Math 255A' Lecture 14 Notes

Daniel Raban

October 30, 2019

1 Adjoints

1.1 Adjoints of linear maps

If $T: X \to Y$ is a linear map, then $f \mapsto f \circ T$ is a linear operator on linear functionals. If T is bounded, then $f \circ T$ is continuous, so this restricts to a linear map $T^*: Y^* \to X^*$.

Definition 1.1. T^* is called the **adjoint** of T.

Proposition 1.1. If T is bounded, then $||T^*|| \leq ||T||$.

Proof.

$$\begin{aligned} \|T^*f\| &= \sup\{|T^*f(x)| : \|x\|_X \le 1\} \\ &= \sup\{|f(Tx)| : \|x\|_X \le 1\} \\ &\le \|f\|\|T\|. \end{aligned}$$

Proposition 1.2. Let X, Y be normed spaces, and let $T : X \to Y$ be linear. The following are equivalent:

- 1. T is bounded.
- 2. $f \circ T \in X^*$ for all $f \in Y^*$.
- 3. T is continuous $(X, wk) \rightarrow (Y, wk)$.
- *Proof.* (1) \implies (2): This is because T is continuous. (2) \implies (3): Consider

$$T^{-1}\left[\bigcap_{i=1}^{m} \{y: |\langle f_i, y \rangle| < \varepsilon_i\}\right] = \bigcap_{i=1}^{n} \{x: |\langle f_i, Tx \rangle| < \varepsilon_i\}$$
$$= \bigcap_{i=1}^{n} \{x: |\langle f_i \circ T, x \rangle| < \varepsilon_i\}$$

(3) \implies (1): We must show that $T[B_X] \subseteq MB_Y$ for some $M < \infty$. Given $f \in X^*$, consider

$$f[T[B_X]] = \{f(Tx) : ||x||_X \le 1\}$$

We know that there is a weak neighborhood $U \ni 0_X$ such that $T[U] \subseteq \{y : |f(y)| < 1\}$. The weak topology is weaker than the norm topology, so there exists some $\varepsilon > 0$ such that $T[B_X] \subseteq \{y : |f(y)| < 1/\varepsilon\}$. So $|f[T[B_X]]| \le 1/\varepsilon$.

Proposition 1.3. Adjoints have the following properties:

- 1. $(\alpha A + \beta B)^* = \alpha A^* + \beta B^*$ for all $A, B \in \mathcal{B}(X, Y)$.
- 2. If $T \in \mathcal{B}(X, Y)$, then T^* is continuous from (Y^*, wk^*) to (X^*, wk^*) .

Remark 1.1. Riesz representation gives $H^* \cong H$ via $L_h := \langle \cdot, h \rangle \mapsto h$, which is conjugatelinear in h. So $L_{\alpha h} = \overline{\alpha} \cdot L_h$.

If $H = \mathbb{C}^n$, then A is represented by $[a_{i,j}] \in M_{n,n}(\mathbb{C})$. Then $H^* \cong \mathbb{C}^n$, so A^* is represented by $[a_{j,i}]$. But A^* on H itself is represented by $[\overline{a}_{j,i}]$.

Proposition 1.4. Let X, Y be Banach, and let $A \in \mathcal{B}(X, Y)$.

- 1. $A^{**}|_X = A$.
- 2. $||A^*|| = ||A||$.
- 3. If A is invertible, so is A^* , and $(A^*)^{-1} = (A^{-1})^*$.
- 4. If $B \in \mathcal{B}(Y, Z)$, then $(BA)^* = A^*B^*$.

Proof. For (2), we need to show that $||A^*|| \ge ||A||$. We know that $||A^{**}|| \le ||A^*|| \le ||A||$. Since A^{**} is an extension of A to a larger space, $||A^{**}|| \ge ||A||$. So these are all equal. \Box

Example 1.1. Let $1 < p, p' < \infty$. Consider an operator $L^p(\mu) \to \mu^{p'}(\nu)$ given by

$$Tf(y) = \int f(x)K(x,y) \, d\mu(x).$$

Then $T^*: L^{q'}(\nu) \to L^q(\mu)$. For $g \in L^{q'}(\nu)$ and $f \in L^p(\mu)$,

$$\langle T^*g, f \rangle = \langle g, Tf \rangle = \iint g(y)f(x)K(x,y) \, d\mu(x) \, d\nu(y).$$

 So

$$T^*g(y) = \int (y)K(y,x) \, d\nu(y),$$

If we are in a Hilbert space, we may want to do $\langle f, g \rangle = \int f \overline{g} \, d\mu$ instead.

Proposition 1.5. Let $A \in \mathcal{B}(X, Y)$. Then ker $A^* = (\operatorname{ran} A)^{\perp}$, and ker $A = {}^{\perp}(\operatorname{ran} A^*)$.

Proof. We prove the second one; the first is similar. We have

$$\begin{aligned} x \in \ker A \iff Ax &= 0 \\ \iff \langle Ax, y^* \rangle &= 0 \qquad \forall y^* \in Y^* \\ \iff \langle x, A^*y^* \rangle &= 0 \qquad \forall y^* \in Y^* \\ \iff x \in {}^{\perp}(\operatorname{ran} A^*). \end{aligned}$$

Proposition 1.6. Let $A \in \mathcal{B}(X, Y)$. Then A is invertible if and only if A^* is invertible.

Proof. (\Leftarrow): If ker $A^* = 0$, then ran A is dense. If ran $A^* = X^*$, then ker $A = \{0\}$. To finish, we need to show that ran A is closed. This follows because if y = Ax, then

$$|Ax|| = \sup\{|f(Ax)| : ||f||_{Y^*} \le 1\}$$

= sup{|A*f(x)| : ||f||_{Y^*} \le 1}
= sup{|g(x)| : f \in A^*[B_{Y^*}]}

For some c > 0,

$$\geq \sup\{|g(x)| : g \in cB_{X^*}\}$$
$$= c \|x\|_X.$$

So $\operatorname{ran} A$ is closed.

1.2 The Banach-Stone theorem

Example 1.2. Let X, Y be compact, Hausdorff spaces, let $\tau : Y \to X$ be a homeomorphism, and let $\alpha : Y \to S^1$ be continuous. Define $T : C(X) \to C(Y)$ by $Tf(y) = \alpha(y) \cdot f(\tau(y))$. Then T is an isometric isomorphism.

Theorem 1.1 (Banach-Stone). Any isometric isomorphism $C(X) \to C(Y)$ is of this form.

The key is to tell you what Banach space structure of C(X) to look at to recover what X is.

We know that T^* is an isometric isomorphism from $M(Y) \to M(X)$.

Proposition 1.7. Let X be a compact, Hausdorff space.

- 1. Let $X \times S^1 \to M(X)$ send $(x, \alpha) \mapsto x \cdot \delta_x$. This is a homeomorphism from $X \times S^1$ to $(\text{ext}(B_{M(X)}), \text{wk}^*)$.
- 2. Let $X \times \{1\} \to M(X)$ send $x \mapsto \delta_x$. This is a homeomorphism $X \to \text{ext } P(X)$.

Proof. We prove (1). We must show that $\mu \in B_{M(X)}$ is extreme if and only if $\mu = \alpha \delta_x$ for some α, x .