ gt dartac [Tt g do

-~ -~

1 11

14



We have
90/po

; - /Ooo Oéq,lfqg dapgo/po (/AOO Bpoil)‘f(ﬂ) d,@)

The above inequality holds for every A > 0. Let r > 0 and choose A = " (it will turn out
that r is the value we computed earlier). We will finish the proof next time. O
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5 The Marcinkiewicz Interpolation Theorem (cont.)

Today’s lecture was given by a guest lecturer, Alpar Mészaros.

5.1 Continuation of the proof

Last time, we were proving the Marcinkiewicz interpolation theorem.

Theorem 5.1 (Marcinkiewicz interpolation theorem). Let F be the set of measurable
functions on Y. Let 1 < pg,p1,qo,q1 < 0o be real numbers such that pg < qo, p1 < q1, and
qo # q1. Let t € (0,1), and let p,q be defined as

1 1-1¢ t 1-1¢ t

1
p P P 4 G @
Assume that T : LPO(u) + LP*(u) — F be sublinear and of weak type (qo,po) and (q1,p1)
(there are co,c1 > 0 such that if qo,q1 # 00, (aqo)\T(f))l/qo <ol fllp, and (a‘h)\T(f))l/ql <
cil|fllpy)- Then the following hold:

1. T is strong type (p,q) (there exists B, > 0 such that | T f|lq < Bpl||f|lp for all f €
LP(p))-

2. If po < o0, then limy, ) By|lpo — p| < co. If p1 < oo, then lim,_,p,, Bp|p1 — p| < 0.
If po = o0, (Bp) remains bounded as p — po. If p1 = oo, (Bp) remains bounded as
p—p1-

Proof. The general idea is the decompose the function f into two parts: for A > 0, cut
off the function f if it exceeds A. So if E(A) = {x : |f(x)| > A}, we define hy =
JIx\g) + Alga) and ga = f — ha. First assume go # q1, and assume qo, ¢1 < oo. Take
q as in the theorem. If f € LP° 4+ LP!  then

ITF]e = q /0 a9y (a) da

Since T' is sublinear, we have Ap¢(2a) < Ay, () +Arp, (@) for all o, A > 0 (independently
of each other). We get, after a change of variables,

1Tf]12 < qu/O aq_l)\Tf(Qoz) da < 2qq/0 aq_l)\ThA(oz)—l—aq_l)\TgA(a) do.

=I5
=1

Look at I5:

e q0

I = 2qq/0 a? ' — gy, (a) da

40
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o0
< 2‘1q/ Qd— 90~ 1[TgA]qo do
0
o0
< 214 / AT (cy | g0 )% da
0
o0
— 2940 / e PAI
0
Now

o0
lgall? = po / P\, () da
0

po/ P I\ p(a+ A) da
0

Po /00(04 — A)po_l/\f(a) do

A
<p0/ P\ ¢ (@) da
A

00 A
[[hallp po pO/O aq()il)‘hA (o) da = po /0 apoil)\f(a) da

Combing back to ||Tf||d, we get

[ee] [ee]
ITAIl8 < 20900 / AT 0 g4 [[% do + 290 / RIIA
0 0

00 00 qo/po
e /0 =01 <p0 /A ﬁpo_lx\f(ﬁ)d6> da

o0 Q1/p1
+ 22qCH / oﬂ—'h—1< / P uf(ﬂ)dﬁ) dov

:jzigzqchj qj/p]/ </ o( )

dla, B) = 1;(e, B)BP N (B)ald= %~ 1Pi/ai

1 is the indicator of {(a, ) : 5 > A}, and 1; is the indicator of {(«,3) : § < A}.
In remains to study the terms separately with a special choice of A. Using Minkowski’s
inequality,

[e'e) [e'e) Qj/pj [e'e} [e'e} pj/ij qj/pj
. . 4;/P;
/O </0 ¢] (04, B) dﬁ) dor = (/0 (/0 (z)j (06, 6) dl@) da)

17
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Choose o > 0 and set A = a”. Then a < g/°.

is (for a special choice of o),

P0/qo

The inside of the above integral for 7 =0

q—4qo

/000 (/061/” ad—90—1 da) 51)071)\]0(5) 3 :/Ooo 1 ([a]gl/o)po/qo ﬂprl)\f(ﬁ) 3

The other term is similar. We will finish the proof next time.
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0
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6 The Marcinkiewicz Interpolation Theorem (cont.)?

Today’s lecture was given by a guest lecturer, Alpar Mészaros.

6.1 Conclusion of the proof
Last time, we were proving the following theorem.

Theorem 6.1 (Marcinkiewicz! interpolation theorem). Let F be the set of measurable
functions on Y. Let 1 < pgo,p1,qo,q1 < 0o be real numbers such that pg < qo, p1 < q1, and
qo # q1. Let t € (0,1), and let p,q be defined as

1 1—-t ¢ 11—t ¢

p Po D1 ’ q q0 q1 '

Assume that T : LPo(pu) + LP'(u) — F be sublinear and of weak type (qo,po) and (q1,p1)
(there are c,c1 > 0 such that if qo,q1 # 00, (ozqo)\T(f))l/qo <ol fllp, and (a‘h)\T(f))l/‘ﬂ <
cil|fllpy)- Then the following hold:

1. T is strong type (p,q) (there exists B, > 0 such that ||T'f||; < Byl fllp for all f €
LP(w)).

2. If po < oo, then limy,_,,, Bp|po — p| < co. If p1 < oo, then limy,,,, Bp|p1 — p| < oo.
If po = o0, (Bp) remains bounded as p — po. If p1 = oo, (Bp) remains bounded as

p—Dp1-

Proof. Without loss of generality we can assume pg < p1. We showed that

1 _ o) [e’s) Qj/Pj
Il < 3o 2ack s [ </0 ¢>j(a,,6’)dﬁ> d.

7=0
Here,
dj(a, B) == (e, B)BPI A (B) 99~ VPl 45

where 1 is the indicator of {(a, ) : f > A} and 1; is the indicator of {(a, ) : < A}.
We want to set A = o for some good choice of 0. Look at the term with ¢q.
Case 1: ¢ > 0: If 8 > a7, then o < 8Y/9. After Minkowski’s inequality,

. gi/o Po/q0
/0 (/0 qd—d0—1 doz) Bpo_l)\f(ﬁ) ds

0o 1 Po/q0 .
:/0 <q — qo> ﬁ(q—qo)po/(qw)ﬂpo— Ap(B)dp

"Marcinkiewicz was a Polish mathematician who died during WWII. Zygmund discovered afterwards
that he proved this result and gave credit to Marcinkiewicz.
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Now pick
yo P —a
qopo —Pp
Since we want this to be positive, we need to assume that ¢y < g;. The previous quantity

becomes
1 P0/q0 .
- p I
<q - qo) 171

0.

If go > q1, then 0 < 0. So 8 >a = « > $Y7. Then what changes is the integral
becomes an integral fooo i) gf /0. We get

0 1 B ~ po/qo 1 PO/QO 3
[T () as = ()

For the term involving ¢, the computation is very similar with (pi1,q) instead of
(o, qo)- The key property here is that

GZ@QO—QZZQQ1—Q
qo po — P qgip1—p

I

which follows from the construction of p, q.

Remaining case 1: Assume that p; = ¢1 = 0o. Then ||Tf|lc < Ci|fl|lec (because
(00, 00)-weak means (0o, 00)-strong). We have ||[Thallco < Ci|lhallcc. We want to choose
A in a way that ¢; becomes 0. We claim that A = «/C} works. In this case, 5 < a/C].
We get

«
[Thalle < Cillhalle < C1A=C1 5 =
1
We have
Lip<a/ciyAs(B) = Lig<a/oryrrha(B) =0,

so ¢1 does not give a contribution. Do the same computation with ¢g, replacing a® with
a/Cl.

Remaining case 2: Assume py < p1 < oo and gg < g1 = oo. Choose A in a way such
that A, (8) =0 (|[Thallec < Cil|fllp,)- If we choose A = (o/d)?, where o = p1/(p1 — p)
and d = C1[p1|| f|lh/p]/P*, we get

[Thal| < .

Remaining case 3: If pg < p1 < oo and ¢1 < qo = o0, we want that Apy, (o) = 0. In
this case, choose A such that A = (a/d)°.
We have obtained that
IT ]2 < constant ||£]12.

Define B, such that sup{||Tf|lq : [|fll, = 1} < B,. You can write down the constant
explicitly in all cases. ]
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6.2 [P-estimates for the Hardy-Littlewood Maximal function

For f € Llloc, let
1

@) =sp gy [ 1wl

be the Hardy-Littlewood maximal function. Then H is sublinear. H is (0o, 00)-strong type.
We can show that H is (1, 1)-weak type. By the Marcinkiewicz interpolation theorem, we
get that

IH fllp < Clo)—Z 11

for any p € (1, 00].
However, H is not (1,1)-strong type. Come up with an example as an exercise.
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7 Bounds on Kernel Operators
7.1 Strengthening of a previous theorem
We will prove a stronger version of the following theorem.

Theorem 7.1. Let (X, M, u) and (Y, N ,v) be o-finite measure spaces. Let K : X XY — R
be M @ N -measurable, and let F be the set of f :Y — R measurable functions such that
K(x,")f € L for y-a.e. x € X. For f € F, define

15(0) = [ Ko f)dvly)
Assume there exists C > 0 such that
| 1K@ avt) < €
for pu-a.e. x € X and
[ 1)l duta)
X
forv-a.e. y € Y. The the following conclusions hold:
1. For any 1 <p<oo, LP(v) C F.
2. There exists Cp, such that | T f]| < Cpll fllp if f € LP(v).

Recall that if A > 0, then

is a function in C'(C,C), and ¢4|r € C(R,R). Observe that
0 |z| < A
Z‘¢“”:{§N4A>|42A.
We shall use the notation
Ky = K{' = K —¢a(K),  Ky=K3' = ¢a(K).
Denote as T; (i = 1,2) the operators associated to K; (i = 1,2).
Theorem 7.2. Let 1 < p < oo and ¢ > 0. Assume that [K(z,-)]q < C for p-a.e. v € X

and [K(-,w)]w < C forv-a.e. y €Y.
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1. If1<p<oo, LP(v) C F.

2. If 1 <p<r < oo, then there exist By > 0 and B, > 0 such that [T f]; < Bi||f|l1 and
T fllr < CBy| fllp, which means T is weak type (1,q) and strong type (p,r), provided
that 1/r+1=1/p+1/q.

Proof. Let f € LP(v); we want f € F. If f =0, we are done. If f # 0, it suffices to show
that f/| fll, € F. So we need only show that if || f|, = 1, then f € F. For the second
conclusion, let f € LP. If f = 0, then the conclusion holds. If f # 0, then we can again
reduce to the case || f||, = 1 by passing to f/| f||,. So it suffices to prove both parts when
1l = L.

Let f € LP(v) be such that ||f|| = 1. Let ¢’ be the dual conjugate of ¢, and let p’
be the dual conjugate of g. We have 1/r = 1/p+1/¢—1 = 1/p —1/¢, and similarly,
1/r=-1/¢ +1/q. Since r >0, 1/p > 1/¢’, and 1/q > 1/p’. So ¢’ > p, and p’ > q. We
have

AIN\g (2, (a) < C, Ik (g (a) < C.

To show that |K (z,-)f| € L'(v), we are going to show that |K;(x,-)f| € L1(v) for i = 1,2.
We have

/|K1:cy|dl/ y) = / Ky (z,) (@ )da—/ AK (2, (@ + A) da

Alma
:/ Ak () ( da<0/ “lda=C .
A q—1

The similar identity holds for [ |Ki(z,y)| du(x), so we have

Al—a

[ 1K@l dvto), [ 1@ pldut) < 05—

We have

/|K2xy\pd1/ / ARy () (@ ozp Yda =p /)\K

<p// Cal' 19 da = C /p AP,
0 p—q

By symmetry, we get that

/
/ K, y) P dv(y), / Koyl dp(a) < O—L— v~
Y X P —q

Apply Hoélder’s inequality to conclude that

1/p’ p/ 1/p’ ,
[ ate s vty ( [ st oty >) 1l < (Op,_q) Aol
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So Ky(z,-)f € L'(v). Using the previous theorem, we conclude that Ki(z,-)f € L'(v). In
conclusion, K (z,-)f € L*(v), which implies that LP(v) C F.
Choosing an appropriate A: By our inequality,

/

1/p
) Al-a/P"
q

/
mfl < (0
Choose A such that

/

1/p’ 1/
(C v ) g AT — <C v ) ’ Al-ap = &
P —q P —q 2

That is, we choose
r/q

A=

1/p
<C I ) pAq/T
P —q

By assumption, ||T2f| < a/2, and so Ap,f(a/2) = 0. O

Next time, we will finish the proof.
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8 Bounds on Integral Operators (cont.)

8.1 Proof of the weak and strong type properties
Last time, we were proving the following theorem:

Theorem 8.1. Let 1 < p < oo and ¢ > 0. Assume that [K(z,-)]; < C for p-a.e. x € X
and [K(-,w)]y < C forv-a.e. yeyY.

1. If1<p< oo, LP(v) C F.

2. If 1 <p<r < oo, then there exist By > 0 and B, > 0 such that [T f]; < Bi||f||1 and
T fllr < CByp| fllp, which means T is weak type (1,q) and strong type (p,r), provided
that 1/r+1=1/p+1/q.

Proof. It remains to show the second conclusion. We have fixed f such that || f||, = 1. We
have already obtained the following useful identities:

Al—a
/ Ko (2, )) do(y), / Ky (2,y)| dv(z) < C
X K g—1
1/p
morl< a0 (S)7, Ta Do
q p p

We chose A such that AY"(er/q)'/?" = a/2. These give us

Ar,r(a/2) = 0.

So
Arp(a) < Ayp(a)/2) + Ay p(e/2) = Ay p(a/2).

Now apply the following observation to h = 17 f:

QP a\ P
|h]pd1/2/ |h|Pdv > (=) An(a/2) = M(a/2) < (= Ih2.
/ {|h|>a/2} (2) <2) p
We get

Mes() < (5) TImsIE
(25

B ~r/q\ (1—a)p
SOMETUHOME

= o PH/a0=DPC (g, p).
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Now we note that

—p+r/ql—q)p=p((1/qg—1)—1)=p(r(1/r—1/p)—1)=—r/p.

So, by homogeneity,
a"Arp(e) < Cla.p)| -

In particular, when p = 1, then r = ¢, and we get that
aAry(a) < C(g, V| F13-

That is, T is weak type (1, q).
We next need to find (p1,71) such that T is weak type (p1,71), where ¢ > 1 and p; < r;.
Choose p; € (p,0) close enough to p. Let t € (0,1) be such that

11—t ¢

P 1 P
Define r; by

1 1-t¢ t

roq m

Since p is close to p1, 7 is close to r1. By the definition of r1,ry < r. We have

a"Arp(a) < Clg )l fI15-

This means that 7" is weak type (p1,71). Since T is also weak type (1, ¢) the Marcinkiewicz
interpolation theorem gives us that 7" is strong type (p, 7). O

8.2 Preliminaries for Fourier analysis

Notation: We will assume that n > 1is a natural number. If x = (z1,...,2y,), (Y1,...,Yn) €
R"”, then
n
roy=> zy, |z|’=z-z
i=1

If « € N", then

n

n
la| = Zai, al = H(ai!).
i=1

i=1
We will also write

L Olel g e

T 9z 0xt O
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With this notation, the Taylor expansion is

1 olalf N . Ry (x
1= |Z<k al 9z (o) (@ = 20)" + Ry (), where xlgﬁgo ’33—k($0)\k -0

(t)— eVt +>0
=30 t <0.

We have n € C*(R), as

T—00

0

T
ot

for each n. By induction, we can show that 7*)(0) = 0 for all k& > 1.
For x € R™, set

e/Ul*=1) 1z < 1
0 ||| > 1.

pl) =n(1 - |l=[*) = {

Then supp(p) = B1(0), p € C*, p > 0, and p(—zx) = .
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9 The Schwarz Space

9.1 Topology of the Schwarz space

Definition 9.1. Given N > 0 and o € N" (N = {0,1,2,...}), we define the seminorm of
feC=R")
£l (.09 = sup(1 + ) |0 f (2)].

The Schwarz space is S = {f € C*(R") : || f[|(n,0) <0 VN € Nya € N"}.
Example 9.1. If f € C*°(R") with compact support, then f € S.
Example 9.2. [0%(e~17*)| < ¢(1 + |a[2l)e 1217,

S is endowed with a topology induced by the seminorm as follows: (fx)r C S converges
to f e Siff
im || fx = fll(n0) =0
k—o00

for all N € N and a € N”. Recall that a Freéchet is a complete, Hausdorff, topological
vector space whose topology is induced by a countable family of seminorms.

Proposition 9.1. S is a Fréchet space.

Proof. Hausdorff: Given f € Sand e >0, Ugy ) = {9€S:|f—9llva) < e} are the open
sets that generate the topology of S. Let fi, fo € S be distinct. Let zg € R™ be such that
40 := |f1(x0) — fa(xo)| > 0. Since | f1 — fa| is continuous, there exists an open neighborhood
O of xy such that |fi(z) — fa(x)| > 39 for all x € O. We have U(‘S()’O)(fl) N U(‘so,o)(fg) =g.
This proves that S is a Hausdorff space.

Completeness: Let (fix)r € S be a Cauchy sequence: limy oo || fr — fell(v,) = O for
all N € N,a € N*. Taking N = 0 for each «, we obtain that (0% fx) is a Cauchy sequence
for the uniform norm, and so (0% f;)r converges uniformly to some g, € C(R™). We claim
that sup, (1 + |2])Vga(z) < 0o. We have (1]z|)*|0%fr — 0% f¢| < € for large k,{. Letting
¢ — oo, we get 1|x|)"[0% fr — ga| for large k. Then

(L +|2[Vgal < (1 + [2))V]ga(z) = 0% fi(@)| +(1 + |20 fi(2)| < oo

<e

It remains to show that gg € C*°(R") and 9“gp = go. By Taylor’s expansion,

1 1
fla ) = o) = Vhilah = [ [ (P fula s tshnen) dsae

Thus,

h2
e 0) — ) — -V @) < BEar = sup sup [l

|a|=2
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Letting £ — oo, we obtain

n

M
go(z + h) — go(w) — Zg(o,..-,0,1,0,...,0)(90)hi < 7HhHQ-
i=1

Since g(o,... 0,1,0,...,0(z) is continuous, we conclude that go is differentiable at x and that

aii 9o(T) = 9(0,..0,1,0,...,0)(¥). Increasing the rank of the expansion, we obtain the desired
result. So go = 9%f. O
9.2 Equivalent characterizations of functions in the Schwarz space
Proposition 9.2. Let f € C*°(R"™). The following are equivalent:

1. feS.

2. 2P0 f is bounded for any B, € N™.

3. 0%(2P f) is bounded for any 3, € N™.
Proof. (1) = (2): Let «, 8 € N". Then
2210 f ()] < (1 + 2P0 f ()] < 1 fll 1510

(2) = (3): We have
@)= «"f,

acAbeB

where A and B are finite sets determined by «, 3. Thus,

0P < Y (2208 < .

a€AbEB

(3) = (1): We have [|0“f|lcc < oo for all @ € N”. It remains to show that
(14 |2))N0%f(z)|| < co. Fix an integer N > 1. Then

on =min{) _|z;|V: [z = 1} > 0.

i=1
Hence,
n T N 1 N
ov <[l = e Sl
2 afl| T eV &1
So

1 n
Jzl|V < — Z |z |
ON =
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It remains to show that |||z;]V 0% f||ec < 0o. We have for N = 1 that
axj (l‘zaaf) = 5i7j8af + SUiaxjaaf,

SO
120, 0% £ < 110, (2:0° f) oo + 100 f14.

Repeat the process for N =2,3,....
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10 Translation and Convolution

10.1 Translations of functions

Definition 10.1. Given f : R” — R and y € R", define the translation 7, f : R" — R"
by
(ryf)(x) = f(z —y).

Remark 10.1. If 1 <p<ooand y € R, 7, : L? — L? is an isometry.

Remark 10.2. If f € R® — R, then f is uniformly continuous if and only if the limit
limy_0 |7y f — fllu = 0. Indeed,

sup ||y — fllu=sup [f(y) = f(z)].
lyll<é lz—yl|<8

Remark 10.3. If f : R™ — R is supported by the ball Br(0), then
7y f = 15 < [Bra(0)[? |7y = flloo

whenever [|y|| < 1. Indeed,
/ F(@) — fle—y)P de = / (@) — f(z— )P dr.
" Br41(0)

Let C.(R™) be the set of continuous functions R” — R with compact support.
Lemma 10.1. If g € C.(R"), then g is uniformly continuous.

Proof. Let Br_1(0) with R > 1 be a ball containing the support of g € C.(R™). Then g is
uniformly continuous on Br(0). Set

o(r)= sup  |g(z) —g(y)l.
lz—yll<r
Izl llyll<R+1

We have

0 lyll = R, [lzf| = R+ 1

l9(z) — g(zo)| |yl <R, |lzll = R+1

l9(z) = g(y)| <

0 =] = R, ly| = R+1

l9(x) —g(z0)| =l < R,[lyll = R+ 1.
Consequently,

sup |g(x) — g(y)| < d(r).
lz—yll<r

So ¢ is uniformly continuous. O
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Proposition 10.1. If 1 < p < oo, then 7, converges pointwise to the identity map in LP:
tim 7/ — fllp = 0.
Proof. Let f € LP. For any g € C.(R") and y € R", we have
Iy f = Fllo <7y f = 7y9llp + l7yg = gllp + lg = fll
=2If =gl + llryg — fllp
<2 f = gll + |Br|""lIryg = fllus

where Br_1(0) is a ball containing the support of ¢g. Since ¢ is uniformly continuous, we
conclude

limsup ||7, f — fllp < 2[[f — 9gllp-
y—0

Since C.(R™) is dense in LP,

limsup |7, f — f|l, = 0. O
y—0

10.2 Convolution

Definition 10.2. Let f, g : R" — R be measurable, and let z € R"™ be such that y — 7, fg
is integrable. Then we define the convolution of f and g as

(Feoa) = [ fe—vat)ds= [ nr@at)dy
Definition 10.3. The n-torus is T" := R"/Z".
If x € R", the equivalence class of x in T™ is x + Z™ = &. The metric on T" is
2 — gllgn = inf |z —y— 2.
&~ e = inf 2y~ =
There is a bijection between T" and Q,, = [-1/2,1/2)". Consequently, there is a bijection

between T" and Q, = {z = (21,...,2,) € C" : |z| = 1Vi}. Since Q, is compact, we
conclude that T" is a compact set.

Proposition 10.2. If v € R", f,g : R® — R are masurable, and y — 7,f(x)g(y) is
integrable, then

(f xg)(z) = (g% f)(x).

Proof. Use the change of variables z =z — y:
(fxg)(x) = A f@—y)g(y) dy

[ 1@ 2)dz
= (9+ /)(@) a
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11 Properties of Convolution and Young’s Inequality

11.1 Properties of convolution
Proposition 11.1. The convolution satisfies the following properties:
1. fxg=gx*f
2. (fxg)*xh=fx(gxh)
8. If 2z e R", 7o(fx g) = (12f) x g = [ * (129).
4. If A={x+y:x esupp(f),y € supp(g)}, then supp(f * g) C A.
Proof. Let f,g:R" = R.
1. We have already proved this.
2. Let z € R™. We have

(f % g)  h(z) = / (f * )z — v)h(y) dy

R"

- / @ -y — 2)g(=)h(y) dyd=
R7 xR"™
But

Frlgen)@ = [ f-wgshdi= [ o uglu-vho)

nxR"

So set u =y and u — v = z. Then
r—y—z=z—v—(u—v)=1z—u,
so the two expressions are equal.

3. We have
([ xg)(z) = f*g(z — 2)

A (x —2z—y)g%)dy

— [ @Dt = vty dy
= (2f) x g().
Since f * g = g % f, we conclude that
T(fxg) =T(gx f) = (129) * f = [+ (729).
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4. Assume = ¢ A. Observe that

B _ )0y ¢ supp(y)
flz—y)g(y) {0 y ¢ supp(a).

Hence, f x g(z) = 0. Then A° C {f xg = 0}, so {f *g # 0} C A, which makes
{fxg#0}CA O

11.2 Young’s inequality

Our goal is that if 1 < p,q,r <ooand 7' +1=p~ ' 4+ ¢!, then

1+ gllr < 17 lIpllgllq-

It is important to note here that this bound is independent of the dimension.

Theorem 11.1 (Young’s inequality). Let 1 < q < oo, let f € L, and let g € L9. For a.e.
x € R", fxg(x) exists, and
1+ gllq < [ fllllglle-

Proof. Assume ¢ < oc.

1/q
If*gllq= </Rn !f*g(a:)|qdm>

(L[] stste - nay

Rn

< [ ([ s —vraz) " a
= [swn ([ ot opras) "

= [ 15@llallady =171l

q 1/q
dw)

Use Minkowski’s inequality.

Set z =z —y.

If ¢ = 0o, the proof is simpler. O

Definition 11.1. Cy(R™) = {f € C(R") : {|f| > €} is compact Ve > 0} is the set of
functions that vanish at oo.
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Remark 11.1. As a subspace of L>®, C.(R") = Cp(R").
Theorem 11.2. Let 1 < p,q, < 0o be conjugate exponents. Let f € LP and g € LY. Then

1. fxg(x) exists for each x € R™, and
1f gl < U fllpllgllq-

2. fx g is uniformly continuous.
3. If 1 < p< oo, then fxg e Co(R™).

Proof. For p # oo, by Holder’s inequality,

s =| [ e -vowal< ([ 15w -wrar)” ol = 11 lal

If p = oo, the proof is easier.
To prove the second statement, it suffices to show that lim,_o || 7, (f*g)—f*g[l. =0. O

We will finish the proof next time.
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12 More Properties of Convolutions and Generalized Young’s
Inequality

12.1 Uniform continuity and vanishing of convolutions
Let’s continue the proof of this statement from last time.
Theorem 12.1. Let 1 < p,q,< 0o be conjugate exponents. Let f € LP and g € L9. Then

1. fxg(x) exists for each x € R", and

f gl < 1 flIpllgllq-

2. f * g is uniformly continuous.
3. If 1 <p< oo, then fxg e Cy(R™).

Proof. We have already proven the first statement. To prove the second, it suffices to show
that

limg [[(f # g) = f * gllu = 0.
Note that if 1 < p < oo,
Ty(fxg) —frxg=(rf) = f)*g.
So

—0
Iy (f % 9) = f * gllu < Iy f = flpllglly == 0,

When p = o0, ¢ = 1, and we interchange the role of f and g.
Assume 1 < p < 0o so that 1 < ¢ < oco. Choose (fx)k, (9x)kx € C.(R™) such that

li — =0= I — .
dim [Lf = fillp Jim g = gkllq
By the first proposition stated last time, fi * g € C.(R™). We have

Fxg—fexge=Ff*(g—9gr)+(f = fr)* gk

SO
k
1 % 9= fe* grllu < UFIplLF = Frllg + 11F = Frllpllgrlly == 0.
Since Cy(R"™) is the closure of C.(R™) in the uniform norm, we get the result. O
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12.2 Generalized Young’s inequality
Theorem 12.2. Let 1 < p,q,r < 0o be such that 1 +r—1 =p~1 + ¢, Let f € LP.

1. (Generalized Young’s inequality) If g € L9, then
1 * gllr < £ 1pllgllq-

2. Further assume 1 < p,q,r < 0o and g € weak L9, Then there is a constant Cp 4
independent of f,g such that

If*glr < Cpyq

fliplgle-

3. Ifp=1 (so g =r < o0), there exists a constant C,; independent of f such that for
any g € weak LY,

[f # glr < Cll fll1[gq-
Proof. For now, we only prove the first statement. Split into cases:
1. 7 = oo: This is part 1 of the previous theorem (Young’s inequality).
2. p=1,q =r: We have already proven this.

3.1 <pgr<oo Sincert=plt+qglt—1<q! g/re(0,1). Sett=1-—q/r.
Define the operator T as

(Tf)(x) = fxg(x)= - K(z,y)f(y)dy,  K(z,y)=g(x—y).

We want to use the Riesz-Thorin interpolation theorem. By Young’s inequality,

1Telloe < llell 2 llgllg-

Also,
ITellq < llell1llglle-

If we set pp = 1 and qp = ¢ and set p; = ¢/(¢ — 1) and ¢; = oo, then we get that T'
is weak type (po,qo and (p1,q1). Set t =1 —¢q/r € (0,1), and define p; = % + pil,
QG = % + é. By the Riesz-Thorin theorem,

ITFII < Mo~ M| fllpe = llgllgl fllpr,

_ _ 1 _ 1=t t gl _ 1 Qi 1 _
where Mo = M; = ||g|lq- Note that - = = + 5 == . Similarly, - = .
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13 Derivatives of Convolutions

13.1 [L? and weak L? convolution inequalities
Last time, we proved the first part of the following theorem:
Theorem 13.1. Let 1 < p,q,r < 0o be such that 1 +r—1 =p~ 1 + ¢~ 1. Let f € LP.

1. (Generalized Young’s inequality) If g € L9, then
1 * gllr < [1f1lpllgllq-

2. Further assume 1 < p,q,m < oo and g € weak L1, Then there is a constant Cj
independent of f,g such that

If*glr < Cpyq

fliplgle-

3. Ifp=1 (so g =1 < o0), there exists a constant Cy independent of f such that for
any g € weak L9,

[f * glr < Cpllfllglg-

Proof. To complete the proof of the theorem, observe that [K(z,-)]; = [g(z — )]s = [g]q <
oo. Similarly, [K(-,y)]q = [9]q < oo. By our interpolation theorem for kernel operators
with ¢ = [g]y, we have

ITfll- <clfllp, p»>1,
[Tfl, <CB|fll, p=11r=q. O

13.2 Convolution of C* functions

Proposition 13.1. Let f € C* be such that 0°f is bounded for any |a| < k, and let
geEL'. Then fxgec CFand 0*(fxg) =0 xg

Proof. Proceed by induction on |«|. Assume then that || = 1. Note that

1
flz+h) —f(x)—i—Vf(a?)-h—i—/O (Vf(x+th)—Vf(x))-ddt.

f*g(fc+h)=/ Fx+h—y)g(y) dy

1
_ / fa— ey +h- [ Vi@ —y)gly)dy+h- / / e(t,y)g(y) dt dy,
RN n Jo

Rn
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where ¢(t,y) = Vf(x —y+th) — Vf(x — y). Note that |||, < 2[|V f|l4. Thus,

et y)g(w)l <lg(w)l, g€ L'((0,1) x R™).

lim// e(t,y)g dtdy—//hmsty y)dtdy = 0.
h—0 n n

In other words,
frgle+h)=gxg(@)+h-(Vfxg)(@)+h-vyxh),  lim|y(z,h)=
This proves that V(f * g)s exists and equals Vf * g. O

13.3 Convolution of functions in the Schwarz space

Proposition 13.2. If f,g € S, then fxg € S.

Proof. By the previous proposition, f,g € C*. Recall that ||f||(na) = [[(1 + |2)Y 0 f]|.
and that these are bounded for all o, N. Note that

I+z) <T+]z—yl+ |yl < (T + |z —y)(T+[y]),
and so

(1 + |z |0 (f * g(@)| = (1 + [z V(%) * g(=))]

< / (1+ |z — y)N 10 (@ — )| (1 + o) lo()] dy
1
= 1+ |z —y)No f(z — )1 + [y)N T g (y) | ———— dy
/Rn< o= o) = )L+ D o)
1

< (073 n 7d
= /Rn HfH(N, )HgH(N+ +1,0) (1+|y])”+1 Yy

1 ) rn—l
= 15" v lsllovnsnor | e @
< 0. ]

Remark 13.1. If 4 be a measure and [, f(z — y) du(y) makes sense, we denote it as
f* .

Example 13.1. Let ;4 = §,. Then

[ e dnty) = ola)
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and so
f#da(z) = f(2 —a).
Let g € L', and set
o) = olo/t)
Then

| a@aa= [ swmia/=a= [ owa.

We get

/n oY) git(y) ,dy = /Rn e(y)g(y/t) d(y/t) = /R p(t2)9(2) dz =% (0) /n g(2)dz = ¢(0)a.

So g — ady.
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14 Limits of Scaled Convolutions

14.1 Limits of scaled convolutions
Recall that if ¢ € L(R") and
1 x
o) =50 (7).

then
oellr = l|o]]-

Theorem 14.1. Let ¢ € L', let f € LP and let 1 < p < oo.
1. If p < o0,
i o/ —afl, =0, a= [ o()dy.
—0 Rn

2. If p=o00 and f is uniformly continuous, then

lim oo f —afll=0, a= | o(y)dy.
—0 Rn

3. If O CR" is a bounded open set, K C O is compact, and f € C(O) N L>®, then
lim ¢+ f = flle) = 0.

Proof. (1) Assume 1 < p < oo, and set ¢ = p/(p — 1). We have

o f(x) — af(x) = / (=) — F@)buly) dy = —

(f@—y) = f@)e (£) dy
Making the change of variables, z = y/t, we get

bu % f(@) — af(z) = / (fla—t2) — f(2))d(z) d=.

RN

P
dz.

/Rn (¢ % f(2) — af(x)P dz = / /n(f(:c —t2) — f(2))p(2) dz

Using Minkowski’s inequality for integrals, we obtain

1/p

([ 10 ste) - af(x)lpdx>1/p < [ ([ 1=t - s@ploeras) " s
< [ 1o@llies = Sl
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Note that
I7e=f = fllo < 20 fllp, i fI7eaf = fll, = 0.

So || * f — fllp < Jpnu (¢, 2)dz, where || < 2| f[lpl¢| € L'. Using the dominated
convergence theorem, this completes the proof of the first claim. Note that the proof also
works for p = 1.

(2) Assume p = oo, and let f be uniformly continuous. Set

myg(6) = sup |[f(x) = f(y)l,

|z—y|<8

so that

li =0.
613(1)mf(5) 0

As we have calculated above,
604 J(@) = af@)] < [ my(tlDiol)] d=

But my(t|z|)|phi(z)] < 2||f|l|¢| € L'. We apply the dominated convergence theorem to
obtain that

limsup ¢y * f — fllu < limsup/ my(t|z])|¢(z)| dz = 0.
t—0 t—0 R™

So we get the second claim.
(3) Let 2d = dist(K,0¢). Choose a compact K; C O such that K C K; and
dist(K7,0°) > d. Fix € > 0. It suffices to show that

limsup ||¢: * f — fllox) < e
t—0

Let R > 0 be large so that

3

dldz < — "
/Rn\BR(o) 9= < ST )

Fix z € K. by our earlier calculation,

o0+ f(a) ~ af(@) = |

BRr(0)

(f(z —tz) = f(x))p(2) dz +/ (f(z —tz) = f(x)d(2) d=.

R™\BRr(0)

I (t) Ix(t)

We have
1] < 2/|floe /X 6()]ds < e.

\Br(0)
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Since K is compact and f € C'(K}), f is uniformly continuous on K, and

lim mg, (0) =0, where mg, (0) = sup |f(y) — f(2)|-
60 |z—y|<6
Z7yEK1

Since x € K if tR < d, then z,z — tz € K, if |z] < R. So

L] < /B (RO d= =, (1) /B 16(2)].

r(0)

Hence, lim;_,o I1(t) = 0. So we get
limsup [|ps * f — fllok) < e
t—0

Remark 14.1. Let ¢ : R — R be a Borel function. Assume ¢, > 0 and

C

P —
|¢(2)‘ = (1 I ‘Z|)n+5
for all z. Note that ¢ € LP for any p € [1,00]. Indeed, if 1 < p < oo,

1 rn—1

p D — p|gn—1 -
Iép]l” < e /Rn (1 + |z|)(ntep dz = C?|S |/0 (1 + r)ntelp dr

There for, for any ¢ € [1,00] and any f € L9, ¢y % f(x) exists.

Our goal is to show thati f x is a Lebesgue point for f, then

lim g+ /() = ().
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15 Approximation of L” Functions by Convolutions with Scaled
Mobollifiers

Today’s lecture was given by a guest lecturer.

15.1 Approximation of L” functions by convolutions with scaled molli-
fiers

Theorem 15.1. Suppose |p(z)| < C(1+ |z|)~"¢ for some C,e >0 (so ¢ € L*(R?)), and
let [pa d(x)de =a. If f € LP with 1 < p < oo, then fx¢i(x) = af(z) ast — 0T for every
x in the Lebesgue set of f.

Remark 15.1. This implies that f * ¢1(x) — af(z) for a.e. x and for every = for which f
is continuous

Proof. If x is in the Lebesgue set of f, for any § > 0, there exists an 1 > 0 such that

/!f(w—y)—f(x)dyﬁér”, v <n.

r

In other words, lim, _,o+ ﬁ fBT |f(z —y) — f(z)|dy = 0. We have

2 01(0) = af @)l =| [, Fa = 0)6100) = Fl)ont)
= [l =) = s@)dy
— [ 10lise—0) - f@dy+ [ 6l - ) - 1@ dy.
By By

-~

I I

We claim that I, < A6 for some A independent of ¢ and that Iy — 0 as t — 07. If the
claim holds, then
Jm [fxgu(2) —af(z)] < lim I < A
Letting § — 0,
lim_f + 6u(x) = af (2).

f—0t

To estimate I;, let K € Z be such that 25 < n/t < 2K+l if n/t > 1 and K = 0 if
n/t < 1. We view the ball By as the union of Byi-x, \ By, for k=1,2,3,..., K and the
ball By-k,. We have a few cases:

1. On Boi—k, \ By, for k=1,... K,

[Ge(y)l = ¢ (¢ y)| S (L[t 1yl) T S CEML 2 ) Tl
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2. On BQ—K,,],
|6e(y)| =t "p(t ' y)| < Ot

So

I - /B )1 (& — ) — F(@)] dy

M= T

G| (@ — ) — F(o)] dy + /B G —y) — ()| dy

1 2—8Kn

/321k,7\32k,7
( / @ —y) - f(@)] dy) Ct e tohp| e
Byi—k,

¥ ( J o =) f<x>|dy> crr

2

IN
i

K
< (Z Ctn‘t12k77|n€(5(21k77)n> + thn(s(szn)n
k=1

€ K RN
- 05 <t> 2" "2k 4 (2”)
" k=1 t

£\ ¢ 2(K+1)5 _9¢ 2—K77 n
o) <77> 5e 1 +Cs ( : )

Use the inequality defining K:

o(K+1)e _ 9e
< no—Ke n
< Corr2KeT = 4+ 052
=2"C(2°(2° = 1) + 1) 6.

=A

To estimate I, we have, using Holder’s inequality,
I, < /B (If (=)l + [f@)]) [l (W) < [[fllp 1 LBy Pellp + [F (@) LBy el
n

We split into cases:
1. p’ = co: Then

H]lB,C](pt”p’ < Ctin(l + tiln)fnfg = th(t + n)*n*E < Cten ",
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2. 1<p <o
11Be bl

- / () P dy

n
=) [ o)
Bre
< o) / [+ ) dz
By

— omp) (;7)"—("—@’”

< Ot
which goes to 0 as t — 0. O

Suppose we want to show that Cg° is dense in LP. Then we let f,, = flp,,so fn, — f
in LP. The idea is then that f, * ¢y — f —n ast — 07, so f, * ¢ € C° approximates f
in LP.
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16 Smooth Density Results, Smooth Urysohn’s Lemma, and
Characters of R”

16.1 Density results for C° and S

Let ¢1 € C°(B1(0)) be such that ¢; > 0 on B;(0) and such that

o1(x)de = 1.
Rn

For example, take

- e/Uel’=1) |z < 1 ()
o(z) := {O [ >1 o1(x) = W

Lemma 16.1. If1 <p < oo, then C° and S are dense in LP.

Proof. Let f € LP, and let g > 0. We are to find g € C2° such tht || f — g||, < 9. Choose
g € C. such that ||g — f||, < e0/2. Set

6-2) = —on ().

3

We have ¢. x g € C*°. Furthermore, supp(¢e * §) C supp(g) + B:(0). Hence, ¢ x g € C°.
Choose ¢ small enough such that

e * G — gllp < /2.
So the desired inequality holds for g = ¢, * g. In conclusion, LP C @LP - sY crr. O
Lemma 16.2. C° and S are dense in Co(R™) for the uniform norm.

Proof. Let f € Cy. Recall that @Lw = (Y. Hence, given g9 > 0, there is a g inC. such
that ||f — g||lu < &/2. Since g is uniformly continuous and bounded,

lim 15 — ¢ % Gl = 0.
e—0

Thus , there is € > 0 such that
19 — ¢ * gllu < g/2.

So we get
Hf - gHu <e.

If we set g = ¢, * g, as before, g € C2°. In conclusion, Cy C @Lw C st C (. O
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16.2 Smooth Urysohn’s lemma

Lemma 16.3 (Urysohn). Let K C R™ be a compact nonempty set, and let U C R™ be
an open set such that K C U. Then there exists a function f € C° such that flx =1,
supp(f) C U, and supp(f) is compact.

This is useful on manifolds. Treat a neighborhood of a point as a subset of R". If you
want to integrate a function on the manifold, you can integrate it over every neighborhood.

Proof. Set 36 = dist(K,U¢) > 0. Let K; = {x € R" : dist(z, K) < ¢}. Note that K
is compact, and dist(K1,U¢) > §. Let f = ¢ x 1Kj. Then f € C°°, and supp(f) C
K1+ B:(0) CUife <d. So f € C®, and f has compact support. If x € K, then

s = [ vy = [t o i
If x € K and |y| <e, then z —y € K;. So

f(a) = /(be(y) dy=[ oet)dy=1. 0
=(0) Rn

16.3 Characters on (R", +)

Proposition 16.1. Let ¢ : R" — C be a measurable function such that |p(z)] = 1 and
bz + ) = (2)6(y) for any 7,y € R™. Then

1. There exists ¢ € R such that ¢(x) = e>™€T,
2. If we further assume that ¢ is Z™-periodic, then £ € 7.

Proof. Let (e;)7_; the standard orthonormal basis of R". If z € R", then

o(x) =0 | Y _wje; | =[] o(xjes).
j=1 i=1

The function z — ¢(z,e;) can be identified with the restriction of ¢ to a 1-dimensional
space. Therefore, t — ¢(te;) satisfies the assumption of the lemma for n = 1. It is not a
loss of generality to assume n = 1.

Set

Flz) = / 6(1) di.
0
There exists a # 0 such that F(a) # 0 (lest ¢ =0). Set A =1/F(a). We have

a a a xr+a
¢(a) = qﬁ(a:)A/O o(t) dt = A/o d(z)p(t) dt = A/o plz+1t)dt = A/ ¢(2)dz
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= A(F(xz +a) — F(z)).

Since F' is continuous, this gives us that ¢ is continuous. Since ¢ is continuous, F' is
continuously differentiable. Apply the equality above again to conclude that ¢ € C?.
Differentiating both sides, we obtain

¢'(z) = A(¢(x + a) = ¢(x)) = A(d(x)d(a) — d(x)) = Ad(2)(¢(a) — 1) = ¢(2)B.

So we get

Integrating, we obtain
$(x) = $(0)e"".

But ¢(0) = #(0 + 0) = ¢(0)?, and so ¢(0) € {0,1}. Since |¢(0)| = 1, we conclude that
»(0) = 1. Write B = By +iBy withBj, Bs € R. Then

¢<I’) — €B1xei32x’

and
1=¢(1)|=eP* = By =0.

So ¢(x) = €2™% wheref = By/(27).
Assume ¢ is Z-periodic. Then

i€ = §(1) = $(0) = 1.

So 2mi€ € 2nZ. That is, £ € 27Z. O
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17 Orthonormal Basis of L? and the Fourier Transform

17.1 An orthonormal basis of L?(T)

If§ € R", we define E¢ : R® — C by E¢(z) = ™%, where z- & = DI ;. Let
={Ey:keZ"}.

Proposition 17.1. & separates points in T" = R"/Z": For a,b € T", if Ex(a) = E(b)
forallk € Z™, then a = b.

Proof. Assume Ej(a) = Ei(b). Then e2miah = g2mibk oo o2milb=a)k — 1 So cos(2n(b —
a)-k) =1, and sin(2n(b —a) - k) = 0. This means (b —a) - k € Z, and this holds for all
k € Z*. In particular, taking k¥ = (0,...,0,1,0,...,0), we conclude that e2milbj—a;) —
for j =1,...,n. So bj —a; € Z, which means that b; —a; = 0 (since a,b € [0,1)" and
|CLj — bj| < 1). O]

Theorem 17. 1 The collection & is an orthonormal basis of L?(T™) for the inner product

f’]l‘" dx—f(n]nf()()dx
Proof. Let k, £, € Z™. Then

1 k=4
Ey, Ep) = 27rzk€zd _ / 2mi(k :vjd _
(Ek, E) /[071]71 T = H S P L.

So £ is orthonormal.

It remains to show that € spans a dense subset of L?(T™). Let A = {3, ., MeEx : A C
Z" is finite, \;, € C}. Since EpEy € € for any k, ¢ € Z"™, one checks that A is an algebra in
C(T™). Since C = {\Ep : A € C}, we conclude that A contains the constant functions. By
the Stone-Weierstrass theorem, A is dense in C(T") for the uniform norm. If f € L?(T")
and £ > 0, there exists g € C(T™) such that ||f — g|l2 < €/2. Choose h € A such that
llg — hllweqe/2. Then ||g — hll2 < ||g — h||lu, since m(T) = 1. Consequently, ||f — k|2 < e.
This proves that A is dense in L?(T). O

17.2 The Fourier transform
Remark 17.1. Let f € L*(T"). Then
F=Y (£ E)E:  IfIB= Y [{f.Ex) -
kezn kezn

Set R R R
fe = (f, Ex), f = (fr)rezn-

We have a map A : L2( ") — (%(Z") sending f — f. This is an isometry because this
relation gives || f|l2 = ||f || (Parseval’s identity).
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Remark 17.2. Observe that if f € LY(T"), since Ej € L>®°(T"), we have fE;, € LY(T"),
and so fi is still well defined. Note that

Rl =| [ st ad <1

In other words,

1 Fllemezmy < 111

Theorem 17.2. Let 1 < p <2, and let ¢ = p/(p—1) be the conjugate exponent. Then the
Fourier transform A extends to a linear map A : LP(R™) — (4(Z"™) such that

| flleazny < 1l (rmy-

Proof. We want to apply the Riesz-Thorin theorem. Set pg = 2 and p; =1, so ¢o = 2 and
g1 =o00. Set t =2/p—1¢€(0,1), and set

1 t 1-¢ 1 1 t 1-¢ 1

)

Dt Po Po b qt q0 q0 q

By the Riesz-Thorin interpolation theorem,

I Flleazny < MEMGT fllzocany = £l zoconys

asM():Ml:l. ]
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18 Properties of The Fourier Transform

18.1 Properties of the Fourier transform

If f € L*(T") and k € Z", then f(k) = (f, Ey) = [& f(x)e 2" dz.
Definition 18.1. The Fourier series are
> F (k) Ex
keA
for A C Z™.
Definition 18.2. Let f € L'(R"). As E¢ € L™®(R"),, f(€) = (f, Be) = [an f(x)e 2747 du.

The Fourier transform of f at £ is

(FF(E) = (&)

Proposition 18.1. Let f,g € L'(R"), let y,n € R™ and let T : R — R™ be an invertible
linear map.

~

1 frg=F-3

2. f € Cy(R").

3. @/\f = fE and 7'77(]/"\) = f/—E?77

4. IfS=T"", then foT = |det(S)|foST.

5. Fort >0, set fi(x) =t "f(x/t). Then F(ft) = (F(f)):.
Proof. 1. Let £ € R™. Then

" — % —27ri£~$d
@) = [ 1ol da

- / =6 | (o~ y)oy) dy o

We can use Fubini’s theorem because the product of integrable functions in separate
variables is integrable.

= [ ot [ o ge ) dnay
n Rn
Make the change of variables z =z — y:

= [ atweme [ peeeazay

/ "
= f(&)7
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2. We have |f]| < ||f|. If h € R,

]?(5 + h) _ (m)€27ri§-me27rih-x dz,
R7l

SO

~ -~

ferm—Fel< [ 1r@le e —1ld

|f|le=2m&® — 1] < 2|f|] € L?, so we may apply the dominated convergence theorem
to conclude that

timsup |+ )~ F©)| < [ tmsup|e 2 1| (@) dz =0,
h—0 n o h—0

3. Let £ € R". Then

(DO =Fe-n= [ e Crf@ar= [ ) @) do = BIE).

FoT(€)= | foT(x)e 2™ % dy
Rn

Make the change of variables y = Tz, so z = Sy and dz = | det(5)| dy.
= /. F(y)e 25| det(S)| dy

Use the fact that a - (Sb) = S'a - b:
e F(y)e 57 EY] det(S)| dy
= [det(S)[f o ST(9).

5. Set Tx = z/t. so Sy = ty. Define p,(f)(x) =t "f(x/t) = |det(S)|"'f o T(x). By
the previous part,

_— 1 — 1 ~

O(f) = |det(S)\fOT: m\det(S)\foST = f(t§) =t"Oyy0 [ O
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19 The Fourier Transform and Derivatives

19.1 How the Fourier transform interacts with derivatives
Theorem 19.1. Let f € L'. Then the following hold.
1. If x*f € L' for all || < k, then

(&) = (—2miz) ().
2. IffeCF,0°f € L' NCy for |a| <k —1, and 0°f € L' for |a| = k, then
9] () = (2mi€)* f ().

Proof. For the first statement, we will show the proof of |a| = 1. The rest will follow by
induction on |«|. Let £ € R™. Then

~

f(f + h) — /n 6727ri§-x6727rih-xf(x) da.

If h = tej, then

~ ~

f(§ + tej) — (f) — / e?ﬂ'i&-x 6_2mmj —1 dx.
t n t

Using a first order Taylor expansion of the exponential, we get |e 2™%3¢|/|t| < 27|z;|. So,
using the dominated convergence theorem, since 2r|z;||f(x)| € L,

—

of (&) = - F(2)e? ™ (= 2mi;) do = (—2miz) f(€).

For the second statement, we want to understand why we need f € Co N L' and
Ox, f € L' to have 0, (&) = (2mi&;) f(§). Assume k = 1. Then

01O = [ 0n, @) da

e / / axjf(m)ei2ﬂ'izk#j gkmke—zﬂ'il’jéj dx] dl'l PR dl"]fl dx] P d:En
Rr-1 JR

~fom [ L (x)ai (mim) + [rye ] |di

_ / 2T f (1) (~2mi€;) da

— 2mi&; f (&)
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To prove that f € Cy, it suffices to find (gx)r € Cp such that limy ||J?— Jk|lw = 0. Let
(fe)r € CG°(R™) be such that ||f — frl1 < 1/k. We have

17 = Filla < IIf = falh <

| =

—

But (27Ti£j)ﬁ; = Oz, fr- Thus,
27| fillu < 190, filli < oo.

This means that |£|[f;| is bounded, and so f;, € Co. O

19.2 The Fourier transform on the Schwarz space
Corollary 19.1. F maps S into S continuously.

Proof. Let f € §S. We are to control the uniform norm of x“f)b]? for all multi-indices
a,b € N using a finite number of expressions || f[|(n,q,)- Since %% f is a finite linear
combination of terms of the form 9° (azo‘f), it suffices to control the latter expressions.
Note that

0P ((2m’1‘)“f) 86((9/0‘7) 1 —
VD =G = @~ @20

Thus, N
107 (2 )l < |27~ |20 f]1.

The right hand side is

_ 1
o [ (L I e

1
< 12718~ (1 n+1+|ﬂ\ao¢ / / d
< a1+ Jo]) Pl | ] e e
= |27T|ﬂ_a|\f\|(2+1+|ﬂ\,a)cm
where (), is a constant. O

Remark 19.1. Given a > 0 and an integer n > 1, we define
fi(a) = e e
Note that f! € S, and
n
fa(@) = 1] fa(ay).
j=1
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20 Fourier Inversion

20.1 Fourier transform of exponentials

For a > 0, recall that
n —7ra xX 2
fa(a) = el ||f z;5)-

Additionally,

/ e—|xj—u\2/29 p . €—|x—u\2/20 p )
—dz, =1 = ——dx = 1.
R 270 ’ Re V270

Lemma 20.1. We have

Proof. Note that

So it suffices to show the lemma for n = 1. Assume n = 1.
We want to show that

e/ FI(g) = 1
We claim that for f = f1,

jg (A(g)e(ﬂ/a)ﬁ) —0.

We have
d~ — — id. idf i o
e _ malz|? — 2 7 (p—malz?y — _ 1Y _ _(_ —
d§f 2mixf = a27r:me adx(e ) . a( 2mil) f
Hence,
d ~ 2 d -~ 27T 2
et (7/a)€ “w (7/a) AN e —ma&
Q) = L F©)e F&) T ee
_ 21]?(5){ (m/a)t +e<w/a>£}
=0.
Consequently,

21~
-Zefle).



20.2 Self-adjoint property of the Fourier transform
Lemma 20.2. Let f,g € L'. Then

[ Fods= [ rgaa
n RTL
Proof. We have
| t@a@de = [ s [ ey d i
= [ s@e i s
R™ xR"™
— [ H@gwre i dnde
R™ xR"™

~

=L f(€)g(§) dg. O
20.3 The Fourier inversion formula
Definition 20.1. Let F € L'. We define

FY = F(=¢) = / TR (z) da.
Theorem 20.1. Suppose F,ﬁ € L'. There exists G € Cy such that F = G a.e. and
(F) = (F)’ =G
Proof. For each x € R" and ¢t > 0, define

07 (€) = TSR = B (©)£1(9)-

Note that
T n n n 1 n 1 n
OF(y) = (Eofi's By) = (f{', Ey—a) = fily — 2) = Wfl/t(y —x) = Wfl/t<x —y).
by the lemma. But setting ¢t = 270 gives
() dz =1
Z)—F—p a2 = 1.
o

In conclusion, ¢7, @ € L'. By the previous lemma,
A PPF (&) dE = A of (y)F (y) de.
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Using the expression of gﬁ?, we obtain
1 ~ » 2
— [l — OF(€)dE = | F(y)e vl gy,
| Zfine—or©d - [ Fo)

Hence

~ ) 1
}E% pr * F = lim F(y)e%zy'm_’r'ylzt dy, where pi(2) = —

t—0 Rn \/in

By the dominated convergence theorem,

lim p; x F = ﬁ(y)e%riy-x dx = (ﬁ)v(_l’)’
t—0 Rn

and F' = lim;_,q p¢ * F" a.e., as

pi(z) = j%ne“/ﬂ? - jinm(z/ﬁ).

So we have proven that

F(z) = (F)\-2) = (F)'(x)  ae.

fln/t(z)'

We have shown that (F)" = (F o O), where O(z) = —z. Now F¥ = F 00, so (F¥)" =

(F o O)".
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21 Isomorphism, Unitary Property of the Fourier Trans-
form, and Periodic Functions

21.1 The Fourier transform on the Schwarz space

If f,f € L', then f* (fY)", where, f¥ = fo0 O, and O(z) = —=.
Corollary 21.1. If f € L' and f =0, then f =0 a.c.

Proof. We have f, fe L', and so

F=(U)" = (fo0)=0"=0. O
Corollary 21.2. F:S8 — S is an isomorphism.

Proof. By the previous corollary, the kernel of F|s is {0}. Since F is linear, we conclude
that F|s is one-to-one. We want to show that F|s is onto. Let g € S. Since g € .7,

we have g,g € S, and so g = §/0?) = F(goO). Since g =2 O € S, we have proven
that F~1(g) = go O. That is, F~! = F o O. Since F maps S continuous to S, so does
FoO=F1L O
21.2 Unitary property of the Fourier transform

Theorem 21.1. The Fourier transform has the following properties:
1. F maps L' N L? into L?.
2. F extends to a unitary transformation F : L? — L2,

Proof. Set A= {f € L' : f € L'}. We claim that A C L2. Let f € A. Then f = (f¥)"

1/2 1/2

a.e. This is in L™, as f € L'. Since 1 5 = 1 + =, we conclude that

1£ll2 < IFIZ21FI.

72 72
Observe that L2 = SL - AL C L?. So A is dense in L2
Isometry: Let f,g € A. We have

IRE [ 1@ /fg - [
| i [ e

_ Extension: Since A is dense in L?, this gives us that f extends to a linear operator
F: L? — L? such that | F|l2 = || f]|2.

In particular,
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It remains to check that F = F(f) for f € L' N L%, Set

ple) =T () = e /).

Let f € L' N L?. We have p; x f € L' N L?, and

— ~

—~ g2
pix f=puf = E f(e).
eLt cL.™

So py * f € L'. This means that p; x f € A. We have that
IF (o % £) = F()lla = 1 F (pe 5 f) = F(F)ll2 = llpe £ = fllo,

1F(or % ) = F(Hlloo < llor 5 f = flIn-
Let B C R" be a bounded ball. We have

IF)=F (Dl < NF ) =F(perF) |2+ F (peef ) =F (Nl 12y < IF(F)=F (pexF )2+ F (pexf )
So we conclude that F(f) = F(f) a.e. on B. O

Corollary 21.3. For1 <p<2andq=p/(p—1), we obtain an extension to F : LV — L4
such that | F(f)llq < || fllp-

21.3 Producing periodic functions from L' functions

Theorem 21.2. Let f € L'.

1. There exists a periodic Pf : R™ — R such that |Pf]l1 < || f]l1-
™ n
2. P ()= F*"(0).
3. Pf(x) =2 pegn TS (2)-
Proof. Let @ = [-1/2,1/2)". Set Fn(z) = 3 jtj<mpezn /(@ — k). By the monotone

convergence theorem,
old:= [ 15

/Z|fx— |dac—2/|fa:— ]dx—Z/
This proves that the series (Fy,(x)),, converges absolutely for a.e. x € Q. So (Fy(x))m

keZn keZn kEZn Q+k
converges for a.e. x € @ to a value Pf(x). We have that Pf is periodic. We also get that

1PfllLg) < IIf-
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This completes the proofs of the first and third statements.
If £ € 7, then

Pr(0) = / Pf(x)e 27 4y
Q

= Z Z fz —k)e 2™ gz

@ Q kezn
Let z=xz — k.

— Z f(z)efQﬂ'ié-zefQﬂ'ik-é dz

kezn Q+k

= | f(z)e*™ % dz = f(0).
]Rn
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22 The Poisson Summation Formula and Integrability of the
Fourier Transform

This lecture was given by a guest lecturer.

22.1 The Poisson summation formula

Recall that if Ey(z) =*"*% then {E} : k € Z"} is an orthonormal basis of L2(T"). We
have also shown the following:

Theorem 22.1. If f € L'(R"), then the series Y kezn Tkf converges pointwise a.e. and
in LY(T™) to a function Pf such that |Pf|ly < ||f|l1. Moreover, Pf(k) = f(k).

We have also shown the following theorem in the R™ case, but here is the form of the
theorem in the T" case.

Theorem 22.2 (Hausdorff-Young inequality)A. Suppose that 1 < p < 2 and q is the the

conjugate exponent of p. If f € LP(T™), then f € (1(Z"™), and ||ﬂ|gq(zn) < 1 fllze(rny-

Theorem 22.3 (Poisson summation formula). Suppose that f € C(R™) satisfies |f(x)| <

~

C/(1+ |z|)"™€ and |f(&)] < C/(1 + [€])"T¢ for some C,e > 0. Then
D fla+k)y =) flk)em,
keZ kezn
where both series converge absolutely and uniformly on T™. In particular,
> fk)y= D k)
kezn kezn

Proof. Since |f(z)| < C/(1+ |z])"¢, for all z € T™,

C < C’
(L[ + k[)mte = (14 [k[)m+e

ZL /1dw
(L+k)re Jre (1 |z[)Fe

kEZ

[f(z+ k)| <

Then compare

This implies that
C(T™
S fa+k) “CY Pra)

kezmn
for all x € T™.
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By the previous theorem, we have Pf € L!'(T") and I/D\f(k:) = f(kz) Then Pf € L?(T"),
and since {E} : k € Z"} is an orthonormal basis of L?(T"), we have

LQ(Tn) D r 2mik-x Y Tik-x
PfU=" 3" PR = 3" (k)R

kezn kezn
n C(En) N 2mik-x
By the decay of f, Pf(x) =" 1czn f(k)e . O

22.2 Integrability of the Fourier transform

The Fourier inversion theorem shows how to use ]/C\tO represent f is f, fe LY(R™). In T,
if f € L}(T") and f € ¢}(Z"), then the Fourier series

Z f(k)GZWik-x

keznr

converges absolutely and uniformly to a function g. Since ¢! C ¢2, it follows that f € L?
and the serires converges to f in L?. Hence, f = g a.e. We have 2 questions:

1. Under what conditions is fintegrable?
2. How can f be recovered from fif fis not integrable?

Theorem 22.4. Suppose that [ is periodic and absolutely continuous on R, and f' e LP(T)
for some p > 1. Then f € (1(Z).

Proof. By integration by parts, f’(kz) = 27rik:f(k:). Hence, by Holder’s inequality,

1/p
> 1f(k)] < (Z(%]k!)‘p) S @nlkf(k)|9) /e

k0 k k40

1/p

< Cpl| 'l eay-

Since LP(T) C L*(T) for p > 2, we can assume that 1 < p < 2. By the Hausdorff-Young
inequality,

ST < Coll Nl ocry-

k0

Adding |f(0)| to both sides, we see that

11l zy < 0. 0
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Lemma 22.1. If f,g € L2(R"), then (f§)" = f * g.

Proof. By assumption, we know that f,§j € L*(R™). T henﬁe LY(R™). So (fg)Y makes
sense. So for x € R", define h(y) = g(x — y). Then h(£) = g(€)e 2™&*, Then

fro@ = [ fi= [ Fa= [ Foaecmer dc = (7). 0
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23 Recovering Functions From Their Fourier Series

This lecture was given by a guest lecturer.

23.1 Recovering functions from their Fourier series

Theorem 23.1. Suppose that ® € C(R™) satisfies |®(£)] < C(1 + €))7, [®V(x)| <
C(1+ |z])7™¢, and ®(0) = 1. Given f € LY(T"), for any t > 0, set

Fl@) = 32 Flkya(tz)eme.
keZm

1. If f € LP(T™), then || f* = fll, = 0 as t — 0. If f € C(T"), then f* — f uniformly
ast — 0.

2. fYx) — f(x) for every x in the Lebesque set of f.

Proof. First, let ¢ = ®V, and let ¢y(x) =t "¢(t"'2). Then 5,5(5) = (). Since |P(&)| <
C(14+|£))7"¢, we have ® € L*(R"). So ¢ € C(R™). And, moreover,

dr(x) =t Pt ) <OtV + |t )TV E < O (L A |2]) T,

where the last inequality holds for ¢ < 1. Also,

~ 0<t<1
¢i(€) = () <CA+E)™ < Cl+E)™ " =" =1+ €)™ "

Applying the Poisson summation formula for each fixed ¢, we get

S ow—k) =D (k)™ = 3" (th)e*™ T =: gy (x) € L*(T") € L'(T").

kezm keZm keZm

Then m(k) = f(k)zﬁt(k), as f,y € LlAfor each t. As vy € L? we have that
Yi(2) = 3 ez €™, which means that ¢, (k) = ®(tk) (since the Fourier series co-
efficients agree). So

I e (k) = F(k)D(tk) = Fi(k).
So we get f! = f x; by taking the inverse Fourier transform. Hence, for all 1 < p < oo,
by Young’s inequality (and a theorem we have already proven),

£l = I1f * ellp < 1 Fllpllvelle < I fllplleelle = N fllpllells-

So the operator f — f* is uniformly bounded in LP for 1 < p < oo.

Notice that ® is continuous and ®(0) = 1. We have f! — f uniformly if f is a
trigonometric polynomial, i.e. f(k) = 0 for all but finitely many k: f = Zgnzl f(kj)e%ikf'z.
By the Stone-Weierstrass theorem, the trigonometric polynomials are dense in C'(T") and
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hence also dense in LP(T™). So for all ¢ > 0, there exists a trigonometric polynomial f,
such that || f — fullp <e. Then

1£* = Fllp < IF° = fall + 1 = Fallp + 1fn = Fllp
< NGl = fallp + 1fn = fallp + 1fn = £l
< (¢l + 1e.

This proves the first statement.
For the second statement, without loss of generality, assume that 0 is a Lebesgue point
of f. With Q =[-1/2,1/2)", we have

710) = £ +464(0) = /Q f@)(—a) dz = /Q f@)o(-2)do+ Y /Q F(@)n(—1) da

k0

Since
()| < CEM(L+ o)™ = Cto(t + |a|) ™% < CtFfa| 7,

we have
—n—e

|pe(x + k)| < Ct| —z+ k|7 < Ct° | = = O2" e e |k| e

2

for k # 0. So we get

D

k0

/ f<w>¢t<—x+k>\ < o2 £ Y ke e .
k0

On the other hand, if we define g = f1g € L'(R"),

t—0

lim /Q F(@)u(~) dz = lim g« 64(0) = g(0) = F(0).

So we get that f1(0) — f(0). O
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24 Distributions and Smooth Urysohn’s Lemma

24.1 Distributions
Throughout this section, U C R" is an open set.
Definition 24.1. If E C R", C°(E) is the set of ¢ € C2°(R™) such that supp(¢) C E.

We endow Cg°(U) with the following topology: (¢;)jen € C°(U) converges to ¢ €
C(U) if there exists a compact K C U such that

e supp(¢;) C K for all j,
o 0%¢p; — 0%¢ uniformly on K for all o € N".

Definition 24.2. Let X be a locally convex topological vector space. A linear operator
T:C(U) — X is continuous if for each compact K C U, T'|ce (k) is continuous.

Definition 24.3. Let U’ be an open subset of R™. A linear operator T : C2°(U) — C°(U’)
is continuous if for each compact K C U, there exists a compact K’ C U’ such that
T(CX(K)) CCX(K'),and T : C°(K) — C(K') is continuous.

Definition 24.4. If T : C°(U) — R is linear and continuous, we say that 7" is a distri-
bution on U and write T € D'(U).?

Definition 24.5. If V. C U and T, S € D'(U), we say that T'= S on V if T(¢) = S(¢) for
all p € C2(V).

Definition 24.6. A sequence (7T})jen € D'(U) converges to T’ € D' if limj o Tj(¢) =
T(¢) for all ¢p € C°(U).

That is, D'(U) is endowed with the weak* topology.
Example 24.1. Let f € L] _(U). Define
160)= [ sodn,  seczw)

This is a distribution.

Example 24.2. Let 11 be a Radon measure on U. Define
T(¢) = Ucb(w) dp(x).
For example, let g € U, and p = ady,. Set
7(¢) = adlan) = | ola) du(a).

This is a distribution.

2This notation is because some people call D := C°(U) and denote the dual by ’.
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Notation: If ¢ : R” — R, set ¢(x) = ¢(—z).

Proposition 24.1. Let f € L'(R"™). For each t > 0, set fi(x) = t"¢(x/t) for x € R™.
Assume that [o, f(z)dx = 1. Define

Ti(¢) = - fi(x)p(x) da.

Then Ty — &g in D'(R™); that is, Ty — Ty, where Ty = dy.

Remark 24.1. Often, people will view f; as its distribution 73 and call the distribution
[t

Proof. Let ¢ € C°(R™). Observe that

Ti(9) = | Ju@)o(0 —a)dz = fi* $(0).

So we have

lim Ty(¢) = lim fi % $(0) = $(0) = ¢(0). O

24.2 Smooth Uryson’s Lemma

Proposition 24.2 (extension of Urysohn’s lemma). Let K C R™ be compact, and let
U C R"™ be an open set containing K. Then there exists ¢ € C°(R™,[0,1]) such that

¢k =1 and supp(¢) C U.

Remark 24.2. Urysohn’s lemma is the case where we do not assume that ¢ is smooth.

Proof. Let p € C°(R™) be such that p > 0, supp(p) € B1(0) and [z, p(z)dx = 1. Set
pe(x) =t "p(x/t) for t > 0 and x € R™. By Urysohn’s lemma, there is a g € C.(R", |0, 1])
such that g|x. = 1, supp(g) C U, where K. = {z € R" : dist(z,K) < e} and U, = {z €
U : dist(xz,U°) > e}. As K is compact, let § = dist(K,U¢) > 0. If 0 < ¢ < §j then K C U,
K. is compact, and U; is open. Let ¢ = ps/4 * g, and let ¢ = 6/4. Since ps/4 € Coo(R"),
we have ¢ € C>°(U). Note that

1
¢(z) = / py/e) 7 9(x —y)dy = / pe(r)g(z —y) dy.
n € B.(0)
If z € K and |y| < ¢j the x —y € K, and so g(x — y) = 1. Hence,
6@ = [ playde=1.
=(0)

If x ¢ U®, then g(z —y) = 0 if |y| < e. Hence, ¢(x) = 0. O
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25 Extensions and Transformations of Distributions

25.1 Extension of distributions

Let U C R™ be open. If V C U is open and T,S € D'(U), we say that T = S on V
if Tlceoqvy = Slese(vy. Assume Vi,V C U are open and T,S € D'(U) are such that
T’Cg@(vl) = S‘C‘CX’(VQ and T|C§°(V2) = S]Cgo(VQ).We want to show that T|C§°(V1UV2) =

S|cee (vius)-
Here is a wrong proof: Let ¢ € C2°(V), and assume that V3 N Vo = &. Then

T(SO) = T(]]-V1¢ + ]]-V2¢) = T(1V1¢) + T<1]'V2¢) = S(1V1¢) + S(]]-V2¢) = S(QO)
This is not a correct proof because 1y, ¢ need not be in CZ°.

Theorem 25.1. Let (Vi)aer be open subsets of U and let V- =J,c; Va. Let T, S € D'(V)
be such that T|ceov,) = Slose(v,) for all a € I. Then T|ceo(vy = S|ooe(v)-

Proof. Let ¢ € C(V). We are to show that T(¢) = S(¢). Set K = supp(¢) C V =
Uaer Va- Since K is compact, there are az, ..., ay, € I such that K C U;n:l V. For each
r € K, there exist r(z) > 0 and j € {1,...,m} such that By, (7) C V,,;. Note that
K C U,ck Br(z)(z), and so there exists x1,..., 2, € K such that K C Ule Bz (4).
For each j € {1,...,m}, set I; = {i € {1,..., £} : By.(z,)(w;) € Va,. Note that the set
K; = I Bi(z;)(x;) is compact, and K; C V,,;. By the extended Urysohn’s lemma, there
exists f; € C2°(R™, [0, 1]) such that f;|x; =1 and supp(f;) C Va,. Set € = {3°7%, f; > 0}.
On K, Z;"Zl fi =2 1, and so K C £. We apply the extended Urysohn’s lemma once more
to obtain f € C°(R™) such that f|x = 1 and supp(f) C €. Set fm41 = 1 — f. Now
fi+ -+ fmy1 is always strictly positive because f1 + -+ fin > 0 on £ and 1 outside &.
We can hence define ;
_ J

h; =
St fi
for each 1 < j < m. Note that supp(h;) C Vi, and that (3°7°, hj)[x = 1. Thus,
¢ = ¢Z;n:1 hj7 50

e C(R™,[0,1])

m

T(@)=T (0> hy T(gh;) = S(¢h;) =S¢ hy | =S(9). m
j=1 1 j j=1

j= 7j=1

25.2 Transformations of distirbutions

Definition 25.1. Let 7' € D'(U). If « € N" is a multi-index, define 9*T : C°(U) — R as

(0T (¢) = (—1)T(0%¢).
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Definition 25.2. If ¢y € C°(U) and T € D'(U), define YT : C°(U) — R as

WT)(9) =T(¥e),  ¢€CZ(U).

Definition 25.3. If y € R", we define 7,(T") : C°(U —y) — R as

y(T)(¢) =T(7-y9), ¢ € CE(U).

Definition 25.4. Let S : RV — R” be a linear bijection, and set V = S~ (U). We define
ToS:CX(\V)—Ras

1

ToS(¢p) = WT

(0057,  ¢eCx(V).

Theorem 25.2. Let T, 5,1, y,a be as above. Then

1. 9°T,vT € D'(U)

2. 7,(T) e D'(U —y)

3. ToSeD (V).
Proof. For the second statement, the idea is that 7, is an isometry of C2°(U) — C2°(U —y).

For the third statement, the idea is that | det(S)| !¢oS~! is an isomorphism of C°(V)
into C°(U).

For the first statement, let’s take something weaker, say g € LP(U). Then 0,,g exists
as a distribution. Can we represent 0,,, as an LP function? If we can, say g € Wtp(U).
Similarly, if 92 ,9 € LP(U), then say that g € W2p, O

T1,x

We will continue this next time. This will involve Sobolev spaces.
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26 Introduction to Sobolev Spaces
26.1 Sobolev spaces and uniqueness of distributional derivatives

Throughout this section, Q@ C R? is a nonempty, open set.

Proposition 26.1. Let f € Li .(Q) be such that [, f¢dz =0 for all $ € C(). Then
f=0a.e.

Proof. Let p € C°(RY) be such that p > 0, [papdr = 1, and supp(p) = By(0). Set
pe(x) = e p(z/e). Let x € U, and let 0gq < dist(x, 9). Then
pe * () =/ ( )ps(:v—y)f(y)dyZ 0, 0<e<eo.
Be:(x
Thus, for almost every x,
0= f(z) = lim pe * f(z). O
E—

Definition 26.1. Let 1 < p < oo, and let m € N. We say that f € W"(Q) if f € Lj (Q)

loc

and if for every multi-index o € N” such that |a| < m, there exists g, € LI () such that

loc

[ orods = (07! [ gusdz voecz@.

Q Q

In other words, the distributional derivative 9*f € LI, . When f € LP(Q2) and g, € LP(Q)
for |a| < m, we write f € W™P(Q).

Remark 26.1. Thanks to the previous proposition, when g, exists, it is uniquely deter-
mined a.e.

26.2 Translation of distributions

Notation: Let ¢ € C°(Q), and let y € RL. We set ¢, (z) = ¢(x —y) = (7,6)(x). Note that
supp(yy) = supp(¢) +y. Set

Oy = {y € R?: y +supp(¢) € Q} = {y € R? : supp(¢,) C Q}.
Proposition 26.2. O, is open and nonempty.

Proof. Let y € Oy, and set § = dist(y + supp(¢),2°) > 0. If y € Oy, then Bs/s(y) C Oy.
Hence, Oy is open. Oy # @ because 0 € Oy. O

Proposition 26.3. If T € D'(Q), y — T(¢py) is continuous.
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Proof. Let (yn)n C Oy be a sequence converging to y. We are to show that lim,, T'(¢y, ) =
T'(¢y). Note that

1
0u(0) = 9o = ) = 6o =) = | Voo =+ tly =) (o~ ) .
This gives us that (¢y, )n converges to ¢, in Cg°. Indeed,
0%Py—n — 0%yl < [[VO“Pllccllyn — yll.

Since T is continuous, we conclude that

mT(¢y,) = T(,). O

Theorem 26.1. Let ¢ € C°(Q), and let T € D'(Q). Set f(y) =T (¢y) for y € Oy.
1. feC®(0y), and
Df(y) = (~=1)IT((D*¢),).
2. If ¢ € L1(0¢) has compact support, then

T x*¢) = ; Y(y) f(y) dy.
¢

Proof. One proves by induction on « that 9%f exists, is continuous, and satisfies the
equation. Assume |a| = 1. Let ey,...,eq be the standard basis of R”. We have for t € R

1
Pyte; () = d(w —y —tei) = d(x —y) - /0 Oip(x —y — tre;) dr.

Hence,

B 1
0
In fact, we have

% Py-tte, () — 0%¢y(z)
t

This shows that

= - /1[3a3i¢(90 —y —tre;) — 0°0;p(x — y)| dr — 0“0ip(x — y).
0

by + tey — &y

4= (3) 5 — il — y)

pointwise and in C2°(€2). Hence,

i LW ) = W) ) T(oytte) =T(0y) _ <M) = T(—(3(x))y).

t—0 t t—0 t t—o00

Since 0;¢ € C°(Q2), by the previous proposition, y — T'((0;¢),) is continuous. In conlcu-
sion, f is continuously differentiable, and Vd(y) = —T'((V¢),). This concludes the proof
of the first statement when |a| = 1. By induction, we obtain the result for all «. O]

We will prove the second statement next time.
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27 Applying Distributions to Convolutions

27.1 Uniform estimates of functions on bounded sets

Last time, we proved the first half this theorem:
Theorem 27.1. Let ¢ € C°(Q), and let T € D'(Q). Set f(y) = T(¢y) for y € Oy.

1. feC™®(0y), and
D*f(y) = (=1)T((D*¢),).

2. If ¢ € L1(0¢) has compact support, then

T ¢) = Oamwf@ww.
]

To prove the second half, we first make some remarks.

Remark 27.1. Fix R > 0, and set Q = [~R, R]?. There are a : (0,00) — (0,00) and
m : (0,00) — N such that for all € > 0,

li =
EILI)l a(e) =0

and such that for every € > 0, there is a partition {Q}Zi(f ) of squares of diameters less than

a(e).

These conclusions extend to any set Q C [~R, R]? with Q; = Q; N Q.
Definition 27.1. Let A C R?%, and let f : A — R. We define the oscillation of f as

ose(f, 4,8) = sup {|f(z) - f(y)| : |z — y| < 3).

T, yeA

Remark 27.2. Assume A = and f: 0 — R is uniformly continuous. Then
m(e)
[ r@rie =3 [(re) = @) da+ 19515(05)
i=1
where x7 € 2. As a consequence,
m(e)
[ o= Y 10615(5) | < if9 ose( . 2. a(e)).
@ i=1

Remark 27.3. If ¢ € C°(R2) and T € D'(R2), we set

¢y(z) = d(z —y),  z€y+supp(e),

and y — T'(¢,) is continuous on Oy = {y € R? : 3 4 supp(¢) C Q}.
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27.2 Proof of the theorem

Now we can prove the theorem.

Proof. Let 1 € L'(Oy) be such that supp(y)) C Oy, We are to show that
5 V()T (dy) dy =T (¢ = ).
¢

Case 1: ¢ € C°(0y). Since y — f(y) :== ¢ (y)T(¢(y)) is uniformly continuous on Oy,

m(e)

/ V()T (dy) dy — Z (i) T(dys) [ ] < 0se(f, Op, ale))]Oy)

for some y5 € €2 independent of T', ¢, 1. Set n°(x) = Zﬁ(f) (Y )o(r —y5). Let Ky be the
closure of the set UyE% (y + supp(¢)) C Q. Then K; is compact.

For any multi-index a € N,

m(e)

On°( Zd)yz )0%d(x — i) 1€
This converges to fo¢ U(y)0“p(x — y) dy = 1) x 0% uniformly:

D(y)3%b(x — y) dy — 8% ()| < |9 ose(g®, Q, ale)) =25 o,

O¢

where gZ(y) = ¢ (y)0“¢(x — y). This means (7.). converges to 1 x ¢ in C2°(0Oy). Conse-
quently,
m(e)

T(¢ %) = lim T(n.) fhmZmT bye) / B(y)T(dy) dy.

Case 2: 1 € L1((@y) and supp(¢)) C Oy: For each § > 0, let 15 € C°(D4) be such that
f% |t —1bs| dz < §, and assume there exists a compact K3 such that supp(15) € Ko C Oy.

Note that for a multi-index o € N,

Do (Vs ) = 0% * s = 0% x4

uniformly on K. Hence, 15 * ¢ — 1 * ¢ uniformly as § — 0. We conclude that
T(p ) = lim T(s + 6) = lim / wWT@)dy = [ o)),
®

using the dominated convergence theorem. O
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Let ¢ € C(€, and assume that [, [¢[P dz+ [, [Vé|P dz < co. Then V¢ as a distribution
is equal to the usual V.
A consequence of our result will be that for every y and a.e. x,

1
bz +1) — dly) = /0 V(s +ty) -yt
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28 Distributions of Differences

28.1 Differences of functions in Sobolev spaces

Let  C R? be an open set. If A C R4, f: A — Rj and y € RY we set f,(z) = f(z — y)
for v € A+y. If ¢ € C2(Q), let Oy = {y € R? : y + supp(¢) C Q}.

Proposition 28.1. Let ¢ € CX(Q2) and y € RY. Then K = Uyepo,1)(ty + supp(9)) is
compact.

Proof. Set f(t,z) =ty + z. f:R¥1 - R? is continuous, and K = f([0,1] x supp(¢)) is
compact as the image of a compact set by a continuous function. ]

Theorem 28.1. Let T € D'(Q), and let y € RY.

1. If ¢ € C2°(Q2) and ty + supp(¢) C Q for all t € [0,1], then
1 d
T(0,) = T(6) = | D" 00,7 (0n) dt
0 i

2. If f e I/Vll’l(Rd), then for a.e. v € R?,

ocC

1
f(x‘i‘y)_f(in):/o Vf(x+ty)-ydt.

In the second case, if we could show that %T(gbty) = VT(¢1y)-y and that this derivative
is continuous, we could just use the fundamental theorem of calculus.

Proof. Set K = Ute[O,l] (ty + supp(¢)). Then K C Q is compact. For z € R? and h # 0,

Ln(a) = 2@+ hy) — ow ~ ty) ——/0 Vé(x — ty — Thy) - ydr.

h
Note that L, € C() if 0 < |h| < 1, and
lim Hy(z) = Vo(x —ty) -y =: Lo(z).
h—0
Also, (Lp)n converges to Lo in C2°(£2). Thus,

S T0) = im T(L4) = T(Lo) = T(~Vo(a — 1y) )

d d
=_ Z y;T(0;0(- — ty)) = Z y;0;T(o(- — ty))
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d
Z 10T (dry).-

As t — 0;T(¢y,y) is continuous, we conclude that t — %T (¢ty) is continuous. So we get

1 1
1(0,) - 7(0) = | GTG)di= [ TT(0) -y,

For the second statement, let f € T/V1 and set

OC’

7(0) = [ o) f(@)do.

Then T € D'(Q), and 0;T(¢) = —T(0j¢) = — [pa 0j0f. So

— [ 0@, (w) ds
R4
By the first statement,

1 d
/Rd(qﬁy(x) —¢(x)) f(x)de = /0 /]Rd j;yj@y(a:)ajf(m) dx dt.

The left hand side is
| (=) = s s

and the left hand side is

1 d
/ / Z yio(x — ty)0; f(x) dx dt.
0 JraiZ

If we make the change of variables z = z — y, then

PR +y) - dz—//ZyJ 2)0; f (= + ty) dz dt.

Since ¢ is of compact support and 0, f € Ll we check that we can apply Fubini’s theorem

to conclude that

[ oG+ - 1= [ oo ([ VG ar) o

loc

By H older’s inequality, this implies that z — fol Vf(z+ty) ydt € Li (R?), and

1
f<z+y>f<z>=/0 Vf(z+ty) -yt

for a.e. z € R4, O

78



Remark 28.1. Let f € C1(Q), and set

T(9) = /Q f@)o(@)dz), ¢ CF(Q).

Then T € D'(R2), and

010 = [ §;<x>¢<x> dr,

where % is the pointwise derivative.
J

This has a converse.
Theorem 28.2. Let g1,...,94 € C(Q), and let T € D'(Q) be such that O;T = g; for
j=1,...,d. Then there exists f € C*(2) such that

T(9) = /Q f@)d@)dz, ¢ e Q).
Then
_of
gj o 8:Ej‘

Corollary 28.1. If Q is connected, T € D'(?), and 9; = 0 for j = 1,...,d, then there
exists C' € R such that

T(¢) = C /Q b(z)dz, Ve C(Q).
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29 Convolution of Distributions and Approximation of I/Vléf
Functions by ('™ Functions

29.1 Convolution of distributions

If you solve |Du| = 1 with some boundary condition, it is unlikely that wou will find a
solution in C'(2). You will probably find a solution in VVlicl(Q) But we can approximate
functions in C*(Q) by functions in VVlf)Cl(Q) We can also approximate by functions in
C>*(92). Oftentimes, we want to show that we have a solution in some bigger space and
see if we can show it has extra properties that force it to be in a smaller, nicer space.

Let Q C R? be an open set. If ¢ € C2°(), we define O, = {y € R? : y+supp(¢) C Q}.
If ¢ € L'(Oy) is bounded, then

T +0) = [ )T,y
]

for T' € D'(Q and ¢y (z) = ¢(z — y). 3 )
Given j : A C RY — R, we define hL — A — R as j = j(—z). If T € D'(RY) and
j € CX(R?), we define j * T : C®(R?) — R as
j*T(¢) =T(j * ).
Theorem 29.1. Let T € D'(R?), and let j € CX(RY).
1. There exists 1 € C°(R?) such that

JxT@) = | owr)dy, 6 CERY

and so j x T € D'(RY).
2. Further assume [pqj(z)dx =1, and set j. = e~ %j(z/e) for x € R Then (je * T).
converges to T in D'(R?) as e | 0.

Remark 29.1. This shows that we have an embedding from C°(2) into D’'(2) and that
this class of functions is dense in D'().

Proof. Note that O; ={y € R?: y +supp(j) € R} = R By the formula for distributions
applied to convolutions, we get

§HT(@) =T(G+0) = [ DTG

Since j € C®(RY), y — T(jy) is of class C.
For the second statement, if ¢ € C2°(R?),

lim j + T(¢) = lim T'(je * ¢) = T(¢)

since j. * ¢ converges to ¢ in C°(RY). O
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29.2 Approximation of I/Vlif functions by C'*° functions

Theorem 29.2. Let 1 < p < oo, and let f € Wéf((l) Then for every open, bounded
O C R? such that O C Q, there exists (f*), € C*(O) such that

Jim If = f*llwiro) = 0.

Remark 29.2. This is equivalent to saying that f; € C5°(O) N I/Vlif (0).

Proof. Let § = dist(0,Q°) > 0. Let j = C°(R?) be such that [y, j(z)dz = 1 and
supp(j) = B1(0). Set j.(z) = e~ %j(x/e) for 0 < ¢ < §/3. Note that j. * f, jo * Vf are
well-defined on O for these e. We have j. x f € C°°(O) and that

0= lim lje * f = fllzrio) = lm [|je * VF = V] 1o 0)-

Set fk = J1/k * | to conclude the proof. O
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