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1 Adjoints

1.1 Adjoints of linear maps

If T : X → Y is a linear map, then f 7→ f ◦ T is a lienar operator on linear functionals. If
T is bounded, then f ◦ T is continuous, so this restricts to a linear map T ∗ : Y ∗ → X∗.

Definition 1.1. T ∗ is called the adjoint of T .

Proposition 1.1. If T is bounded, then ‖T ∗‖ ≤ ‖T‖.

Proof.

‖T ∗f‖ = sup{|T ∗f(x)| : ‖x‖X ≤ 1}}
= sup{|f(Tx)| : ‖x‖X ≤ 1}}
≤ ‖f‖‖T‖.

Proposition 1.2. Let X,Y be normed spaces, and let T : X → Y be linear. The following
are equivalent:

1. T is bounded.

2. f ◦ T ∈ X∗ for all f ∈ Y ∗.

3. T is continuous (X,wk)→ (Y,wk).

Proof. (1) =⇒ (2): This is because T is continuous.
(2) =⇒ (3): Consider

T−1

[
m⋂
i=1

{y : | 〈fi, y〉 | < εi}

]
=

n⋂
i=1

{x : | 〈fi, Tx〉 | < εi}

=
n⋂
i=1

{x : | 〈fi ◦ T, x〉 | < εi}
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(3) =⇒ (1): We must show that T [BX ] ⊆ MBY for some M < ∞. Given f ∈ X∗,
consider

f [T [BX ]] = {f(Tx) : ‖x‖X ≤ 1}

We know that there is a weak neighborhood U 3 0X such that T [U ] ⊆ {y : |f(y)| < 1}.
The weak topology is weaker than the norm topology, so there exists some ε > 0 such that
T [BX ] ⊆ {y : |f(y)| < 1/ε}. So |f [T [BX ]]| ≤ 1/ε.

Proposition 1.3. Adjoints have the following properties:

1. (αA+ βB)∗ = αA∗ + βB∗ for all A,B ∈ B(X,Y ).

2. If T ∈ B(X,Y ), then T ∗ is continuous from (Y ∗,wk*) to (X∗,wk*).

Remark 1.1. Riesz representation gives H∗ ∼= H via Lh := 〈·, h〉 7→ h, which is conjugate-
linear in h. So Lαh = α · Lh.

If H = Cn, then A is represntaed by [ai,j ] ∈ Mn,n(C). Then H∗ ∼= Cn, so A∗ is
represented by [aj,i]. But A∗ on H itself is represented by [aj,i].

Proposition 1.4. Let X,Y be Banach, and let A ∈ B(X,Y ).

1. A∗∗|X = A.

2. ‖A∗‖ = ‖A‖.

3. If A is invertible, so is A∗, and (A∗)−1 = (A−1)∗.

4. If B ∈ B(Y, Z), then (BA)∗ = A∗B∗.

Proof. For (2), we need to show that ‖A∗‖ ≥ ‖A‖. We know that ‖A∗∗‖ ≤ ‖A∗‖ ≤ ‖A‖.
Since A∗∗ is an extension of A to a larger space, ‖A∗∗‖ ≥ ‖A‖. So these are all equal.

Example 1.1. Let 1 < p, p′ <∞. Consider an operator Lp(µ)→ µp
′
(ν) given by

Tf(y) =

∫
f(x)K(x, y) dµ(x).

Then T ∗ : Lq
′
(ν)→ Lq(µ). For g ∈ Lq′(ν) and f ∈ Lp(µ),

〈T ∗g, f〉 = 〈g, Tf〉 =

∫∫
g(y)f(x)K(x, y) dµ(x) dν(y).

So

T ∗g(y) =

∫
(y)K(y, x) dν(y),

If we are in a Hilbert space, we may want to do 〈f, g〉 =
∫
fg dµ instead.
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Proposition 1.5. Let A ∈ B(X,Y ). Then kerA∗ = (ranA)⊥, and kerA = ⊥(ranA∗).

Proof. We prove the second one; the first is similar. We have

x ∈ kerA ⇐⇒ Ax = 0

⇐⇒ 〈Ax, y∗〉 = 0 ∀y∗ ∈ Y ∗

⇐⇒ 〈x,A∗y∗〉 = 0 ∀y∗ ∈ Y ∗

⇐⇒ x ∈ ⊥(ranA∗).

Proposition 1.6. Let A ∈ B(X,Y ). Then A is invertible if and only if A∗ is invertible.

Proof. ( ⇐= ): If kerA∗ = 0, then ranA is dense. If ranA∗ = X∗, then kerA = {0}. To
finish, we need to show that ranA is closed. This follows because if y = Ax, then

‖Ax‖ = sup{|f(Ax)| : ‖f‖Y ∗ ≤ 1}
= sup{|A∗f(x)| : ‖f‖Y ∗ ≤ 1}
= sup{|g(x)| : f ∈ A∗[BY ∗ ]}

For some c > 0,

≥ sup{|g(x)| : g ∈ cBX∗}
= c‖x‖X .

So ranA is closed.

1.2 The Banach-Stone theorem

Example 1.2. Let X,Y be compact, Hausdorff spaces, let τ : Y → X be a homeo-
morphism, and let α : Y → S1 be continuous. Define T : C(X) → C(Y ) by Tf(y) =
α(y) · f(τ(y)). Then T is an isometric isomorphism.

Theorem 1.1 (Banach-Stone). Any isometric isomorphism C(X)→ C(Y ) is of this form.

The key is to tell you what Banach space structure of C(X) to look at to recover what
X is.

We know that T ∗ is an isometric isomorphism from M(Y )→M(X).

Proposition 1.7. Let X be a compact, Hausdorff space.

1. Let X × S1 → M(X) send (x, α) 7→ x · δx. This is a homeomorphism from X × S1

to (ext(BM(X)),wk*).

2. Let X × {1} →M(X) send x 7→ δx. This is a homeomorphism X → extP (X).

Proof. We prove (1). We must show that µ ∈ BM(X) is extreme if and only if µ = αδx for
some α, x.
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