1 The Phragmén-Lindelöf Principle

1.1 The Phragmén-Lindelöf Principle for subharmonic functions

To prove the Phragmén-Lindelöf principle, let’s introduce some notation.

Definition 1.1. Let \(\Omega \subseteq \mathbb{R} \) be open and unbounded. We say that \(\varphi : \overline{\Omega} \to \mathbb{R} \) is a Phragmén-Lindelöf function for \(\Omega \) if

1. \(\varphi(x) > 0 \) for large \(|x| \).
2. If \(u \) is upper semicontinuous on \(\overline{\Omega} \), subharmonic in \(\Omega \), \(u \leq M \) on \(\partial \Omega \), and \(u(x) \leq \varphi(x) \) for large \(x \in \overline{\Omega} \), then \(u \leq M \) on \(\overline{\Omega} \).

Remark 1.1. Let \(\varphi \) be a PL function for \(\Omega \). Let \(f \in \text{Hol}(\Omega) \cap C(\overline{\Omega}) \) be such that \(|f| \leq M \) on \(\partial \Omega \) and \(|f(z)| \leq e^{\varphi(z)} \) for large \(z \in \overline{\Omega} \). Then \(|f| \leq M \) on \(\overline{\Omega} \).

Given \(\Omega \), how do we construct PL functions for \(\Omega \)?

Theorem 1.1 (Phragmén-Lindelöf principle). Let \(\Omega \subseteq \mathbb{R}^2 \) be open and unbounded. Let \(\psi : \overline{\Omega} \to [0, \infty) \) be such that

1. \(\psi \) is lower semicontinuous on \(\Omega \) (\(-\psi \) is upper semicontinuous),
2. \(\psi \) is super harmonic in \(\Omega \) (\(-\psi \) is subharmonic),
3. \(\psi(x) \to +\infty \) as \(|x| \to \infty \) for \(x \in \overline{\Omega} \).

Let \(\varphi > 0 \) be such that \(\varphi(x) = o(\psi(x)) \) when \(|x| \to \infty \) for \(x \in \overline{\Omega} \). Then \(\varphi \) is a PL function for \(\Omega \).

Here is the original argument by Phragmén and Lindelöf.

1Lindelöf was the teacher of Ahlfors.
Proof. Let \(u \) be upper semicontinuous on \(\overline{\Omega} \), subharmonic in \(\Omega \), \(u \leq M \) on \(\partial \Omega \), and \(u(x) \leq \varphi(x) \) for large \(x \in \overline{\Omega} \). We want to show that \(u \leq M \) on \(\overline{\Omega} \). For \(\varepsilon > 0 \), set \(u_\varepsilon = u - \varepsilon \psi \). Then \(u_\varepsilon \) is upper semicontinuous on \(\overline{\Omega} \), subharmonic in \(\Omega \), \(u_\varepsilon \leq M \) on \(\partial \Omega \), and for large \(x \in \overline{\Omega} \),

\[
 u_\varepsilon(x) \leq \varphi(x) - \varepsilon \psi(x) = -\psi(x) \left(\varepsilon - \frac{\varphi(x)}{\psi(x)} \right) |x| \xrightarrow{|x|\to\infty} -\infty.
\]

Let \(a \in \Omega \), and let \(R > |a| \) be such that \(u_\varepsilon(x) \leq M \) for \(|x| = R \) and \(x \in \overline{\Omega} \). If \(\Omega_R = \{ x \in \Omega : |x| < R \} \), then \(\partial \Omega \subseteq \partial \Omega \cup \{ x \in \overline{\Omega} : |x| = R \} \), and \(u_\varepsilon \leq M \) on \(\partial \Omega_R \). Apply the maximum principle to \(u_\varepsilon \) and the bounded domain \(\Omega_R \) to get that \(u_\varepsilon \leq M \) on \(\Omega_R \). So

\[
 u_\varepsilon(a) = u(a) - \varepsilon \psi(a) \leq M.
\]

Letting \(\varepsilon \to 0^+ \), we get that \(u \leq M \) on \(\Omega \). So \(\varphi \) is a PL function for \(\Omega \).

\[\square \]

1.2 Phragmén-Lindelöf for a sector

This important case of the theorem was the original motivation for Phragmén and Lindelöf.

Theorem 1.2 (PL for a sector). Let \(\Omega = \{ z \in \mathbb{C} \setminus \{ 0 \} : \alpha < \arg(z) < \beta \} \) for \(0 < \beta - \alpha < 2\pi \). Then \(\varphi(z) = |z|^k \) is a PL function for \(\Omega \) if \(0 < k < \pi/(\beta - \alpha) \).

Proof. We may assume after a rotation that \(\Omega = \{ z \in \mathbb{C} \setminus \{ 0 \} : |\arg(z)| < \gamma/2 \} \), where \(0 < \gamma = \beta - \alpha < 2\pi \). Let \(k < k_1 < \pi/\gamma \), and consider \(\psi(z) = \text{Re}(z^{k_1}) = \text{Re}(e^{k_1 \log(z)}) \), using the principal branch of log. This is \(\psi(z) = |z|^{k_1} \cos(k_1 \arg(z)) \) for \(z \in \overline{\Omega} \) with \(z \neq 0 \). Then \(\psi \) is harmonic in \(\Omega \), continuous in \(\overline{\Omega} \), and \(|\psi(z)| \sim |z|^{k_1} \) since \(|k_1 \arg(z)| \leq k_1 \gamma/2 < \pi/2 \). In particular, \(\phi = o(\psi) \) at \(\infty \). Therefore, \(\varphi \) is a PL function for \(\Omega \).

Corollary 1.1 (classical PL principle). Let \(\Omega = \{ z \in \mathbb{C} \setminus \{ 0 \} : \alpha < \arg(z) < \beta \} \), where \(0 < \beta - \alpha < 2\pi \). Let \(f \in \text{Hol}(\Omega) \cap C(\overline{\Omega}) \), where \(|f| \leq M \) on \(\partial \Omega \). Assume that \(|f(z)| \leq C_1 e^{C_2 |z|^k} \) as \(|z| \to \infty \) for \(z \in \overline{\Omega} \), where \(0 < k < \pi/(\beta - \alpha) \). Then \(|f| \leq M \) on \(\overline{\Omega} \).

Here is an example from the spring 2015 analysis qualifying exam.

Example 1.1. Let \(f \in \text{Hol}(\mathbb{C}) \) be such that \(|f(z)| \leq e^{|z|} \) and \(\sup_{x \in \mathbb{R}} (|f(x)|^2 + |f(ix)|^2) < \infty \). Show that \(f \) is constant.

Apply the classical Phragmén-Lindelöf principle 4 times, once to each quadrant. Then \(f \) is bounded, so \(f \) is constant by Liouville’s theorem.

1.3 Phragmén-Lindelöf for general domains

Let \(\Omega, \Omega' \subseteq \mathbb{C} \) be open and unbounded, and let \(G : \Omega \to \Omega' \) is an analytic isomorphism such that \(G \) extends to a homeomorphism \(\overline{\Omega} \to \overline{\Omega'} \). Then \(|G(z)| \) is large iff \(|z| \) is large. Then if \(\varphi \) is a PL function for \(\Omega' \), \(\varphi \circ G \) is a PL function for \(\Omega \). (To check this, use that if \(u \in \text{SH}(\Omega') \), then \(u \circ G \in \text{SH}(\Omega) \).)
Proposition 1.1. Let $\Omega = \{z \in \mathbb{C} : \text{Im}(z) > 0, \alpha < \text{Re}(z) < \beta\}$. Then $\varphi(z) = e^{k\text{Im}(z)}$ is a PL function for Ω for any $0 < k < \pi/(\beta - \alpha)$.

We will prove this next time. The idea is that we find a conformal map from the half-strip to a sector with a disc removed. The map is $f(z) = e^{-icz}$ for some $0 < c < 2\pi/(\beta - \alpha)$.