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1 Fredholm Theory

1.1 Fredholm operators

Definition 1.1. Let B1, B2 be Banach spaces. An operator T ∈ L(B1, B2) is called
Fredholm if the kernel kerT = {x ∈ B1 : Tx = 0} and the cokernel cokerT = B2/ imT
are finite-dimensional. We define the index if T to be indT = dim kerT−dim cokerT ∈ Z.

Remark 1.1. If T ∈ L(B1, B2), then kerT is a closed subspace of B1. However, imT need
not necessarily be closed: take B1 = B2 = C([0, 1]) and (Tf)(x) =

∫ x
0 f(y) dy.

So this is an algebraic condition. However, this implies an analytic condition on T :

Proposition 1.1. If T ∈ L(B1, B2) and dim cokerT <∞, then imT is closed.

Proof. We may assume T is injective, for otherwise, we can consider T̃ : B1/ kerT → B2

sending x+ kerT 7→ Tx; then im T̃ = imT , and T̃ is injective. Let dim cokerT = n <∞,
and let x1, . . . , xn ∈ B2 be such that x1 + imT, . . . , xn + imT form a basis for cokerT . Let
S : Cn → B2 send (a1, . . . , an) 7→

∑n
j=1 ajxj . Then S is injective, and B2 = imT ⊕ imS.

It follows that T1 : B1 ⊕ Cn → B2 sending (x, a) 7→ Tx + Sa is a bijection. By the open
mapping theorem, T1 is a linear homeomorphism. Then imT = T1(B1 ⊕ {0}) ⊆ B2 is
closed.

1.2 Behavior of the index under perturbation

If dimBj <∞ for j = 1, 2, then

indT = dim kerT − (dimB2 − dim imT ) = dimB1 − dimB2.

Remarkably, for Fredholm operators, this property also extends to a similar property in
the infinite dimensional case.

Theorem 1.1. Let T ∈ L(B1, B2) be a Fredholm operator. If S ∈ L(B1, B2) is such that
‖S‖L(B1,B2) is sufficiently small, then T + S is Fredholm, and ind(T + S) = indT .

To prove this, we have a lemma.

Lemma 1.1. Let B be a Banach space, and let S ∈ L(B,B) be such that ‖S‖ < 1. Then
1− S has an inverse (so ind(1− S) = 0).

Proof. The Neumann series R =
∑∞

k=0 S
k converges in L(B,B), and R(1−S) = (1−S)R =

1.

Remark 1.2. If T ∈ L(B1, B2) is invertible and ‖S‖ is small, then T + S is invertible:
T + S = T (1 + T−1S) is invertible if ‖S‖ < 1/‖T−1‖.
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To prove the theorem, we will reduce to this case.

Proof. Write n+ = dim kerT and n− = dim cokerT . Let R− : Cn− → B2 be injective and
such that B2 = imT ⊕ R−(Cn−) (as we have constructed before). Let e1, . . . , en+ be a
basis for kerT , and let ϕ1, . . . , ϕn+ ∈ B∗1 be such that

ϕj(ek) =

{
1 j = k

0 j 6= k

for all j, k; such continuous, linear forms exist by Hahn-Banach. Let R+ : B1 → Cn+ send
x 7→ (ϕ1(x), . . . , ϕn+(x)). Then R+ is surjective, and R+|kerT is bijective.

Let us introduce the Grushin operator1

P =

[
T R−
R+ 0

]
: B1 ⊕ Cn− → B2 ⊕ Cn+ .

We claim that P is invertible: If P
[
x
a−

]
= 0, then Tx + R−a− = 0 and R+x = 0. Then

a− = 0, so x ∈ kerT . Since R+ is bijective on kerT , we get x = 0. For surjectivity, we
want to solve Tx + R−a− = y and R+x = b. Write y = Tz + R−c−. Then a− = c− and
x− z ∈ kerT , so x = z +

∑
αjej . We can take αj = bj − ϕj(z) for 1 ≤ j ≤ n+.

If ‖S‖ is small enough, then

P̃ =

[
T + S R−
R+ 0

]
is invertible, and we introduce the inverse

E =

[
E E+

E− E−+

]
: B2 ⊕ Cn+ → B1 ⊕ Cn− .

We will finish the proof next time.

1This terminology is not necessarily standard.
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2 Perturbation of Fredholm Operators and The Logarithmic
Law

2.1 Perturbation of Fredholm operators

Last time, said that T ∈ L(B1, B2) is Fredholm if dim kerT <∞ and dimB2/ imT <∞.
We were proving that the Fredholm property is preserved under small perturbations.

Theorem 2.1. Let T ∈ L(B1, B2) be a Fredholm operator. If S ∈ L(B1, B2) is such that
‖S‖L(B1,B2) is sufficiently small, then T + S is Fredholm, and ind(T + S) = indT .

Proof. Produce

P =

[
T R−
R+ 0

]
: B1 ⊕ Cn− → B2 ⊕ Cn+ ,

where n+ = dim kerT and n− = dim cokerT . We get that

P̃ =

[
T + S R−
R+ 0

]
is invertible as well, with inverse

E =

[
E E+

E− E−+

]
: B2 ⊕ Cn+ → B1 ⊕ Cn− ,

where

E : B2 → B1, E+ : Cn+ → B1, E− : B2 → Cn− , E−+ : Cn+ → Cn− .

Since E is a right inverse for P̃,[
T + S R−
R+ 0

] [
E E+

E− E−+

]
=

[
∗ ∗
∗ R+E+

]
.

This is the identity map, so R+E+ = 1 on Cn+ . So E+ is injective. Similarly, we get
E−R− = 1 on Cn− , so E− is surjective.

We claim that T + S is Fredholm. For the kernel, we have x ∈ ker(T + S) ⇐⇒
(T + S)x = 0. We can write this as

P̃
[
x
0

]
=

[
0
a+

]
,

where a= = R+x ∈ Cn+ . Using the inverse E , this is[
x
0

]
= E

[
0
a+

]
=

[
E+a+

E−+a+

]
.
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So we get that x ∈ ker(T + S) ⇐⇒ x = E+a+ for some a+ ∈ kerE+. So E+ : kerE−+ →
ker(T + S) is surjective. Since we already know E+ is injective, we get that ker(T + S) is
finite dimensional with dim ker(T + S) = dim ker(E−+) ≤ n+.

Next consider B2/ im(T + S): Given y,

(T + S)x = y ⇐⇒ P̃
[
x
0

]
=

[
y
a+

]
⇐⇒

[
x
0

]
= E

[
y
a+

]
.

So we get that x = Ey + E+a+ and 0 = E−y + E−+a+. We get that y ∈ im(T + S) ⇐⇒
E−y ∈ imE−+. Now consider B2/ im(T + S) → Cn−/E−+ sending y + im(T + S) 7→
E−y + imE−+. This map is surjective, as E− is surjective, and it is also injective. So
dim coker(T + S) = dim cokerE−+ <∞.

So T + S is Fredholm, and

ind(T + S) = dim kerE−+ − dim cokerE−+ = indE−+ = n+ − n− = ind(T ).

Corollary 2.1. The set of Fredholm operators is open in L(B1, B2), and T 7→ ind(T ) is
locally constant.

The proof also gives the following:

Corollary 2.2. T 7→ dim kerT is upper-semicontinuous on the set of Fredholm operators.

2.2 The logarithmic law

Proposition 2.1. Let T1 ∈ L(B1, B2) and T2 ∈ L(B2, B3) be Fredholm. Then T2T1 is
Fredholm, and we have the logarithmic law:

indT2T1 = indT2 + indT1.

Proof. Consider T ′1 : kerT2T1 → kerT2 sending x 7→ T1x. Then kerT ′1 = kerT1, so
dim(ker(T2T1)/ kerT1) ≤ dim kerT2. So dim kerT2T1 <∞.

Now consider

0 B2/ imT1 B3/ imT2T1 B3/ imT2 0,
T ′2 q

where
T ′2(x+ imT1) = T2x+ imT2T1, q(x+ imT2T1) = x+ imT2.

The sequence is exact at B3/ imT2T1: imT ′2 ⊆ ker q by definition, and if x+imT2T1 ∈ ker q,
then x ∈ imT2, so x+ imT2T1 ∈ imT ′2. We have

dim(coker(T2T1)/ ker q) ≤ dim cokerT2, dim ker q = dim imT ′2 ≤ dim cokerT1,
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so
dim coker(T2T1) ≤ dim cokerT1 + dim cokerT2.

To compute the index, consider

L(t) =

[
I2 0
0 T2

] [
I2 cos t I2 sin t
−I2 sin t I2 cos t

] [
T1 0
0 I2

]
: B1 ⊕B2 → B2 ⊕B3, t ∈ R, I2 = idB2 .

This is a product of three Fredholm operators, so L(t) is Fredholm for all t and t 7→ L(t)
is continuous. So indL(t) is independent of t! When t = 0,

L(0) =

[
I2 0
0 T2

] [
T1 0
0 I2

]
=

[
T1 0
0 T2

]
,

so indL(0) = indT1 + indT2. When t = −π/2, we get

L(−π/2) =

[
0 −I2

T2T1 0

]
.

So

L(−π/2)

[
x
y

]
=

[
−y

T2T1x

]
,

which gives kerL(−π/2) = kerT2T1 ⊕ {0}. We get indL(−π/2) = ind(T2T1). Since the
index is locally constant, we get the logarithmic law.
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3 The Fredholm-Riesz Theorem

3.1 The Fredholm-Riesz theorem

Theorem 3.1 (Fredholm-Riesz). Let B be a Banach space, and let T ∈ L(B,B) be com-
pact. Then 1− T is Fredholm, and ind(1− T ) = 0.

Remark 3.1. If B is a Hilbert space, we can prove this more easily by using the fact that
compact operators can be approximated by finite rank operators.

Proposition 3.1. Let T ∈ L(B,B) be compact. Then

1. ker(1− T ) is finite dimensional.

2. im(1− T ) is closed.

Proof. 1. Let xn ∈ ker(1 − T ) with ‖xn‖ ≤ 1. Then xn = Txn has a convergent
subsequence. Then the identity map on ker(1−T ) is compact, so dim ker(1−T ) <∞
(by Riesz’s theorem).

2. Let y ∈ im(1− T ), and let xn ∈ B be such that yn = (1 − T )xn → y. Consider
dist(xn, ker(1 − T )) = infz∈ker(1−T ) ‖xn − z‖. There exists some zn ∈ ker(1 − T )
realizing this infimum: ‖xn − zn‖ = dist(xn, ker(1− T )).

We claim that the sequence (xn − zn) is bounded: otherwise, ‖xn − zn‖ → ∞ along
a subsequence. Let wn = xn−zn

‖xn−zn‖ , so

(1− T )wn =
(1− T )(xn − zn)

‖xn − zn‖
=

ηn
‖xn − zn‖

→ 0.

Passing to a subsequence, we may assume that Twn → v ∈ B and then wn → v,
where v ∈ ker(1− T ). Now

dist(wn, ker(1− T )) = inf
z∈ker(1−T )

‖xn − zn − z‖
‖xn − zn‖

=
dist(xn, ker(1− T ))

‖xn − zn‖
= 1

for all n. This proves the claim.

Passing to a subsequence, we may assume that T (xn − zn) → ` ∈ B. Also, yn =
(1 − T )(xn − zn) → y, so xn − zn → y + ` = g. Since T is continuous, (1 − T )g =
limn→∞(1− T )(xn − zn) = y. So y ∈ im(1− T ).

3.2 Adjoints of inclusions and quotients

To show that dim coker <∞, we will use duality arguments:
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Definition 3.1. If B1, B2 are Banach spaces with duals B∗1 , B
∗
2 and bilinear maps 〈x, ξ〉j :

Bj ×B∗j → C and if T ∈ L(B1, B2), then the adjoint T ∗L(B∗2 , B
∗
1) is defined by

〈Tx, η〉2 = 〈x, T ∗η〉1 ∀x ∈ B1, η ∈ B∗2 .

Definition 3.2. If B is a Banach space and W ⊆ B is a closed subspace, the annihilator
W o ⊆ B∗ is given by

W o = {ξ ∈ B∗ : 〈x, ξ〉 = 0 ∀x ∈W}.

Proposition 3.2. Let B be a Banach space, and let W ⊆ B be a closed subspace.

1. Let i : W → B be the inclusion map. Then i∗ : B∗ → W ∗ vanishes on W o and
induces an isometric bijection B∗/W o →W ∗.

2. Let q : B → B/W be the quotient map. Then the adjoint q∗ : (B/W )∗ → B∗ is an
isometry with the range W o.

Proof. 1. We have 〈ix, ξ〉 = 〈x, i∗ξ〉, so i∗ξ is the restriction of ξ to W . So ker i∗ = W o.
i∗ : B∗ →W ∗ is surjective by Hahn-Banach.

2. We have 〈qx, η〉 = 〈x, q∗η〉, so q∗ : (B/W )∗ → B∗ sends q∗η to x 7→ 〈qx, η〉. So if
q∗η = 0, then η = 0; i.e. q∗ is injective. Also, im q∗ ⊆W o, and in fact, im q∗ = W o: If
ξ ∈W o, define η by 〈qx, η〉 = 〈x, ξ〉 and ξ = q∗η. Check that the norms are equal.

3.3 Proof of the Fredholm-Riesz theorem

Recall that T ∈ L(B,B) is compact. We want to show that coker(1 − T ) is finite dimen-
sional, and we know that it is closed.

Proof. Apply (B/W )∗ ∼= W o with W = im(1− T ).

(im(1− T ))o = {ξ ∈ B∗ : 〈(1− T )x, ξ〉 = 0 ∀x ∈ B} = ker(1− T ∗).

T ∗ is compact, so dim(im(1 − T ))o < ∞. This shows that (coker(1 − T ))∗ ∼= ker(1 − T ∗),
so dim coker(1− T ) = dim ker(1− T ∗) <∞. So 1− T is Fredholm.

Finally, for 0 ≤ t ≤ 1,

ind(1− T ) = ind(1− tT ) = ind 1 = 0.
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4 Sums of Fredholm and Compact Operators and The Toeplitz
Index Theorem

4.1 Fredholm plus compact is Fredholm

Last time, we proved the Riesz-Fredholm theorem, which says that if T ∈ L(B,B) is
compact, then 1 + T is a Fredholm operator with ind(1 + T ) = 0.

Proposition 4.1. An operator T ∈ L(B1, B2) is Fredholm if and only if there exists a map
S ∈ L(B2, B1) such that TS − 1 and ST − 1 are compact on B2 and B1, respectively.

Proof. (⇐= ): Let S ∈ L(B2, B1) be such that ST = 1 +K1 and TS = 1 +K2, where Kj

is compact on Bj for j = 1, 2. Then kerT ⊆ ker(1 +K1), so kerT is finite-dimensional. On
the other hand, imT ⊇ im(1 +K2): Let Y ⊆ B2 be such that dimY = dim coker(1 +K2),
so B2 = im(1 + K2) ⊕ Y . If Y = imT ∩ Y , so Y = Y1 ⊕ Y2, then B2 = imT ⊕ Y2. So we
get dim cokerT = dimY2 ≤ dimY = dim coker(1 +K2) <∞.

( =⇒ ): We follow the Grushin approach: If n+ = dim kerT and n− = dim cokerT ,
then there exist an injective R− : Cn− → B2 and a surjective R+ : B1 → Cn+ such that
the Grushin operator

P =

[
T R−
R+ 0

]
: B1 ⊕ Cn− → B2 ⊕ Cn+

is invertible with inverse

E =

[
E E+

E− E−+

]
.

Moreover,

1 = PE =

[
R R−
R+ 0

] [
E E+

E− E−+

]
=

[
TE +R−E− ∗

∗ ∗

]
,

so TE + R−E− = 1 on B2, where R−E− has finite rank. Similarly, using 1 = EP, we get
ET − 1 = −E+R+, where E+R+ has finite rank on B1.

Remark 4.1. If S ∈ L(B2, B1) is such that ST − 1 and TS − 1 are compact, then S is
Fredholm, and ind(ST ) = 0. The logarithmic law gives ind(ST ) = indS+ indT , so we get
indS = − indT .

Theorem 4.1 (Fredholm theory). Let T ∈ L(B1, B2) be Fredholm, and let S ∈ L(B1, B2)
be compact. Then T + S is Fredholm, and ind(T + S) = indT .

Proof. Let E ∈ L(B2, B1) be such that TE−1, ET−1 are compact. Then (T+S)E−1 and
S(T+S)−1 are compact, so T+S is Fredholm. Moreover, ind(T+S) = ind(T+tS) = indT
for all t ∈ [0, 1].
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4.2 The Toeplitz index theorem

Here is a nice example of a Fredholm operator.

Example 4.1. Consider L2((0, 2π)) ∼= L2(R/2πZ). If u ∈ L2((0, 2π)) and the Fourier
coefficients are û(n) = 1

2π

∫ 2π
0 u(θ)e−inθ dθ, then u(θ) ∼

∑
n∈Z û(n)einθ. Consider the

Hardy spaceH = {u ∈ L2 : û(n) = 0 for n < 0}, which is a closed subspace of L2((0, 2π)).
The associated orthogonal projection π : L2 → H sends

∑
n∈Z û(n)einθ 7→

∑
n≥0 û(n)einθ.

Let f ∈ L∞((0, 2π)). Associated to f is the Toeplitz operator Top(f) : H → H given
by Top(f)u = π(fu). Then Top(f) ∈ L(H,H), and ‖Top(f)‖L(H,H) ≤ ‖f‖∞.

Theorem 4.2 (Toeplitz index theorem). If f ∈ C(R/2πZ) is nonvanishing, then Top(f)
is Fredholm on H, and ind Top(f) = −winding number(f).

To define the winding number, write f(θ) = r(θ)eiϕ(θ), where r > 0 and r, ϕ are

continuous on [0, 2π]. Then the winding number of f is ϕ(2π)−ϕ(0)
2π .

Proof. To prove the Fredholm property of Top(f), we will try to invert Top(f) with a
compact error. We claim that if f, g ∈ C(R/2πZ), then Top(f) Top(f) = Top(fg) + K,
where K is compact. Write Top(f) = πMf and Top(f) = πMg, where M means a
multiplication operator. Then

πMfπMg = π(πMf + [Mf , π])Mg = π2Mfg + π[Mf , π]Mg = Top(fg) +K,

where [Mf , π] = Mfπ − πMf is the commutator L2 → L2 and K = π[Mf , π]Mg. To show
that K is compact, it suffices to show that [Mf , π] is compact on L2.

Case 1: If f(θ) = einθ, with n ∈ Z, then

[Meinθπ]eikθ = (einθ ◦ π − π ◦ einθ)eikθ

If n > 0,

=

{
0 k ≥ 0

−π(ei(n+k)θ) k < 0,

where the latter expression = 0 if k < −n. So [Meinθ , π] is of finite rank on L2.
We will finish the proof next time.
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5 The Toeplitz Index Theorem and Analytic Fredholm The-
ory

5.1 The Toeplitz index theorem

Last time, we had the Hardy space H ⊆ L2(R/2πZ) of functions u with û(n) = 0 for n < 0.
Given f ∈ C(R/2πZ), we defined Top(f) = πMf .

Theorem 5.1 (Toeplitz index theorem). If f ∈ C(R/2πZ) is nonvanishing, then Top(f)
is Fredholm on H, and ind Top(f) = −winding number(f).

Proof. We had the claim that for all f, g ∈ C(R/2πZ), then Top(f) Top(g) − Top(fg) is
compact. We saw that this is π[Mf , π]Mg, so we only need to show that [Mf , π] is compact
from L2 → L2. If f(θ) = einθ (or more generally, a trigonometric polynomial), then [Mf , π]
is of finite rank; we showed this last time.

In general, given f ∈ C(R/2πZ), let fn be trigonometric polynomials such that fn → f
uniformly on R/2πZ. Then

‖[Mf , π]− [Mfn , π]‖ = ‖[Mf−fn , π]‖ ≤ 2‖f − fn‖u → 0.

So [Mf , π] is compact, and we get the claim.
If f 6= 0, we take g = 1/f , so Top(f) Top(g) − I is compact. So Top(f) is Fredholm.

To compute ind Top(f), observe that if g, h are continuous (and nonvanishing), then

ind Top(gh) = ind(Top(g) Top(h)) = ind Top(g) + ind Top(f).

Write f(θ) = r(θ)e−ϕ(θ) with r, ϕ continuous on [0, 2π] and r > 0. Then

ind Top(f) = ind Top(r) + ind Top(eiϕ)

We have ind Top(r) = ind Top(rt) for 0 ≤ t ≤ 1, where rt(θ) = (1 − t)r(θ) + t1 > 0. So
ind Top(r) = 0.

= ind Top(eiϕ).

To compute ind Top(eiϕ), consider ft(θ) = e(1−t)iϕ(θ)+iNtθ for 0 ≤ t ≤ 1, where N =
ϕ(2π)−ϕ(0)

2π is the winding number. Then ft is 2π-periodic and continuous in t. We get

ind Top(eiϕ) = ind Top(ft)

= ind Top(eiNθ)

In general, if T is Fredholm, indT = dim kerT − dim kerT ∗.

= dim ker Top(eiNθ)− dim ker Top(eiNθ)∗

14



To find the adjoint, we have 〈Top(f)u, v〉L2 = 〈π(fu), v〉L2 = 〈fu, v〉L2 =
〈
u, fv

〉
L2 =〈

πu, fv
〉
L2 =

〈
u,Top(f)v

〉
. So Top(f)∗ = Top(f).

= dim ker Top(eiNθ)− dim ker Top(e−iNθ).

Here, we have

dim ker Top(eiNθ) =

{
0 N ≥ 0

−N N < 0
.

Altogether, we get
ind Top(f) = −N.

5.2 Analytic Fredholm Theory

Definition 5.1. Let Ω ⊆ C. A holomorphic family T (z) ∈ L(B1, B2) for z ∈ Ω is a
family such that Ω → L(B1, B2) sending z 7→ T (z) is holomorphic (as an operator-valued
function).

Remark 5.1. We can define holomorphic operator-valued functions in two ways: z 7→ T (z)
is holomorphic if

1. For all z ∈ Ω, ‖T (z+h)−T (z)
h − T ′(z)‖ → 0 as h→ 0 for some T ′(z) ∈ L(B1, B2).

2. For every x ∈ B1 and ξ ∈ B∗2 , z 7→ 〈T (z)x, ξ〉 is holomorphic.

Theorem 5.2 (analytic Fredholm theory). Let Ω ⊆ C be open and connected, and let
T (z) ∈ L(B1, B2) for z ∈ Ω be a holomorphic family of Fredholm operators. Assume that
there exists a z0 ∈ Ω such that T (z0) : B1 → B2 is bijective. Then the set

Σ = {z ∈ Ω : T (z) is not bijective}

is discrete.

Proof. Notice first that indT (z) = indT (z0) = 0 for all z. Let z1 ∈ Ω, and write n0(z1) =
dim kerT (z1) = dim cokerT (z1). Introduce the Grushin operator

Pz1(z) =

[
T (z) R−(z1)
R+(z1) 0

]
: B1 ⊕ Cn0(z1) → B2 ⊕ Cn0(z1).

We know that Pz1(z1) is invertible. So there is a connected neighborhood N(z1) ⊆ Ω of z1

such that Pz1(z) is bijective for z ∈ N(z1), depending holomorphically on z. Let

Ez1(z) = Pz1(z)−1 : B2 ⊕ Cn0(z1) → B1 ⊕ Cn0(z1)

Ez1(z) =

[
E(z) E+(z)
E−(z) E−+(z)

]
,

15



depending holomorphically on z.
We claim that for z ∈ N(z1), T (z) : B1 → B2 is bijective ⇐⇒ E−+(z) : Cn0 → Cn0

is bijective. This will allow us to analyze invertibility of T (z) via a holomorphic function,
detE−+(z).
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6 Consequences of Analytic Fredholm Theory

6.1 Analytic Fredholm theory

Last time, we were proving the analytic Fredholm theory.

Theorem 6.1 (analytic Fredholm theory). Let Ω ⊆ C be open and connected, and let
T (z) ∈ L(B1, B2) for z ∈ Ω be a holomorphic family of Fredholm operators. Assume that
there exists a z0 ∈ Ω such that T (z0) : B1 → B2 is bijective. Then the set

Σ = {z ∈ Ω : T (z) is not bijective}

is discrete.

Proof. Let z1 ∈ Ω. Then there is a neighborhood N(z1) of z1 such that for every z ∈ N(z1),
the Grushin operator

Pz1(z) =

[
T (z) R−(z)
R+(z) 0

]
is bijective with the inverse

Ez1(z) =

[
E(z) E+(z)
E−(z) E−+(z)

]
: B2 ⊕ Cn0 → B1 ⊕ Cn0 .

We claim that for z ∈ N(z1), T (z) : B1 → B2 is bijective ⇐⇒ E−+(z) : Cn0 → Cn0 is
bijective.2 Check:[

T R−
R+ 0

] [
E E+

E− E−+

]
=

[
1 0
0 1

]
=⇒ TE +R−E− = 1, TE+ +R−E−+ = 0.

If E−1
−+ exists, then R− = −TE+E

−1
−+, so

T (E − E−E−1
−+E−) = 1.

So T−1 exists and
T−1(z) = E(z)− E+(z)E−+(z)−1E−(z).

Using that EP = 1, so E−R− = 1 and E−T + E−+R+ = 0, we get T−1 exists =⇒ E−+

exists.
We get for z ∈ N(z1) that T (z) is invertible if and only if detE−+(z) 6= 0. The function

detE−+(z) is holomorphic on N(z1). So either detE−+(z) ≡ 0, or detE−+(z) 6= 0 in a
punctured neighborhood of z1. Let Ω1 = {z ∈ Ω : T (z′) is invertible ∀z′ 6= z near z} and
Ω2 = {z ∈ Ω : T (z′) is not invertible ∀z′ 6= z near z}. Then each Ωj is open, Ω1 ∪ Ω2 = Ω,
and Ω1 6= ∅ (as z0 ∈ Ω1). Since Ω is connected, Ω1 = Ω and thus, Σ = {z ∈ Ω :
T (z) is not invertible} is discrete.

2What we lose from this reduction is that if T (z) has some simple dependence of z (e.g. polynomial),
E−+(z) may not have a simple dependence. In some contexts, the operator E−+ is called the effective
Hamiltonian.
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Remark 6.1. The map Ω \Σ→ L(B2, B1) sending z 7→ T (z)−1 is holomorphic. Consider
T (z)−1 for z in a punctured neighborhood of w ∈ Σ: We have

T−1(z) = E(z)− E+(z)E−+(z)−1E−(z),

where E,E+, E− are all holomorphic in a neighborhood of w. We have that

E−+(z)−1 =
holomorphic near w

detE−+(z)
,

so we have a Laurent expansion

E−+(z)−1 =
R−N0

(z − w)N0
+ · · ·+ R−1

z − w
+ Hol(z),

where 1 ≤ N0 < ∞ and the Rj are of finite rank. Combining these formulas, we get that
z 7→ T (z)−1 has a pole of order N0 at z = w:

T (z)−1 =
A−N0

(z − w)N0
+ · · ·+ A−1

z − w
+Q(z), Q(z) holomorphic near w,

where for 1 ≤ j ≤ N0, the A−j ∈ L(B2, B1) n be expressed in terms of R−N0 , . . . , R−1 and
are therefore of finite rank.

6.2 Application: the residue of the resolvent

Here is an example/special case of the analytic Fredholm theory.
Assume that B1 ⊆ B2 with continuous inclusion, and let T (z) = T −z for z ∈ Ω, where

T is some operator. Assume that T (z) is Fredholm for each z and that T (z0)−1 exists for
some z0 ∈ Ω. We get a Laurent expansion for the resolvent (T − z)−1 at w ∈ Σ:

(z − T )−1 =
A−N0

(z − z0)N0
+ · · ·+ A−1

z − w
+Q(z), Q(z) holomorphic near w.

for 0 < |z − w| � 1.

Proposition 6.1. The operator Π := A−1 is a projection3 on B2 which commutes with T
(on B1).

Proof. Integrate the Laurent expansion along γr = ∂D(w, r) for 0 < r � 1. Then

Π =
1

2πi

∫
γr

(z − T )−1 dz.

3This is sometimes called the Riesz projection.
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We claim that Π2 = Π: Let 0 < r1 < r2 � 1, and write

Π2 =

∫
γr2

∫
γr1

(z − T )−1(z̃ − T )−1 dz

2πi

dz̃

2πi

Using (z̃ − T )−1 − (z − T )−1 = (z̃ − T )−1(z − z̃)(z − T )−1, we have

=

∫
γr2

∫
γr1

1

z̃ − z
(z − T )−1 dz

2πi

dz̃

2πi
−
∫
γr2

∫
γr1

1

z̃ − z
(z̃ − T )−1 dz

2πi

dz̃

2πi

The second term is 0 by applying the Cauchy integral formula on the inner integral.

So we get

Π2 =

∫
γr1

1

2πi

∫
γr2

1

z̃ − z
dz̃︸ ︷︷ ︸

=1

(z − T )−1 dz

2πi
= Π.

Remark 6.2. We know that T (Ran Π) ⊆ Ran Π ⊆ B1, where Ran Π is finite dimensional,
and let us check that (T − z0)|Ran Π is nilpotent:

(T − z0)Π =
1

2πi

∫
γr

(T − z0)(z − T )−1 dz

=
1

2πi

∫
γr

(T − z)(z − T )−1 dz︸ ︷︷ ︸
=0

+
1

2πi

∫
γr

(z − z0)(z − T )−1 dz

=
1

2πi

∫
γr

(z − z0)(z − T )−1 dz.

It follows that

(T − z0)jΠ =
1

2πi

∫
γr

(z − z0)j(z − T )−1 dz.

And if j = N0, we get (T − z0)N0Π = 0, as (z − z0)N0(z − T )−1 is holomorphic.
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7 Introduction to Unbounded Operators

7.1 Motivation from quantum mechanics

In this part of the course, we will discuss spectral theory of self-adjoint operators. We are
most interested in unbounded operators, the background of which comes from quantum
mechanics.

Classical mechanics: The classical phase space is R2n = Rnx × Rnξ , where x is position

and ξ is momentum. Classical observables are, for example, C∞(R2n) functions.

Example 7.1. The Hamiltonian is

p(x, ξ) = |ξ|2 + V (x),

where V (x) is a potential.

In classical dynamics, we have the Hamilton equations{
x(t) = p′ξ(x, ξ)

ξ(t) = −p′x(x, ξ)

Quantum mechanics: We have a Hilbert space H = L2(Rn). Quantum observables are
self-adjoint operators on H.

Example 7.2. Quantum observables corresponding to xj and ξj are Mxj , multiplication
by xj , and Dxj = 1

i ∂xj . These can not be defined on the whole space, so they will come
with their own domains. Associated to p is the Schrödinger operator

P = −∆ + V (x).

Quantum dynamics is given by the Schrödinger equation

i
∂u

∂t
= Pu, u|t=0 = u0 ∈ L2.

Formally,
u(t) = e−itPu.

Interpreting what it means to exponentiate an unbounded operator will be one of the points
of our theory.
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7.2 Unbounded operators

Let H be a complex, separable Hilbert space, let D ⊆ H be a linear subspace, and let
T : D → H be a linear map. Then D = D(T ) is the domain of T . We shall always assume
that T is densely defined, so that D(T ) is dense in H. Associated to T is the graph4 of
T : G(T ) = {(x, Tx) : x ∈ D(T )} ⊆ H ×H.

Definition 7.1. We say that T is closed if G(T ) is closed subspace of H ×H.

Definition 7.2. The operator T is closable if G(T ) is the graph of an linear operator
T : D(T )→ H, called the closure of T .

Note that

D(T ) = {x ∈ H : ∃xj ∈ D(T ) s.t. xj → x, Txj conv. in H,Tx = limTxj}.

So

T is closed ⇐⇒ if xn ∈ D(T ), xn → x, and Txn → y, then x ∈ D(T ) and Tx = y.

On the other hand,

T is closable ⇐⇒ G(T ) contains no element of the form (0, y) with y 6= 0

⇐⇒ if xn ∈ D(T ), xn → 0, and Txn → y, then y = 0.

Example 7.3. Let T = −∆ on L2(Rn), with D(T ) = C∞0 (Rn). Then T is densely defined
and closable: If ϕn ∈ C∞0 are s.t. ϕ → 0 in L2 and ∆ϕn → ψ ∈ L2, we want ψ = 0. For
any f ∈ C∞0 ,

∫
ϕnf → 0, and integrating by parts gives

∫
∆ϕnf =

∫
ϕn∆f → 0. On the

other hand,
∫

∆ϕnf →
∫
ψf . We get that

∫
ψf = 0 for all f ∈ C∞0 . So ψ = 0. In the

language of distributions, ϕn → 0 in D′(Rn), so ∆ϕn → 0 in D′. So ψ = 0.
We claim that T = −∆ with D(T ) = H2(Rn) = {u ∈ L2 : ∂αu ∈ L2, |α| ≤ 2}, a

Sobolev space. Here, α = (α1, . . . , αn) ∈ Nn is a multi-index, ∂α = ∂α1
x1 · · · ∂

αn
xn , and

|α| =
∑n

j=1 αj . Here, ∂αu ∈ L2 means that there exists some fα ∈ L2 such that ∂αu = fα;
that is,

(−1)|α|
∫
u∂αϕ =

∫
fαϕ ∀ϕ ∈ C∞0 .

We have

D(T ) = {u ∈ L2 : ∃ϕn ∈ C∞0 s.t. ϕn
L2

−→ u,∆ϕn conv. in L2}, Tu = lim(−∆ϕn).

Hence, if u ∈ D(T ), then ∆u = limn ∆ϕn ∈ L2. Then

D(T ) ⊆ {u ∈ L2 : ∆u ∈ L2} = H2(Rn),

4The idea of thinking about unbounded operators in terms of their graphs goes back to von Neumann.
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as taking the Fourier transform, this is

D(T ) ⊆ {u ∈ L2 : (|ξ|2 + 1)û ∈ L2}.

We also have H2(Rn) ⊆ D(T ), as C∞0 (Rn) is dense in H2(Rn) (the norm on H2 is given
by ‖u‖H2 =

∑
|α|≤2 ‖∂αu‖L2). This is the same proof that C∞0 (Rn) is dense in L2(Rn).

We get that T = −∆ with D(T ) = H2(Rn) is closed and densely defined.

Next time, we will define what it means for a densely defined operator to be self-adjoint,
and we will see that this operator is indeed self-adjoint.
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8 Realizations of Partial Differential Operators

8.1 Maximal and minimal realizations

Last time, we considered the unbounded operator T = −∆ on L2(Rn) with D(T ) =
C∞0 (Rn). We saw that T = −∆ with domain D(T ) = H2(Rn) = {u ∈ L2 : ∆u ∈ L2}.

Example 8.1. Let Ω ⊆ Rn be open, and let P = P (x,Dx) be a linear partial differential
operator with C∞ coefficients:

P =
∑
|α|≤m

aα(x)Dα, aα ∈ C∞, Dxj =
1

i
∂xj .

The operator PΩ on L2(Ω) with D(PΩ) = C∞0 (Ω) is densely defined and closable: if

un ∈ C∞0 (Ω) with un
L2

−→ 0 and Pun
L2

−→ v, then v = 0. The closure of PΩ, denoted by
Pmin, is called the minimal realization of PΩ with domain D(Pmin) = {u ∈ L2 : ∃un ∈
C∞0 s.t. un → u, Pun conv. in L2}.

If u ∈ D(Pmin), then Pu ∈ L2(Ω), where Pu is defined in the sense of distributions. So
D(Pmin) ⊆ {u ∈ L2 : Pu ∈ L2}. We also introduce the maximal realization Pmax of PΩ,
given by D(Pmax) = {u ∈ L2 : Pu ∈ L2} with Pmaxu = Pu for all u ∈ D(Pmax). We get
PΩ ⊆ Pmin ⊆ Pmax, meaning D(PΩ) ⊆ D(Pmin) ⊆ D(Pmax) and Pmax = Pmin on D(Pmin).
Both Pmin and Pmax are closed.

8.2 Realizations of order 1 partial differential operators with smooth
coefficients

Proposition 8.1. Let P =
∑n

k=1 ak(x)Dxk + b(x) be an operator of order 1 on Rn with
ak, b ∈ C∞(Rn)∩L∞(Rn) and ∇ak ∈ L∞. Then the minimal and the maximal realizations
of P agree: D(Pmin) = D(Pmax).

Proof. Let u ∈ D(Pmax). We have to show that u ∈ D(Pmin); that is, we show there

exists a sequence un ∈ C∞0 (Rn) such that un
L2

−→ u and Pun
L2

−→ Pu. Notice first that if

χ ∈ C∞0 (Rn) with χ = 1 near 0 and χj(x) = χ(jx) for j = 1, 2, . . . , then χju
L2

−→ u. We
may write P (χju) = χjPu+ [P, χj ]u. The first term goes to Pu in L2, and

[P, χj ] = (P ◦ χj − χjP )u =
n∑
k=1

ak(x)
1

j
(Dxkχ)(x/j)

L2

−→ 0.

Thus, when proving that u ∈ D(Pmin) can be approximated by C∞0 functions, we may
assume that u has compact support.

Regularize u: Let 0 ≤ ϕ ∈ C∞0 (Rn) with
∫
ϕ = 1, let ϕε(x) = 1

εnϕ(x/ε), and let

Jεu = (u ∗ ϕε)(x) ∈ C∞0 (Rn). Then Jε
L2

−→ u. Compute:

P (Iεu) = JεPu+ [P, Jε]u
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Since Pu is compactly supported and in L2, the first term goes to Pu in L2. Let’s get rid
of the b term:

[b, Jε]u = b(Jεu)︸ ︷︷ ︸
→bu

− Jε(bu)︸ ︷︷ ︸
bu

L2

−→ 0.

Since [P, Jε] =
∑

[akDxk , Jε] + [b, Jε] it now suffices to show that [akDxk , Jε]u → 0 in L2

for all u ∈ L2. This is Friedrich’s lemma.

Lemma 8.1 (Friedrich’s lemma). Let u ∈ L2(Rn) and ak ∈ C∞0 (Rn). Then

[akDxk , Jε]u
L2

−→ 0.

Proof. Observe first that if u ∈ C∞0 (Rn), then

[akDxk , Jε]u = akDxk(Jεu)− Jε(akDxku)

Since akDxku ∈ C∞0 , the second term goes to ajDxku in L2. The first term also goes to
akDxku in L2. So this goes to 0.

It only remains to show that ‖[akDxk , Jε]u‖L2 ≤ C‖u‖L2 for 0 < ε ≤ 1 and u ∈ C∞0 .
Compute

Wε(x) = [akDxk , Jε]u(x)

= akDxk

∫
u(y)

1

εn
ϕ

(
x− y
ε

)
−
∫
ak(x− y)Dxku(x− y)

1

εn
ϕ
(y
ε

)
dy

=

∫
ak(x)u(x− εy)

1

ε
(Dkϕ)(y)−

∫
ak(x− εy) (Dxku)(x− εy)︸ ︷︷ ︸

=−1/εDyk (u(x−εy))

ϕ(y) dy

Integrate by parts in the second integral.

=

∫
ak(x)u(x− εy)

1

ε
(Dxkϕ)(y)−

∫
ak(x− εy)u(x− εy)Dkϕ.

So we get
|Wε(x)| ≤ Ca|u| ∗ ϕε.
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9 Adjoints of Unbounded Operators

9.1 Adjoints

Last time, we showed that if P =
∑
|α|≤m aα(x)Dα on L2(Ω) where Ω ⊆ Rn is open and

aα ∈ C∞(Ω), then we get a minimal realization: Pmin with D(Pmin) = {u ∈ L2 :
∃ϕn ∈ C∞0 (Ω) : ϕn → u, Pϕn conv.} given by Pminu = limn→∞ Pϕn. We also defined the
maximal realization Pmax with D(Pmax) = {u ∈ L2 : Pu ∈ L2}, where Pu is taken
in the sense of distributions. Here, we have Pmin ⊆ Pmax, where both of these are closed
operators.

Recall the definition of an adjoint: In a Hilbert space H, if T ∈ L(H,H), the adjoint
T ∗ ∈ L(H,H) is defined by 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H. For unbounded operators,
we will define this, paying attention to the domains.

Definition 9.1. Let T : D(T )→ H be densely defined. We define the adjoint T ∗ by

D(T ∗) = {v ∈ H : ∃f ∈ H s.t. 〈Tu, v〉 = 〈u, f〉 ∀u ∈ D(T )},

T ∗v = f.

Remark 9.1. The requirement that T is densely defined is crucial to this definition. D(T )
is dense, so f is unique if it exists. In particular, 〈Tu, v〉 = 〈u, T ∗v〉 for all u ∈ D(T ) and
v ∈ D(T ∗).

Remark 9.2. By the Riesz representation theorem,

D(T ∗) = {v ∈ H : ∃C = Cv > 0 s.t. | 〈Tu, v〉 | ≤ C‖u‖, u ∈ D(T )}.

9.2 Examples: adjoints of differential operators

Example 9.1. Let Ω ⊆ Rn be open, P =
∑
|α|≤m aα(x)Dα with aα ∈ C∞(Ω), where

D = 1
i ∂. Let PΩ = P with D(PΩ) = C∞0 (Ω). Let’s compute P ∗Ω.

First, associated to P is the formal adjoint P ∗ defined by 〈Pu, v〉L2 = 〈u, P ∗v〉L2 for
all u, v ∈ C∞0 (Ω) (such an operator exists for any differential operator). We can calculate
the formula using integration by parts:

P ∗v =
∑
|α|≤m

Dα
x (aα(x)v).

So P ∗ is a differential operator of order m with C∞ coefficients.
To compute the adjoint P ∗Ω, we have

D(P ∗Ω) = {v ∈ L2 : ∃f ∈ L2 s.t. 〈Pu, v〉L2 = 〈u, f〉 ∀u ∈ C∞0 (Ω)}
= {v ∈ L2 : P ∗v = f ∈ L2},

where P ∗v is taken in the sense of distributions. In other words, D(P ∗Ω) = {v ∈ L2 : P ∗v ∈
L2} = D(P ∗max), the maximal realization of the formal adjoint, and P ∗Ωv = P ∗v.
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Sometimes, we can give a nice local description of the domain of the adjoint.

Example 9.2. Assume that P =
∑
|α|≤m aα(x)Dα is elliptic in the sense that if p(x, ξ) =∑

|α|=m aα(x)ξα for x ∈ Ω, ξ ∈ Rn, then p(x, ξ) 6= 0 for all x ∈ Ω, ξ 6= 0. Then we have

{v ∈ L2 : P ∗v ∈ L2} ⊆ Hm
loc(Ω) = {u ∈ L2

loc(Ω) : ∂αu ∈ L2
loc(Ω) ∀|α| ≤ m},

a local Sobolev space.

9.3 The graph of the adjoint

Proposition 9.1. Let T : D(T )→ H be densely defined. The graph of the adjoint is

G(T ∗) = [V (G(T ))]⊥,

where V : H ×H → H ×H sends (u, v) 7→ (v,−u).

Remark 9.3. Taking the closure is a matter of taste. Since we are taking the orthogonal
complement, it does not matter whether or not we close the graph or not, since the result
will be closed.

Proof. When u ∈ D(T ) and (v, w∗) ∈ H ×H, we have

〈V (u, Tu), (v, w∗)〉H×H = 〈Tu, v〉 − 〈u,w∗〉 .

The right hand side is 0 for all u ∈ D(T ) if and only if v ∈ D(T ∗), T ∗v = w∗. This
is equivalent to (v, w∗) ∈ G(T ∗). The left hand side is 0 for all u ∈ D(T ) iff (v, w∗) ∈
[V (G(T ))]. So G(T ∗) = [V (G(T ))]⊥ = [V (G(T ))]⊥.

Corollary 9.1. T ∗ is closed.

Remark 9.4. If densely defined operators T1 ⊆ T2 in the sense that G(T1) ⊆ G(T2), then
T ∗2 ⊆ T ∗1 .

Is T ∗ densely defined?

Proposition 9.2. T is closable if and only if D(T ∗) is dense. In this case, (T ∗)∗ = T .

Proof. ( =⇒ ): Assume there is a nonzero w ∈ H such that w ⊥ D(T ∗). Then for every
v ∈ D(T ∗),

〈(0, w), (T ∗v,−v)〉H×H = 0,

so (0, w) ∈ [V (G(T ∗))]⊥ = V (G(T ∗)⊥). Recall that G(T ∗) = [V (G(T ))]⊥, so (0, w) ∈
V (V (G(T ))). V 2 = −1, so (0, w) ∈ G(T ). So w = 0, as T is closable.

(⇐= ): The proof is a similar computation.
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10 Symmetric and Self-Adjoint Operators

10.1 Adjoints of closable operators

If T : D(T )→ H is densely defined, we defined the adjoint T ∗ with G(T ∗) = [V (G(T ))]⊥,
where V (u, v) = (v,−u). Let’s finish a proof we started last time.

Proposition 10.1. T is closable if and only if T ∗ is densely defined.

Proof. ( =⇒ ): We did this last time.
(⇐= ): If D(T ∗) is dense, then (T ∗)∗ is a closed operator such that

F (T ∗∗) = [V (G(T ∗))]⊥ = V (G(T ∗)⊥) = V (V (G(T ))) = G(T ),

where we have used V 2 = −1. So T is closable, and T ∗∗ = T .

10.2 Symmetric and self-adjoint operators

Definition 10.1. Let S : D(S)→ H be densely defined. We say that S is symmetric if
〈Sx, y〉 = 〈x, Sy〉 for all x, y ∈ D(S).

Example 10.1. S = −∆ on L2(Rn) with D(S) = C∞0 (Rn) is symmetric. However, we
will see that this operator is not self-adjoint.

S is symmetric if and only if S ⊆ S∗.

Proposition 10.2. If S is symmetric, then S is closable and S is symmetric.

Proof. If un ∈ D(S) with un → 0 and Sun → `, then 〈un, Sv〉 = 〈Sun, v〉 → 〈`, v〉. On the
other hand 〈un, Sv〉 → 0, for all v ∈ D(S). So ` = 0, and S is closable.

If S ⊆ S∗, where S∗ is densely defined, then S = S∗∗ ⊆ S∗ = S
∗
. So S is symmetric.

Given a symmetric operator S, we have two natural closed extensions: S and S∗.

Definition 10.2. A linear, densely defined operator T : D(T )→ H is called self-adjoint
if T = T ∗.

Note that this means that D(T ) = D(T ∗). Any self-adjoint operator is closed, since
adjoints are closed. We have

T is self-adjoint ⇐⇒ T is symmetric and D(T ) = D(T ∗)

⇐⇒ 〈Tx, y〉 = 〈x, Ty〉 ∀x, y ∈ D(T ), and

if (x, y) ∈ H ×H with 〈Tz, x〉 = 〈z, y〉 ∀z ∈ D(T ) =⇒ x ∈ D(T ).

Proposition 10.3. Let S be closed and symmetric. Then S∗ is symmetric, so S is self-
adjoint.
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Proof. S∗ is symmetric, so S∗ ⊆ S∗∗ = S, as S is closed. Also, S ⊆ S∗, so S is self-
adjoint.

Example 10.2. Let H = L2(Rn), and let m : Rn → R be Lebesgue measurable. Let
D(A) = {f ∈ L2 : mf ∈ L2} and Af = mf for all f ∈ D(A). We claim that A is
self-adjoint.

Check first that D(A) is dense in L2: For any f ∈ L2, f
1+|m| ∈ L

2, as well. So if g ∈ L2

with g ⊥ D(A), ∫
g

f

1 + |m|
dx = 0,

which means that g
1+|m| = 0, giving g = 0.

A is symmetric, as m is real. Now let (g, h) ∈ L2×L2 be such that 〈Af, g〉 = 〈f, h〉 for
all f ∈ D(H). Then for all f ∈ L2,∫

mf

1 + |m|
g =

∫
f

1 + |m|
h,

so ∫ (
m

1 + |m|
g − h

1 + |m|

)
f = 0

for all f ∈ L2. So mg = h, which gives g ∈ D(A).

Example 10.3. Let T = −∆ on L2(Rn) with D(T ) = H2(Rn) = {u ∈ L2 : ∆u ∈ L2} =
{u ∈ L2 : ∂αu ∈ L2 ∀|α| ≤ 2}. Then T is self-adjoint.

T is symmetric: 〈−∆u, v〉L2 = 〈u,−∆v〉L2 for all u, v ∈ H2. This is true for u, v ∈
C∞0 (Rn), which is dense in H2(Rn). Alternatively we could prove this by taking the Fourier
transform, where T acts as a multiplication operator.

Let (g, h) ∈ L2 × L2 be such that 〈−∆u, g〉L2 = 〈u, h〉 for all g, h ∈ H2. In particular,
if u ∈ C∞0 , we get −∆g = h ∈ L2 (taken in the weak sense). Then g ∈ H2, and Tg =
−∆g = h.

10.3 von Neumann’s extension theory for symmetric operators

Let S : D(S)→ H be a closed, symmetric (densely defined) operator. Can S be extended
to a self-adjoint operator? If S ⊆ T = T ∗, then T ∗ ⊆ S∗, so we have an operator between
S and S∗ in general. If S is symmetric, these are the same.

Proposition 10.4. Let S be closed and symmetric. Then for any z ∈ C \ R, S − z1 :
D(S)→ H is injective, has closed range, and ‖(S − z)u‖ ≥ | Im z|‖u‖ for u ∈ D(S).

Proof. Write z = x+ iy. Then

‖(S − z)u‖2 = 〈(S − x)u+ iyu, (S − x)u+ iyu〉
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= ‖(S − x)u‖2 + y2‖u‖2

≥ y2‖u‖2,

so S − z is injective.
Im(S − z) is closed: If y ∈ Im(S − z), there exist xn ∈ D(S) such that (S − z)xn → y.

By this inequality, xn → x ∈ H. Since (S − z) is closed, x ∈ D(S).

Here is the idea due to von Neumann: Study the Cayley transform of S, T =
(S + i)(S − i)−1.
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11 The Cayley Transform of Symmetric Operators

11.1 The Cayley transform

Let S : D(S) → H be closed, symmetric, and densely defined. We have shown that S ± i
are injective iff Im(S ± i) is closed, and ‖(S + i)x‖2 = ‖(S − i)x‖2 (= ‖Sx‖2 + ‖x‖2).

Definition 11.1. The Cayley transform T of S is the operator T = (S + i)(S − i)−1 :
Im(S − i)→ Im(S + i).

The above norm calculation shows that T is an isometric bijection.

Proposition 11.1. T − 1 is injective, Im(T − 1) = D(S), and S = i(T + 1)(T − 1)−1 :
D(S)→ H.

Proof. If y ∈ Im(S − i) with y = (S − i)x, then

(T − 1)y = (S + i)x− (S − i)x = 2ix.

We get T − 1 is injective and Im(T − 1) = D(S). Similarly,

(T + 1)y = (S + i)x+ (S − i)x = 2Sx,

so

2S
1

2i
(T − 1)y = (T + 1)y.

Then
S = i(T + 1)(T − 1)−1.

Conversely, let H1, H2 ⊆ H be closed subspaces, and let T : H1 → H2 be a unitary
map be such that Im(T −1) is dense in H. We claim that T −1 is injective: If (T −1)y = 0
for y ∈ H1, then for z ∈ H1,

〈y, (T − 1)z〉 = 〈y, Tz〉 − 〈y, z〉 = 〈Ty, Tz〉 − 〈y, z〉 = 0.

Define S : D(S) = Im(T − 1) → H by S = i(T + 1)(T − 1)−1. We claim that S is
symmetric. For x = (T − 1)y ∈ D(S),

〈Sx, x〉 = i 〈(T + 1)y, (T − 1)y〉
= i(‖Ty‖2 − 〈Ty, y〉+ 〈y, Ty〉 − ‖y‖2)

= i(−〈Ty, y〉+ 〈y, Ty〉) ∈ R.

We get 〈Sx, x〉 = 〈x, Sx〉 for all x ∈ D(S). Polarize this identity (i.e. x = y + z, y + iz) to
get that S is symmetric.

30



We claim that S is closed. If (x, z) ∈ G(S), there is a sequence yn ∈ H1 such that
(T − 1)yn → x and i(T + 1)yn → z. So yn → y ∈ H1. Tyn → Ty, so (T − 1)yn →
(T − 1)y = x ∈ D(S). Then

i(T + 1)yn → i(T + 1)y = i(T + 1)(T − 1)−1x = Sx = z.

Finally, let T1 be the Cayley transform of S, T1 : Im(S − i) → Im(S + i) with T1 =
(S + i)(S − i)−1. If y ∈ D(S) = Im(T − 1) with y = (T − 1)x (x ∈ H1), then

(S − i)y = (S − i)(T − 1)x = i(T + 1)x− i(T − 1)x = 2ix.

So D(T1) = H1 = D(T ). Now we check

T1x =
1

2i
T1(S − i)y =

1

2i
(S + i)y =

1

2i
(S(T − 1)x︸ ︷︷ ︸

i(T+1)x

+i(T − 1)x) = Tx.

So the Cayley transform of S is T .
We summarize the results in a proposition.

Proposition 11.2. Let S be closed, symmetric, and densely defined. Then the Cayley
transform T : Im(S − i)→ Im(S + i) sending (S − i)x 7→ (S + i)x is unitary, Im(T − 1) =
D(S), T − 1 is injective, and S = i(T + 1)(T − 1)−1. Conversely, if H1, H2 are closed
subspaces of H, T : H1 → H2 is unitary, and Im(T − 1) is dense, then T is the Cayley
transform of a unique symmetric, closed, densely defined operator S.

11.2 Deficiency subspaces

Now we are ready to check whether a closed, symmetric, and densely defined operator is
self-adjoint.

Definition 11.2. Let S be closed, symmetric, and densely defined. The deficiency sub-
spaces associated to S are D± := (Im(S ± i))⊥ = ker(S∗ ∓ i). The deficiency indices
are n± = dimD± (Hilbert space dimension).

The deficiency indices measure the extent to which S may fail to be self-adjoint.
We know D± ⊆ D(S). Introduce also

D(S∗)|D± =: D̂± = {(x, S∗x) : x ∈ D±} = {〈x,±ix〉 : x ∈ D±}.

Theorem 11.1. Let S be closed, symmetric, and densely defined. Then

G(S∗) = G(S)⊕ D̂+ ⊕ D̂−,

where the direct sum is orthogonal.
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Proof. Check first that G(S) ⊥ D̂± (we check +): if x ∈ D(S) and y+ ∈ D+

〈(x, Sx), (y+, iy+)〉 = 〈x, y+〉+ 〈Sx, iy+〉 = 〈x, y+〉+ 〈x, iS∗y+〉︸ ︷︷ ︸
=〈x,iiy+〉

= 0.

Also, D̂+ ⊥ D̂−:

〈(y+, iy+), (y−,−iy−)〉 = 〈y+, y−〉+ 〈iy+, (1/i)y−〉 = 0.

By orthogonality, G(S)⊕ D̂+ ⊕ D̂− is a closed subspace of G(S∗). It remains to show
that if (y, S∗y) is orthogonal to G(S), D̂±, then y = 0. We will show this next time.
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12 Extending Symmetric Operators to Self-Adjoint Opera-
tors

12.1 Graph of the adjoint of a symmetric operator

Suppose we have a closed, symmetric, densely defined operator S : D(S) → H. We
introduced the deficiency subspaces D± = (Im(S ± i))⊥ = ker(S∗ ∓ i) and the graphs
D̂± = G(S∗)|D± .

Last time, were proving the following theorem.

Theorem 12.1. Let S be closed, symmetric, and densely defined. Then

G(S∗) = G(S)⊕ D̂+ ⊕ D̂−,

where the direct sum is orthogonal.

Proof. It remains to show that if (y, S∗y) ⊥ G(S), D̂±, then y = 0.
First, if (y, S∗y) ⊥ G(S), then 〈(y, S∗y), (x, Sx)〉 = 0 for all x ∈ D(S). Then 〈Sx, S∗y〉+

〈x, y〉 = 0 for all x ∈ D(S). So S∗y ∈ D(S∗) and S∗(S∗y) = −y. So ((S∗)2 + 1)y = 0. We
get (S∗ − i)(S∗ + i)y = 0, so (S∗ + i)y ∈ D+.

If (y, S∗y) ⊥ D̂+, then 〈(y, S∗y), (x, ix)〉 = 0 for all x ∈ D+. We get 〈y, x〉+ 〈S∗y, ix〉 =
0, so −i 〈(S∗ + i)y, x〉 = 0 for all x ∈ D+. So (S∗ + i)y = 0.

Similarly, (S∗−i)y ∈ D− (changing the order in the factorization). Then (y, S∗y) ⊥ D̂−,
so (S∗ − i)y = 0. So we get y = 0.

12.2 Conditions for extending symmetric operators

Corollary 12.1. A symmetric, closed operator S : D(S) → H is self-adjoint if and only
if the deficiency indices n+ = n− = 0, or equivalently, Im(S ± i) = H. Equivalently, the
Cayley transform of S is unitary : H → H.

In general, we have the following:

Corollary 12.2. A symmetric, closed operator S : D(S)→ H has a self-adjoint extension
if and only if the Cayley transform T can be extended to a unitary map: H → H.

Proof. This follows from our correspondence between symmetric operators and their Cayley
transforms.

Using the full strength of this result we have proven, we get the original result of von
Neumann’s extension theory.

Theorem 12.2 (von Neumann). A closed, densely defined, symmetric operator S : H → H
has a self-adjoint extension if and only if the deficiency indices are equal.
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Proof. Assume first that T can be extended to a unitary map U : H → H (so U |Im(S−i) =
T ). Write H = D(T )⊕D− and H = Im(T )⊕D+ (orthogonal decompositions). It follows
that U |D− : D− → D+ is a bijection, so the deficiency indices are equal: n− = n+.

Conversely, assume that n− = n+. Let (e+
j )j∈J , (e

−
j )j∈J be orthonormal bases for D+

and D−, respectively. Let T1 : D− → D+ take
∑

j∈J xje
−
j 7→

∑
j∈J xje

+
j . T1 is unitary, so

the map U : H → H sending (y + z) 7→ Ty + T1z (where y ∈ D(T ), z ∈ D−) is a unitary
extension of T .

Remark 12.1. We say that closed, symmetric operator S is maximal if it has no strict
symmetric extension. If S is self-adjoint, it is maximal. In general, S is maximal if and
only if at least one of the deficiency indices equals 0.

12.3 Example: Extending the Schrödinger operator

Example 12.1. The Schrödinger operator: H = L2(Rn), and P = −∆ + V (x), where
V ∈ L2

loc(Rn;R). Equipped with the domain C∞0 (Rn), P becomes symmetric and densely
defined.

We claim that P has a self-adjoint extension. We have to check that n+ = dim ker(P ∗−
i) = dim ker(P ∗ + i) = n−. Here, D(P ∗) = {u ∈ L2 : Pu ∈ L2}, where Pu is taken in
the sense of distributions; V u ∈ L1

loc, so it makes sense as a distribution. The complex
conjugation map Γ : L2(Rn) → L2(Rn) sending u 7→ u satisfies: Γ(D(P ∗)) ⊆ D(P ∗) and
[Γ, P ∗] = 0. Since Γ : D− → D+ is a bijection, the deficiency indices are equal. (Here, we
use that P is real.)
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13 Examples of Self-Adjoint Extensions

13.1 Self-adjoint extensions of differential operators

Let S : D(S) → H be symmetric, closed, and densely defined. Last time, we made the
observation that S is self-adjoint ⇐⇒ Im(S ± i) = H ⇐⇒ ker(S∗ ∓ i) = {0}. We also
saw that S has a self-adjoint extension ⇐⇒ dim Im(S + i)⊥ = dim Im(S − i).

Example 13.1. Let H = L2(Rn), and let P = P (D) be a linear, differential operator with
constant, real coefficients:

P =
∑
|α|≤m

aαD
α, aα ∈ R, D =

1

i
∂.

Let Pmin be the minimal realization of P : Pmin = P |C∞0 . Then Pmin is closed, densely
defined, and symmetric: if u, v ∈ C∞0 ,

〈Pu, v〉L2 =

∫
Puv dx =

∑
|α|≤m

∫
aαD

αuv dx = 〈u, Pv〉L2 .

We claim that Pmin is self-adjoint. Check that ker(P ∗min ± i) = {0}: Here, D(P ∗min) =
{u ∈ L2 : Pu ∈ L2}. If u ∈ D(Pmin), then we get a differential equation:

(P ∗min ± i)u = 0 ⇐⇒ (P (D)± i)u = 0

Take the Fourier transform:

F [(P (D)± i)u] = 0 ⇐⇒

 ∑
|α|≤m

aαξ
α ± i

 û(ξ) = 0.

Then û = 0, so u = 0.
Since Pmax = P ∗min, we get that Pmax = Pmin. So P has only one realization, which is

self-adjoint. That is, it only has one self-adjoint extension.

Example 13.2. Let H = L2((0,∞)), and let P (D) = D = 1
i
d
dx . Let Pmin = P |C∞0 .

Compute the deficiency indices: (P (D)± i)i = 0 for u ∈ L2((0,∞)), so(
1

i

d

dx
− i
)
u = 0 ⇐⇒ u′ + u = 0 ⇐⇒ u(x) = Ce−x ∈ L2.

So n+ = 1. For the + case, we have(
1

i

d

dx
+ i

)
u = 0 ⇐⇒ u′ − u = 0 ⇐⇒ u(x) = Cex.

But such a u /∈ L2((0,∞)), so n− = 0.
Thus, Pmin is maximal, symmetric, and has no self-adjoint extensions.
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Remark 13.1. We have omitted the argument that these differential equations have no
nonclassical solutions. We have

u′ + u = 0 ⇐⇒ (exu)′ = 0,

where this derivative is in the distributional sense. We use the fact that if u ∈ D′(R) with
u′ = 0, then u is constant.

Remark 13.2. In this example, D(P ∗min) = {u ∈ L2 : Pu ∈ L2} = H1((0,∞)).

13.2 Essentially self-adjoint operators

Definition 13.1. Let S : D(S)→ H be symmetric and densely defined. We say that S is
essentially self-adjoint if S is self-adjoint.

Here is an example.

Theorem 13.1 (Essential self-adjointness of the Schrödinger operator with a semibounded
potential). Let P = P (x,D) = −∆ + q(x), where q ∈ C(Rn;R). Let P0 be the minimal
realization of P : P0 = P |C∞0 , which is closed, symmetric and densely defined. Assume that
q ≥ −C on Rn. Then P0 is self-adjoint (i.e. P (x,D) is essentially self-adjoint).

Remark 13.3. −∆ ≥ 0: If u ∈ C∞0 , 〈−∆u, u〉 =
∫
−∆uu =

∫
|∇u|2 ≥ 0. We cannot let

the operator tend to −∞ unchecked, which is why we need this semiboundedness condition.
This condition can be relaxed, but there needs to be some condition.

If q were actually bounded, this theorem is easier to prove. One can prove that a self
adjoint operator plus a bounded self-adjoint operator is still self-adjoint (and with the same
domain).

Proof. D(P ∗0 ) = {u ∈ L2 : Pu = (−∆+q)u ∈ L2}, and P ∗0 u = Pu for u ∈ D(P ∗0 ). We shall
show that P ∗0 is symmetric; that is, 〈u, P ∗0 u〉L2 ∈ R for all u ∈ D(P ∗0 ). First, if u ∈ D(P ∗0 ),
then ∆u ∈ L2

loc. So u ∈ H2
loc = {u ∈ L2

loc : ∂αu ∈ L2
loc ∀|α| ≤ 2}. In particular, ∇u ∈ L2

loc.
We claim that if u ∈ D(P ∗0 ), then ∇u ∈ L2(Rn). We may assume that u ∈ D(P ∗0 ) is

real (by considering real and imaginary parts separately). Consider∫
ψt(x)iPu dx =

∫
ψt(x)u(−∆ + q)u dx,

where ψt(x) = ψ(tx), 0 ≤ ψ ∈ C∞0 (Rn) is a cutoff which is 1 near 0. The idea is that once
we introduce this cutoff, we can integrate by parts. We will get something like

∫
ψt|∇u|2

and will try to control this uniformly in t to use Fatou’s lemma.

We will finish the proof next time.
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14 Essential Self-Adjointness of Schrödinger Operators and
Perturbations of Self-Adjoint Operators

14.1 Essential self-adjointness of Schrödinger operators

Last time, we were proving the following theorem.

Theorem 14.1 (Essential self-adjointness of the Schrödinger operator with a semibounded
potential). Let P = P (x,D) = −∆ + q(x), where q ∈ C(Rn;R). Let P0 be the minimal
realization of P : P0 = P |C∞0 , which is closed, symmetric and densely defined. Assume that
q ≥ −C on Rn. Then P0 is self-adjoint (i.e. P (x,D) is essentially self-adjoint).

Proof. Let P0 = PC∞0 , so D(P ∗0 ) = {u ∈ L2 : Pu ∈ L2} ⊆ H2
loc. We shall show that P ∗0 is

symmetric, which is equivalent to 〈u, P ∗0 u〉L2 ∈ R for all u ∈ D(P ∗0 ).
We claim that for every u ∈ D(P ∗0 ), ∇u ∈ L2(Rn). It suffices to show this claim when

u is real (by splitting up real and imaginary parts). Consider∫
ψ2
t uP

∗
0 u dx =

∫
ψ2
t uPudx,

where ψt(x) = ψ(tx) for t > 0, 0 ≤ ψ ∈ C∞0 , and ψ(x) = 1 in |x| ≤ 1. Write∫
ψ2
t (x)uPudx =

∫
ψ2
t u(−∆ + q)u dx

=

∫
ψ2
t u(−∆u) +

∫
ψ2
t qu

2

Integrating by parts in the first integral (we can integrate u by parts by regularizing it,
but we omit that argument),

=

∫
∇(ψ2

t u) · ∇u+

∫
ψ2
t qu

2

We get ∫
ψ2
t (x)uPudx︸ ︷︷ ︸

≤‖u‖L2‖Pu‖L2

=

∫
ψ2
t |∇u|2 +

∫
2ψt∇ψt · ∇u+

∫
qψtu

2︸ ︷︷ ︸
−C

∫
ψ2
t u

2≥−C‖u‖2

.

Let I(T ) =
∫
ψt|∇u|2. We get that

I(T ) ≤ O(1) + 2

∫
|ψt∇u · u∇ψt|︸ ︷︷ ︸
≤CI(t)1/2‖u‖L2
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≤ O(1) + CI(t)1/2.

This implies that I(t) ≤ O(1) because CI(t)1/2 ≤ C2 1
ε +εI(T ) for all ε > 0 by the AM-GM

inequality. The claim follows by Fatou’s lemma.
Let u ∈ D(P ∗0 ) be complex-valued. Then∫

ψ2
t uPu =

∫
ψ2
t |∇u|2︸ ︷︷ ︸
∈R

+ 2

∫
ψtu∇ψt · ∇u︸ ︷︷ ︸

≤2‖∇ψt‖L∞‖u‖L2‖∇u‖L2→0

+

∫
qψ2

t |u|2︸ ︷︷ ︸
∈R

so the imaginary part of this goes to 0 as t → ∞. Also,
∫
ψ2
t uPu →

∫
uPu as t → ∞, so∫

uPu = 〈u, P ∗0 u〉L2 ∈ R.

Example 14.1. The quantum harmonic oscillator is the case of q(x) = |x|2, so P =
−∆ + |x|2 is essentially self-adjoint on C∞0 . One can show that the domain is D(P0) =
{u ∈ L2 : xα∂β ∈ L2, |α+ β| ≤ 2}.

Remark 14.1. If S is essentially self-adjoint, then S = (S)∗ = S∗. So the closure is the
adjoint. In particular, there is only 1 realization.

14.2 Perturbations of self-adjoint operators

Let A : D(A) → H. Then A is closed if and only if D(A) is a Banach space with respect
to the graph norm: ‖u‖D(A) := ‖u‖+ ‖Au‖.

Definition 14.1. Let A,B be linear operators on H. We say that B is A-bounded (or
relatively bounded with respect to A) if D(B) ⊇ D(A) and if there are constants
a, b ≥ 0 such that

‖Bu‖ ≤ a‖Au‖+ b‖u‖, ∀u ∈ D(A).

The infimum of all such constants a is the relative bound of B with respect to A.

Proposition 14.1. Let A be closed, and let B be A-bounded with a relative bound < 1.
Then A+B is closed on D(A).

Proof. We have:
‖Bu‖ ≤ a‖Au‖+ b‖u‖, ∀u ∈ D(A)

with a < 1. Check that the norms u 7→ ‖u‖ + ‖Au‖ and u 7→ ‖u‖ + ‖(A + B)u‖ are
equivalent on D(A). So A+B is closed.

Theorem 14.2 (Kato-Rellich5). Let A be self-adjoint, and let B be symmetric and A-
bounded with relative bound < 1. Then A+B is self-adjoint on D(A).

5Kato and Rellich both proved this result around the same time, independently of each other.

38



Proof. A+B is closed, symmetric, and densely defined on D(A). So we only need to show
that the deficiency indices are 0: that is, we want Im(A + B ± i) = H. In fact, we will
show that there exists some λ ∈ R \ {0} such that Im(A+B ± iλ) = H.

We will prove this next time.
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15 The Kato-Rellich Theorem

15.1 The Kato-Rellich theorem

Last time, we were in the middle of proving the Kato-Rellich theorem.

Theorem 15.1 (Kato-Rellich). Let A be self-adjoint, and let B be symmetric and A-
bounded with relative bound < 1. Then A+B is self-adjoint on D(A).

Proof. A+B is closed, symmetric, and densely defined on D(A). So we only need to show
that the deficiency indices are 0: that is, we want Im(A + B ± i) = H. In fact, we will
show that there exists some λ ∈ R \ {0} such that Im(A+B ± iλ) = H.

As A is self-adjoint, this is true when B = 0. We have

‖(A+ iλ)u‖2 = ‖Au‖2 + λ2‖u‖2 ∀u ∈ D(A).

So we know that A+ iλ : D(A)→ H is bijective, and

‖v‖2 = ‖A(A+ iλ)−1v‖2 + λ2‖(A+ iλ)−1v‖2 ∀v ∈ H.

So (A+ iλ)−1, A(A+ iλ)−1 ∈ L(H,H) with

‖(A+ iλ)−1‖ ≤ 1

|λ|
, ‖A(A+ iλ)−1‖ ≤ 1.

Next by the A-boundedness of B, there exists some 0 ≤ a < 1 such that for any u ∈ H,

‖B(A+ iλ)−1u‖ ≤ a‖A(A+ iλ)−1u‖+ b‖(A+ iλ)−1u‖

≤ a‖u‖+
b

|λ|
‖u‖

=

(
a+

b

|λ|

)
‖u‖

Pick λ large enough to get

=

(
1 + a

2

)
‖u‖.

Thus, the operator 1 +B(A+ iλ)−1 is invertible in L(H,H). We get that

A+B + iλ = (1 +B(A+ iλ)−1)(A+ iλ) : D(A)→ H

is bijective. So A+B is self-adjoint on D(A).

Here is an application:
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Example 15.1 (Schrödinger operator with a Coulomb potential). Let H = L2(R3), and
let P0 = −∆ (self-adjoint with D(P0) = H2(R3)). Our potential is V (x) = γ

|x| with γ ∈ R.

We claim that P = P0 + V is self-adjoint on L2 with domain D(P ) = H2. We may
assume that |γ| is small, for we can change scales: Introduce Uλ : L2 → L2 which acts as
(Uλf)(x) = λ−n/2f(x/λ). Then

U−1
λ (−∆ + V )Uλ = − 1

λ2
∆ + V (λ ·) = − 1

λ2
∆ +

γ

λ|x|
=

1

λ2

(
−∆ +

λγ

|x|

)
.

So we don’t need to worry so much about the relative bound in the Kato-Rellich theorem.
We shall show that

‖V u‖2 =

∫
|u(x)|2

|x|2
dx ≤ C(‖P0u‖+ ‖u‖)2 ∀u ∈ D(P0).

Let χ ∈ C∞0 (R3) be

χ =

{
1 |x| < 1

0 |x| > 2.

Then, letting E(x) = −1/(4π|x|) be the Newtonian potential in R3 (so ∆E = δ0),

χu = δ0 ∗ χu = ∆E ∗ χu = E︸︷︷︸
∈L2

loc

∗ ∆(χu)︸ ︷︷ ︸
∈L2

compact

.

So χu ∈ L∞ is continuous, and

|χu(x)| =
∣∣∣∣∫ E(y)∆(χu)(x− y) dy

∣∣∣∣ ≤ (∫
K
|E(y)|2 dy

)1/2

‖∆(χu)‖L2 .

Thus, |χu(x)|2 ≤ C‖∆(χu)‖2L2 , so dividing by |x|2 and integrating on both sides, we get∫
|χu(x)|2

|x|2
≤ C‖∆(χu)‖L2

≤ C(‖∆u‖2 + ‖u‖2 + ‖∇u‖2)

≤ C ′(‖∆u‖2 + ‖u‖2).

15.2 Quadratic forms

Let H be a complex, separable Hilbert space, let D ⊆ H be a linear subspace, and let
q : D ×D → C be a sesquilinear form. Let q(u) := q(u, u) be the corresponding quadratic
form with domain D(q) = D.
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Remark 15.1. The polarization identity

q(u, v) =
1

4

3∑
k=0

ikq(u+ ikv)

allows us to determine q(u, v) from q(u).

Definition 15.1. We say that q is symmetric if q(u, v) = q(v, u) for all (u, v) ∈ D (so
q(u) ∈ R for all u). A symmetric form q is bounded below if q(u) ≥ −C‖u‖2 for all
u ∈ D(q).

Example 15.2. LetH = L2(R/2πZ), and let V ∈ L1(T;R). Consider q(u) =
∫
R/2πZ(|u′|2+

V |u|2) dx with domain D(q) = H1(T) ⊆ L∞(T). Formally, we can write

q(u) = 〈Pu, u〉L2 , P = −∂2
x + V.

We’ll apply quadratic form techniques to discuss self-adjoint extensions.
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16 Closure of Quadratic Forms

16.1 Quadratic forms bounded below

Last time, we introduced the notion of quadratic forms: Let q : D → R be a symmetric
quadratic form. We say that q is bounded below if there is a c such that q(u) ≥ −c‖u‖2
for u ∈ D.

Example 16.1. Let H = L2(T), T = R/2πZ, and V ∈ L1(T;R). Let

q(u) =

∫
(|u′|2 + V |u|2) dx, D = D(q) = H1(T) ⊆ L∞(T).

Formally, q(u) = 〈Pu, u〉L2 with P = −∂2
x + V (x).

We claim that q is bounded below: For every ε > 0, there is some V ] ∈ L∞(T) such
that ‖V − V ]‖L1 ≤ ε. Then, keeping in mind that ‖u‖2H1

= ‖u′‖2L2 + ‖u‖2L2 ,

q(u) =

∫
|u′|2 +

∫
V ]|u|2︸ ︷︷ ︸

≥−Cε‖u‖2
L2

+

∫
(V − V ])|u|2︸ ︷︷ ︸
≥−O(ε)‖u‖2

H1

≥ (1−O(ε))‖u‖2H1 − Cε‖u‖2L2

for all ε > 0. We get that there exist c > 0, C > 0 such that

q(u) ≥ c‖u‖2H1 − C‖u‖2L2 , ∀u ∈ D(q).

Remark 16.1. We can always add a constant multiple of ‖u‖ to q, so from now on, we
will assume that q is nonnegative. This allows us to use the Cauchy-Schwarz inequality:

|q(u, v)| ≤ q(u)1/2q(v)1/2 ∀u, v ∈ D(q).

16.2 Closed quadratic forms

Definition 16.1. Let un ∈ D(q) and u ∈ H. We say that un is q-convergent to u

(written un
q−→ u) if un → u in H and q(un − um)

n,m→∞−−−−−→ 0. We say that q is closed if

whenever un
q−→ u, u ∈ D(q) and q(un − u)→ 0.

Remark 16.2. Let Hq = D(q), equipped with the scalar product 〈u, v〉q := q(u, v)+〈u, v〉.
Then q is closed if and only if Hq is a Hilbert space.

Let’s return to our example.

Example 16.2. Let q(u) =
∫

(‖u′|2 + V |u|2) on D(q) = H1(T) with V ∈ L1(T). Then
q(u) ≥ c‖u‖2H1 − C‖u‖2H1 , so the quadratic form u 7→ q(u) + C‖u‖2H1 is closed. Indeed,

‖u‖2q := q(u) + (c+ 1)‖u‖2H1 ,

and this inequality tells us that ‖u‖q ∼ ‖u‖H1 for u ∈ D(q).
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16.3 Closable quadratic forms

Definition 16.2. We say that q is closable if it has a closed extension q̃ : D(q̃) → R:
D(q) ⊆ D(q̃) and q̃|D(q) = q.

Proposition 16.1. A quadratic form q is closable if and only if whenever un
q−→ 0, then

q(un) → 0. If this condition holds, then q has a smallest closed extension q (the closure

of q) given by D(q) = {u ∈ H : ∃un ∈ D(q) s.t. un
q−→ u} and q(u) = limn→∞ q(un).

Proof. ( =⇒ ): Let q̃ be a closed extension. If un
q−→ 0, then un

q̃−→ 0, so q̃(un) = q(un)→ 0.

(⇐= ): Assume that the condition holds, and let un
q−→ u. We claim that limn→∞ q(un)

exists.

|q(un)− q(um)| = |q(un, un)− q(um, um)|
= |q(un − um, um) + q(um, qn − um)

C-S
≤ q1/2(un − um)q1/2(un) + q1/2(un − um)q1/2(um).

So we get
|q1/2(un)− q1/2(um)| ≤ q1/2(un − um)

n,m→∞−−−−−→ 0.

The claim follows, and if vn
q−→ u, then un − vn

q−→ 0:

q1/2(un − vn − um + vm) ≤ q1/2(un − um) + q1/2(vn − vm)→ 0.

By the assumed condition, q(un − vn)→ 0. And by the same argument as before,

|q1/2(un)− q1/2(vn)| ≤ q1/2(un − vn)→ 0.

We get a well-defined quadratic form q which extends q.
We claim that q is closed; that is, we check that Hq = D(q) is complete with respect

to 〈u, v〉q = q(u, v) + 〈u, v〉. Hq is dense in Hq, as if un ∈ Hq with un
q−→ u ∈ Hq, then

q(un − u)→ 0:
q(un − u) = lim

m→∞
q(un − um)

n→∞−−−→ 0.

Every Cauchy sequence in Hq has a limit in Hq, so we have a dense subset where every
Cauchy sequence has a limit. So Hq is complete.

Finally, one checks that if q̃ is a closed extension of q, then q ⊆ q̃.

Theorem 16.1. Let q be a nonnegative, symmetric, quadratic form. Assume that D(q) is
dense and that q is closed. Then there exists a unique self-adjoint operator A such that
D(A ) ⊆ D(q) and q(u, v) = 〈A u, v〉 for all u ∈ D(A ), v ∈ D(q). Also, D(A ) is a core
for q in the sense that D(A ) is dense in Hq.
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17 Quadratic Forms and the Friedrichs Extension Theorem

17.1 Obtaining self-adjoint operators from quadratic forms

Last time, we said that a nonnegative, symmetric quadratic form is closed if when un
q−→ u

for un ∈ D(q), then u ∈ D(q) and q(un−u)→ 0. We checked that q is closable if and only

if when un
q−→ 0, q(un)→ 0.

Theorem 17.1. Let q be a nonnegative, symmetric, quadratic form. Assume that D(q) is
dense and that q is closed. Then there exists a unique self-adjoint operator A such that
D(A ) ⊆ D(q) and q(u, v) = 〈A u, v〉 for all u ∈ D(A ), v ∈ D(q). Also, D(A ) is a core
for q in the sense that D(A ) is dense in Hq.

Example 17.1. Let q(u) =
∫
|u′|2 + V |u|2 dx, where V ∈ L1(T;R) and D(q) = H1(T).

Then there exists a unique self-adjoint operator P = −∂2
x + V such that D(P ) ⊆ H1 and

q(u, v) = 〈Pu, v〉.

Proof. Let 〈x, y〉q := q(x, y) + 〈x, y〉 for x, y ∈ D(q). Then Hq is a Hilbert space with
respect to this scalar product. Then ‖x‖q ≥ ‖x‖ for all x ∈ Hq, so for any u ∈ H, the
linear form Hq → C sending v 7→ 〈v, u〉 is continuous. By the Riesz representation theorem,
there is a unique u∗ ∈ Hq such that 〈v, u〉 = 〈v, u∗〉Hq . We get a linear map K : H → Hq

sending u 7→ u∗ such that 〈v, u〉 = 〈v, Ju〉q for all v ∈ Hq and u ∈ H.
We claim that J is a bounded, self-adjoint operator on H. If y, x ∈ H,

〈Jy, x〉 = 〈Jy, Jx〉q = 〈Jx, Jy〉q = 〈Jx, y〉 = 〈y, Jx〉 .

So J is symmetric. By the closed graph theorem, J ∈ L(H,H). Moreover, J is injective:
If Jx = 0, then 〈y, x〉 = 〈y, Jx〉q = 0 for all y ∈ Hq. But Hq is dense in H, so x = 0.

Write
H = ker J ⊕ Ran J∗ = Ran J.

So Ran J is dense and contained in Hq. Define A : D(A ) = Ran J by A x = J−1x−x. We
have J−1 is self-adjoint: J−1 is symmetric, and if (x, y) are such that

〈
J−1z, x

〉
= 〈z, y〉,

where z = Jw, then 〈w, x〉 = 〈Jw, y〉 = 〈w, Jy〉. So x ∈ D(A ), and y = J−1x. (D(A ) is
dense in Hq.)

Finally, A corresponds to the quadratic form q:

〈x, y〉q =
〈
x, J−1y

〉
,

so
q(x, y) = 〈x, y〉q − 〈x, y〉 = 〈x,A y〉 , y ∈ D(A ), x ∈ D(q).
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17.2 The Friedrichs extension theorem

In the previous theorem, we don’t have much control over the domain of the self-adjoint
operator A . Here is a frequently encountered use of the theorem.

Theorem 17.2 (Friedrichs extension). Let S be a symmetric, densely defined operator
D(S) → H such that S is bounded below: 〈Su, u〉 ≥ −C‖u‖2 for every u ∈ D(S). Let
the quadratic form q be given by D(q) = D(S), q(u) = 〈Su, u〉. Then q is closable. The
self-adjoint operator associated to q, the Friedrichs extension of S, is also bounded below.

Remark 17.1. The Friedrichs extension theorem can give a different result compared to
if we just closed the operator S.

Remark 17.2. Let q ≥ 0 be closed. Then q(u, v) = 〈u,A v〉 for v ∈ D(A ) and u ∈ D(q),
where D(A ) = {v ∈ Hq : ∃f ∈ H s.t. q(u, v) = 〈u, f〉 ∀u ∈ D(q)}. So in the theorem,
D(A ) ⊇ D(S).

Proof. We can assume that S ≥ 0. We only need to show that q is closable. Let un ∈ D(S)

be such that un → 0 in H and q(un − um)
n,m→∞−−−−−→ 0. We want to show that q(un) → 0.

We have

q(un) ≤ |q(un − um, un)|+ |q(um, un)|
C-S
≤ q1/2(un − um)q1/2(un) + |〈um, Sun〉|.

For all ε > 0, there exists an N such that q(un − um) ≤ ε when n,m ≥ N . So

q(un) ≤ ε1/2q1/2(un) + |〈um, Sun〉| ∀n,m ≥ N.

Leting m→∞, we get
q(un) ≤ ε ∀n ≥ N.

So q is closable.

Example 17.2 (The Dirichlet realization of −∆). Let Ω ⊆ Rn be open and bounded, and
let S = −∆ with D(S) = C∞0 (Ω) (S ≥ 0). The Friedrichs extension is associated with the
closure of the quadratic form

q(u) = 〈Su, u〉 =

∫
Ω

(−∆u)u =

∫
Ω
|∇u|2 dx.

Next time, we will see that in this case, D(q) is the closure of C∞0 in the topology of H1(Ω).
This is usually called H1

0 (Ω) (but is not all of H1(Ω)).
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18 Introduction to Spectral Theory of Unbounded Opera-
tors

18.1 The Dirichlet realization of a 2nd order elliptic operator

Let q : D(q) → R be a nonnegative, symmetric, densely defined, closed quadratic form.
last time, we saw that there is a unique self-adjoint operator A with D(A ) ⊆ D(q),
q(u, v) = 〈u,A v〉 for u ∈ D(q) and v ∈ D(A ). We have

D(A ) = {v ∈ D(q) : ∃f ∈ H s.t. q(u, v) = 〈u, f〉 ∀u ∈ D(q)}.

Example 18.1 (Dirichlet realization of a 2nd order elliptic operator). Let Ω ⊆ Rn be open
and bounded, and let Ω 3 x 7→ (aj,k(x)) ∈ Matn×n(R) with aj,k = ak,j with aj,k ∈ L∞(Ω).
Assume the ellipticity condition:

∃c > 0 such that
n∑

j,k=1

aj,k(x)ξjξk ≥ c|ξ|2 ∀x ∈ Ω, ξ ∈ Rn.

Let

q(u) =

∫
Ω

n∑
j,k=1

aj,k(x)
∂u

∂xj

∂u

∂xk
dx,

where D(q) = H1
0 (Ω), the closure of C∞0 (Ω) in the Sobolev space H1(Ω) = {u ∈ L2(Ω) :

∂xju ∈ L2}. Then q is closed: q(u) + ‖u‖2L2 is equivalent to ‖∇u‖2L2 + ‖u‖2L2 on H1
0 (Ω).

Associated to q is a self-adjoint operator A with

D(A ) = {u ∈ H1
0 : ∃f ∈ L2s.t. q(u, v) = 〈f, v〉 ∀v ∈ H1

0 (Ω)}
= {u ∈ H1

0 : ∃f ∈ L2s.t. q(u, v) = 〈f, v〉 ∀v ∈ H1
0 (Ω)}

Rewrite this condition:
∫ ∑

aj,k
∂u
∂xj

∂v
∂xk

=
∫
fv ∀v ⇐⇒

∑n
j,k=1 ∂xj (aj,k(x) ∂u∂xk ) ∈ L2(Ω).

=

{
u ∈ H1

0 :
∑

∂xj

(
aj,k

∂u

∂xk

)
∈ L2

}
.

A is given by

A u = −
∑

∂xj

(
aj,k

∂u

∂xk

)
, u ∈ D(A ).

The operator A is the Dirichlet realization of −
∑n

j,k=1 ∂xj (aj,k
∂u
∂xk

).
We have

〈A u, u〉 = q(u) =

∫ ∑
aj,k

∂u

∂xj

∂u

∂xk
≥ c‖∇u‖2L2 ≥ c′‖u‖2L2 ,

where the last inequality is Poincaré’s inequality. So we get A : D(A ) → L2(Ω) is
bijective: A is injective, imA is closed (by Cauchy-Schwarz), and (im A )⊥ = ker A = {0}.
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Remark 18.1. When (aj,k) = 1, the corresponding operator is A = −∆D with (−∆D) =
{u ∈ H1

0 : ∆u ∈ L2}. One can show that if ∂Ω ∈ C2, then D(−∆D) = (H1
0 ∩H2)(Ω).

Let’s look at spectral properties of A .
A −1 is bounded: L2(Ω) → L2(Ω), and it is also bounded L2(Ω) → D(A ) (equipped

with the graph norm). There is a natural embedding D(A ) → H1
0 (Ω) → L2(Ω), where

the embedding H1
0 (Ω)→ L2(Ω) is compact (Rellich compactness theorem). Thus, A −1 is

compact, and self-adjoint on L2(Ω). If λ1 ≥ λ2 ≥ · · · → 0 are the nonvanishing eigenvalues
of A −1 (each eigenvalue repeated according to its multiplicity), then let en ∈ L2(Ω) be
the corresponding eigenfunctions: (A −1 − λn)en = 0. The en form an orthonormal basis
of L2(Ω); moreover, en ∈ D(A ), and (A − 1/λn)en = 0.

Now for z ∈ C, A − z : D(A )→ L2(Ω) is invertible if and only if z 6= 1/λn for all n:

A − z = (1− zA −1)︸ ︷︷ ︸
invertible iff injective

A ,

and the first term is injective iff z 6= 1/λn for all n. We can conclude that the spectrum
of A is given by the eigenvalues µ1 ≤ µ2 ≤ · · · → ∞ with (A −µn)en = 0 and ens forming
an orthonormal basis for L2(Ω).

18.2 Spectrum and resolvent

Definition 18.1. Let T : D(T ) → H be closed and densely defined. We say that for
λ ∈ C, λ /∈ Spec(T ) if and only if T − λ : D(T ) → H is bijective. The complement of
Spec(T ) is the resolvent set of T . When λ /∈ Spec(T ), we let R(λ) = (T − λ)−1 be the
resolvent of T .

Since T is closed, R(λ) is closed. By the closed graph theorem, R(λ) ∈ L(H,H).

Proposition 18.1. The resolvent set ρ(T ) ⊆ C is open, and ρ(T ) 3 λ 7→ R(λ) ∈ L(H,H)
is holomorphic.

Next time we will prove this. We are working towards a development of the spectral
theorem for unbounded operators.
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19 Development Toward the Spectral Theorem for Unbounded
Self-Adjoint Operators

19.1 The resolvent

Let T : D(T ) → H be closed and densely defined. We said λ /∈ Spec(T ) ⇐⇒ T − λ :
D(T ) → H is bijective and defined the resolvent as R(λ) = (T − λ)−1 ∈ L(H,H) for
λ ∈ ρ(T ) = C \ Spec(T ), the resolvent set.

Proposition 19.1. The resolvent set ρ(T ) ⊆ C is open, and ρ(T ) 3 λ 7→ R(λ) ∈ L(H,H)
is holomorphic.

Proof. If λ0 ∈ ρ(T ) write

T − λ = (T − λ)− (λ− λ0) = (1− (λ− λ0)R(λ0))(T − λ0).

It follows that T − λ is invertible for |λ− λ0| < 1
‖R(λ0)‖ . We also have

R(λ) = R(λ0) = R(λ0)(1− (λ− λ0)R(λ0))−1

=

∞∑
n=0

(λ− λ0)nR(λ0)n+1.

This converges in L(H,H), so R(λ) is holomorphic.

Proposition 19.2. If T is self-adjoint, then Spec(T ) ⊆ R.

Proof. If λ ∈ C \ R,

‖(T − λ)u‖2 = ‖(T − Reλ)u‖2 + (Imλ)2‖u‖2.

We also have

‖R(λ)‖L(H,H) ≤
1

| Imλ|
.

19.2 Nevanlinna-Herglotz functions for self-adjoint operators

Example 19.1. Let :D(A ) → H be self-adjoint, 〈A u, u〉 ≥ c‖u‖2 for u ∈ D(A ), and
A −1 : H → H be compact. Then Spec(A) is of the form λ1 ≤ λ2 ≤ · · · → ∞. Let ej be
an orthonormal basis of H such that (A − λj)ej = 0. Then for u =

∑
j xjej ∈ H,

〈R(z)u, u〉 =
∑ |cj |

λj − z
=

∫
ξ − z

dµ(ξ), dµ =
∑
|cj |2δ(ξ − λ)

This is a positive, pure point measure of total mass
∫
dµ = ‖u‖2 (by Parseval).
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Let A : D(A)→ H be self-adjoint, and consider the holomorphic function

f(z) = 〈R(z)u, u〉 , Im z > 0.

Then |f(z)| ≤ C
| Im z| , where C = ‖u‖2. We have

2i Im f(z) = 〈R(z)u, u〉 − 〈R(z)∗u, u〉

Using R(z)∗ = R(z),

= 〈(R(z)−R(z))u, u〉

We can also check via algebraic manipulation that R(λ)−R(µ) = (λ−µ)R(λ)R(µ). Using
this,

= 2i Im z 〈R(z)∗R(z)u, u〉 .

So we get
Im f = Im z‖R(z)u‖2.

In particular, Im f ≥ 0 for Im z > 0.
Now we can use the following general result from complex analysis.6

Theorem 19.1 (Nevanlinna, Herglotz,. . . ). Let f be a holomorphic function in Im z > 0
with Im f ≥ 0 and |f(z)| ≤ c

Im z . Then there is a uniform bound∫
Im f(x+ iy) dx ≤ Cπ ∀y > 0,

and there exists a positive bounded measure µ on R such that

1

π

∫
ϕ(x) Im f(x+ iy) dx

y→0+−−−−→
∫
ϕdµ ∀ϕ ∈ CB := (C ∩ L∞)(R).

We have

f(z) =

∫
1

ξ − z
dµ(ξ), Im z > 0,∫

dµ(ξ) = lim
y→+∞

y Im f(iy) = lim
z→∞

(−zf(z)),

where z →∞ with arg(z) bounded away from 0, π.
Conversely, if µ ≥ 0 is a bounded measure on R and f is defined by f(z) =

∫
1
ξ−zdµ(ξ),

then both the weak convergence and the limit condition hold.

6This is a standard result. It was even a qualifying exam problem in the past.
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Proof. Take the semicircle contour γ (slightly above the real axis) made of Im z = c > 0
and an arc of radius R. Cauchy’s integral formula gives

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z

=
1

2πi

∫
γ
f(ζ)

(
1

ζ − z
− 1

ζ − z∗

)
dζ,

where z∗ is the regkection of z over the line Im z = c. That is, z∗ = z + 2ic.

=
1

2πi

∫
γ
f(ζ)

z − z∗

(ζ − z)(ζ − z∗)
dζ

Letting R→∞, we get

f(z) =
1

2πi

∫
Lc

f(ζ)(z − z∗)
(ζ − z)(ζ∗ − z∗)

dζ,

where Lc is the whole line Im z = c and (ζ − z)(ζ∗ − z∗) = |ζ − z|2. Take the imaginary
part of this to get

Im f =
Im z − c

π

∫
Lc

Im f(ζ)

|ζ − z|2
dζ

Multiply by Im z and let Im z →∞ while keeping Re z fixed: the left hand side is ≤ c. By
Fatou’s lemma,

1

π

∫
R

Im f(x+ ic) dx ≤ c.

By Banach-Alaoglu, there is a sequence of cn → 0+ and a positive, bounded measure
µ on R such that

1

π
Im f(x+ icn) dx

weak*−−−−→ µ.

We get that

Im f(z) = Im z

∫
1

|ξ − z|2
dµ(ξ), Im z > 0.

This implies that

Im

(
f(z)−

∫
1

ξ − z
dµ(ξ)

)
= 0,

so

f(z) =

∫
1

ξ − z
dµ(ξ),

proving the first claim.

We will finish the proof of the theorem next time.
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20 Development of Spectral Measures

20.1 Nevanlinna-Herglotz functions

Last time, we were proving the following theorem from complex analysis.

Theorem 20.1 (Nevanlinna, Herglotz,. . . ). Let f be a holomorphic function in Im z > 0
with Im f ≥ 0 and |f(z)| ≤ c

Im z . Then there is a uniform bound∫
Im f(x+ iy) dx ≤ Cπ ∀y > 0,

and there exists a positive bounded measure µ on R such that

1

π

∫
ϕ(x) Im f(x+ iy) dx

y→0+−−−−→
∫
ϕdµ ∀ϕ ∈ CB := (C ∩ L∞)(R).

We have

f(z) =

∫
1

ξ − z
dµ(ξ), Im z > 0,∫

dµ(ξ) = lim
y→+∞

y Im f(iy) = lim
z→∞

(−zf(z)),

where z →∞ with arg(z) bounded away from 0, π.
Conversely, if µ ≥ 0 is a bounded measure on R and f is defined by f(z) =

∫
1
ξ−zdµ(ξ),

then both the weak convergence and the limit condition hold.

Last time, we showed that f(z) =
∫

1
ξ−zdµ(ξ), which implies that∫

dµ(ξ) = lim
y→∞

y Im f(iy) = lim
z→∞

(−zf(z)).

Proof. We claim that 1
π Im f(x+ iy) dx→ dµ weak* as y → 0+. If ϕ ∈ CB(R),

1

π
Im f(x+ iy)ϕ(x) dx =

1

π

∫∫
ϕ(x)

y

|ξ − x− iy|2
dµ(ξ) dx

=

∫ (
y

π

∫
ϕ(x)

|ξ − x− iy|2
dx

)
dµ(ξ)

The part inside the parentheses is 1
π

∫ ϕ(ξ+ty)
1+t2

dt → ϕ(ξ) by cominated convergence as

y → 0+. The convergence is dominated by ‖ϕ‖L∞ ∈ L1(dµ), so by another application of
dominated convergence, we get

y→0+−−−−→
∫
ϕ(ξ) dµ(ξ).
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20.2 Construction of spectral measures via Nevanlinna-Herglotz func-
tions

Apply the theorem to f(z) = 〈R(z)u, u〉, where u ∈ H and R(z) = (A−z)−1 is the resolvent
of a self-adjoint operator A. We can write

〈R(z)u, u〉 =

∫
1

ξ − z
dµu(ξ),

where the total measure is∫
dµu = lim

y→+∞
y Im 〈R(iy)u, u)〉︸ ︷︷ ︸

y‖R(iy)u‖2

≤ ‖u‖2.

We have, for ϕ ∈ CB,∫
ϕ(x) dµu(x) = lim

y→0+

1

π

∫
Im 〈R(x+ iy)u, u〉ϕ(x) dx

= lim
y→0+

1

2πi
ϕ(x)[〈R(x+ iy)u, u〉 − 〈R(x− iy)u, u〉] dx

So the measure is given by the jump of the resolvent over the real line.

Remark 20.1. We have that supp(µn) ⊆ Spec(A) for all u.

Define the complex measures µu,v for u, v ∈ H by polarization:

dµu,v =
1

4
(dµu+v + idµu+iv − dµu−v − idµu−iv).

Then we have

〈R(z)u, v〉 =

∫
1

ξ − z
dµu,v(ξ),∫

ϕdµu,v = lim
y→0+

1

2πi

∫
ϕ(x) 〈(R(x+ iy)−R(x− iy))u, v〉 dx.

The total mass of µu,v is∫
dµu,v ≤

1

4
(‖u+ v‖2 + ‖u+ iv‖2 + ‖u− v‖2 + ‖u− iv‖

By homogeneity, we may assume ‖u‖ = ‖v‖ = 1.

=
1

4
(2(‖u‖2 + ‖v‖2)2) = 2.

So by homogeneity, ‖µu,v‖ ≤ 2‖u‖ · ‖v‖.
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For fixed ϕ ∈ CB, we have∣∣∣∣∫ ϕdµu,v

∣∣∣∣ ≤ 2‖ϕ‖L∞‖u‖‖v‖,

so the map (u, v) 7→
∫
ϕdµu,v is a bounded, sesquilinear form on H × H. By the Riesz

representation theorem, there is a unique operator ϕ(A) ∈ L(H,H) such that 〈ϕ(A)u, v〉 =∫
ϕdµu,v. We also get that ‖ϕ(A)‖ ≤ 2‖ϕ‖L∞ . In other words,

ϕ(A) = lim
ε→0+

1

2πi

∫
ϕ(λ)(R(λ+ iε)−R(λ− iε)) dλ

(where the limit exists in the weak operator topology).

Remark 20.2. Let A : Cn → Cn be a Hermitian matrix. Then the above relation holds:
it suffices to check this formula when n = 1, where A is multiplication by t for t ∈ R. In
this case, this is

ϕ(t) = lim
ε→0+

1

2πi

∫
ϕ(λ)

(
1

t− λ− iε
− 1

t− λ+ iε

)
dλ.

This is equivalent to

δ(t) = lim
ε→0

1

2πi

(
1

t− iε
− 1

t+ iε

)
,

which is called Plemelj’s formula. The proof is (if we take t = 0):

ϕ(0) = lim
ε→0+

1

2πi

∫
ϕ(t)

2iε

t2 + ε2
= lim

ε→0

1

π

∫
εϕ(t)

ε2 + t2
.

One sometimes writes

δ(A− λ) =
1

2πi
(R(λ+ i0)−R(λ− i0)),

ϕ(A) =

∫
ϕ(λ)δ(A− λ) dλ.

Definition 20.1. The measures µu,v are called the spectral measures of A.

We have defined a map of algebras CB → L(H,H) sending ϕ 7→ ϕ(A). This map has
nice algebraic properties that we will study. This will lead us to the development of the
spectral theorem.
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21 Properties of Spectral Measures

21.1 Total mass of spectral measures

Let ϕ ∈ (C ∩ L∞)(R) and let A : D(A)→ H be self-adjoint. Last time, we had

〈ϕ(A)u, v〉 = lim
ε→0+

1

2πi

∫
ϕ(λ) 〈(R(λ+ iε)−R(λ− iε))u, v〉 dλ.

This is similar to the finite dimensional case, where

ϕ(A) =
∑

λ∈Spec(A)

ϕ(λ)Πλ,

where Πλ is the orthogonal projection on to ker(A− λ).

Remark 21.1. Observe that ϕ(A)∗ = ϕ(A):

〈ϕ(A)∗u, v〉 = 〈u, ϕ(A)v〉
= 〈ϕ(A)v, u〉

= − 1

2πi
lim
ε→0+

∫
ϕ(λ)〈(R(λ+ iε)−R(λ− iε))u, v〉 dλ

Using R(λ± iε)−R(λ∓ iε),

= 〈ϕ(A)u, v〉 .

We also introduced the spectral measures dµu,v with 〈ϕ(A)u, v〉 =
∫
ϕ(λ) dµu,v(λ).

Proposition 21.1. The total mass of the spectral measure dµu,v is∫
dµu,v = 〈u, v〉 .

Equivalently, 1(A) = I ∈ L(H,H).

Proof. By continuity and density, we may assume u, v are in a dense subset of H; assume
u, v ∈ D(A). By polarization, we may take u = v. If u ∈ D(A), then

(A− z)u = Au− zu

If Im z > 0, then we get
u = R(z)Au− zR(z)u,

so we get

R(z)u = −1

z
u+

1

z
R(z)Au.

If z → ∞ with Re z fixed, we get R(z)u = −1
zu + O(1/|z|2). Recall from Nevannlinna’s

theorem that ∫
dµu = lim

z→∞
(−z 〈R(z)u, u〉) = ‖u‖2.
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21.2 Decay of spectral measures

Proposition 21.2. Let ϕ ∈ CB For all u ∈ D(A) and v ∈ H,

〈ϕ(A)Au, v〉 = 〈ϕ1(A)u, v〉 ,

where ϕ1(λ) = λϕ(λ) ∈ CB.

Proof. The left hand side is

LHS = lim
ε→0

1

2πi

∫
ϕ(λ) 〈(R(λ+ iε)−R(λ− iε))u, v〉

Note that (R(λ+ iε)−R(λ− iε))u = u+ (λ+ iε)R(λ+ iε)u− (λ− iε)R(λ− iε)u.

= 〈ϕ1(A)u, v〉+ lim
ε→0+

iε

2πi

∫
ϕ(λ) 〈(R(λ+ iε) +R(λ− iε))u, v〉 dλ

To show that the right term equals 0, we have

O(ε)

∣∣∣∣∫ ϕ(λ) 〈R(λ± iεu, v〉 dλ
∣∣∣∣ ≤ O(ε)

∫
|ϕ(λ)|‖R(λ± iε)u‖ dλ

By Cauchy-Schwarz,

≤ O(ε)

(∫
‖R(λ± iεu)‖2 dλ

)
Recall that Im 〈R(λ+ iε)u, u〉 = ε‖R(λ+ iε)u‖2.

≤ O(ε1/2)

(∫
Im 〈R(λ+ iε)u, u〉 dλ

)1/2

ε→0−−−→ 0.

We get that 〈ϕ(A)Au, v〉 = 〈ϕ1(A)u, v〉.

In particular, if ϕ ∈ C0(R), we have

〈ϕ(A)Au,Au〉 = 〈ϕ1(A)u,Au〉 = 〈u, ϕ1(A)Au〉 =
〈
u, ψ(A)u

〉
,

where ψ(λ) = λ2ϕ(λ). We get

〈ϕ(A)Au,Au〉 = 〈ψ(A)u, u〉 .

On the level of spectral measures, we get∫
ϕ(λ) dµAu(λ) =

∫
λ2ϕ(λ) dµu(λ).
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If 0 ≤ ϕ ≤ 1, then the left hand side is ≤ ‖Au‖2. Letting ϕ ↑ 1, we get by Fatou’s lemma:∫
λ2 dµu(λ) <∞.

By monotone convergence, we get∫
λ2 dµu(λ) = ‖Au‖2 <∞ ∀u ∈ D(A).

21.3 Multiplicativity of the functional calculus

Proposition 21.3. Let ϕ,ψ ∈ C0(R). Then ϕ(A)ψ(A) = (ϕψ)(A).

Proof. Let ϕk(λ) = λkϕ(λ) for k = 1, 2, . . . . For u ∈ H and v ∈ D(A), we have:

〈ϕ(A)u,Av〉 = 〈u, ϕ(A)Av〉
= 〈u, ϕ1(A)v〉
= 〈ϕ1(A)u, v〉 .

Thus, ϕ(A)u ∈ D(A∗) = D(A) and ϕ1(A)u = Aϕ(A)u. In particular, imϕ(A) ⊆ D(A)
for all ϕ ∈ C0. So imϕ1(A) ⊆ D(A), so imϕ(A) ⊆ D(A2). Iterating this argument, we
get that imϕ(A) ⊆ D(Aj) for j = 1, 2, . . . and ϕj(A) = Ajϕ(A) for any j. When p is a
polynomial, we get p(A)ϕ(A) = (pϕ)(A).

The idea is to let χ ∈ C0(R) with 0 ≤ χ ≤ 1 be such that χ = 1 on supp(ϕ)∪ supp(ψ).
Pick a sequence of polynomials pj such that pjχ → ψ uniformly. Then (pjχ)(A) → ψ(A)
in L(H,H). We will give the details next time.
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22 Multiplicativity and the Functional Calculus for the Lapla-
cian

22.1 Multiplicativity of the functional calculus

Last time, we were proving the multiplicativity of our functional calculus:

Proposition 22.1. Let A be self-adjoint, and let ϕ,ψ ∈ C0(R). Then ϕ(A)ψ(A) =
(ϕψ)(A).

Proof. Last time, we showed that Imϕ(A) ⊆ D(Aj) for all j and that for any polynomial
p, p(A)ϕ(A) = (pϕ)(A).

Let χ ∈ C0(R) with 0 ≤ χ ≤ 1 and χ = 1 on supp(ϕ) ∪ supp(ψ). For u, v ∈ H, write

〈ϕ(A)u, (pχ)(A)v〉 = 〈ϕ(A)u, p(A)χ(A)v〉
Since ϕ ∈ D(Aj) for all j,

= 〈p(A)ϕ(A)u, χ(A)v〉
= 〈(pϕ)(A)uχ(A)v〉 .

Take a sequence pj of polynomials such that χpj → χψ = ψ uniformly on R. Recall that

we had for all f ∈ CB, ‖f(A)‖L(H,H) ≤ 2‖f‖L∞ . Thus, (χpj)(A)
L(H,H)−−−−−→ ψ(A) = ψ(A)∗.

Also, pjϕ = pjχϕ→ ψϕ uniformly, so pjϕ(A)
L(H,H)−−−−−→ (ψϕ)(A). We get

〈ψ(A)ϕ(A)u, v〉 = 〈ϕ(A)u, ψ(A)∗v〉 = 〈(ψϕ)(A)u, χ(A)v〉 .

Now let χ ↑ 1 pointwise; we claim that χ(A) → 1 weakly. So we get 〈ψ(A)ϕ(A)u, v〉 =
〈(ψϕ)(A)u, v〉 for all u, v.

To prove that χ(A)→ 1 weakly, note that if ϕj ∈ CB, ϕ ∈ CB, and ϕj → ϕ pointwise
boundedly (∃C such that |ϕj(x)| ≤ C for all j, x), then

〈ϕj(A)u, v〉 =

∫
ϕj(λ) dµu,v

j→∞−−−→
∫
ϕ(λ) dµu,v(λ) = 〈ϕ(A)u, v〉

by polarization and dominated convergence.

22.2 Spectrum and functional calculus for the Laplacian

Let A = −∆ on L2(Rn) be self-adjoint with D(A) = H2(Rn). Given ϕ ∈ C0(R), we
compute ϕ(A).

Proposition 22.2. Spec(A) = [0,∞).
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Proof. First, Spec(A) ⊆ [0,∞), as A ≥ 0: for u ∈ D(A),

〈Au, u〉 =

∫
|∇u|2 ≥ 0.

To get equality, it suffices to show that (0,∞) ⊆ Spec(A) (as the spectrum is closed). For
contradiction, let λ > 0 be such that A− λ : D(A) → L2 is bijective. Then there exists a
constant C > 0 such that ‖u‖L2 ≤ C‖(A− λ)u‖L2 for any u ∈ D(A).

Remark 22.1. A has no eigenvalues:7 If u ∈ L2 and (−∆ − λ)u = 0, then taking the
Fourier transform, we get

(|ξ|2 − λ)û(ξ) = 0,

so û = 0 =⇒ u = 0.

Instead, we want to find generalized eigenfunctions u ∈ L∞ such that (−∆−λ)u =
0. We can take u(x) = eix·ξ for ξ ∈ Rn (where |ξ|2 = λ). Consider the quasimodes8

uj(x) = j−n/2χ(x/j)eixξ, where χ ∈ C∞0 (Rn) is 1 near 0 with ‖χ‖L2 = 1. Then ‖uj‖L2 = 1,
and

‖(A− λ)(j−n/2χ(x/j)eix·ξ)‖L2 = O(1/j).

So the lower bound inequality for A− λ cannot hold.
To determine ϕ(A) for ϕ ∈ C0(R), notice that ϕ(A) = 0 if supp(ϕ) ⊆ (−∞, 0). Com-

pute the resolvent first: If Im z 6= 0,

R(z)u = v, u, v ∈ L2 ⇐⇒ (−∆− z)v = u

By Fourier transform, we get

R(z)u = F−1

(
û(ξ)

|ξ|2 − z

)
.

We get

〈ϕ(A)u, u〉 = lim
ε→0+

1

2πi

∫
ϕ(λ) 〈(R(λ+ iε)−R(λ− iε))u, u〉 dλ

By Parseval,

= lim
ε→0+

1

(2π)n
lim
ε→0+

∫∫
ϕ(λ)|û(ξ)|2

(
1

|ξ|2 − λ− iε
− 1

|ξ|2 − λ+ iε

)
dλ dξ

Integrate first in λ and send ε→ 0 using dominated convergence.

=
1

(2π)n

∫
ϕ(|ξ|2)|û(ξ)|2 dξ.

So we get
ϕ(A)u = F−1(ϕ(|ξ|2)û).

7This says that the spectral measures have no pure point components.
8This terminology is common in mathematical physics literature.
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22.3 Correcting the norm bound in the functional calculus

Proposition 22.3. Let A be self-adjoint, and let ϕ ∈ C0(R).

‖ϕ(A)‖L(H,H) ≤ ‖ϕ‖L∞ .

Previously, we had a factor of 2 in the bound.

Proof. We have

‖ϕ(A)u‖2 = 〈ϕ(A)u, ϕ(A)u〉
= 〈ϕ(A)ϕ(A)u, u〉
=
〈
|ϕ|2(A)u, u

〉
=

∫
|ϕ|2(λ) dµu(λ)

≤ ‖ϕ‖2L∞‖u‖2.

We also get the following result.

Corollary 22.1.
ϕ(A)‖L(H,H) ≤ ‖ϕ‖L∞(Spec(A)).

Next, we will extend this multiplicativity property to more continuous functions.

60



23 Functional Calculus for Bounded Continuous Functions
and Bounded Baire Functions

23.1 Approximation in the functional calculus

Let ϕ,ψ ∈ C0(R), and let A be self-adjoint. Lsat time, we showed that ϕ(A)ψ(A) =
(ϕψ)(A) and that ‖ϕ(A)‖L(H,H) ≤ ‖ϕ‖L∞(Spec(A)).

These properties extend to ϕ,ψ ∈ CB(R) by approximation (pick ϕ ∈ C0 with ϕj → ϕ
pointwise and boundedly to get ϕj(A) → ϕ(A) weakly). Notice also that if ϕk, ϕ ∈ CB
with ϕj → ϕ pointwise boundedly, then ϕj(A)→ ϕ(A) strongly: for all u ∈ H,

‖ϕj(A)u− ϕ(A)u‖2 = 〈(ϕj − ϕ)(A)u, (ϕj − ϕ)(A)u〉

=

∫
|ϕj(λ)− ϕ(λ)|2 dµn(λ)

→ 0

by dominated convergence. (And if we have uniform approximation, we get operator norm
convergence.)

23.2 Domain of A in terms of spectral measures

Recall that if u ∈ D(A), then
∫
λ2 dµ(λ) < ∞ and

∫
λ2 dµ(λ) = ‖Au‖2. Assume, con-

versely, that
∫
λ2 dµu(λ) <∞ for u ∈ H. Let ϕ ∈ C0 with 0 ≤ ϕ ≤ 1, and write

Aϕ(A)u = ϕ1(A)u,

where ϕ1(λ) = λϕ(λ). We get

‖Aϕ(A)u‖2 = 〈ϕ1(A)u, ϕ1(A)u〉

=

∫
λ2ϕ(λ)2 dµu(λ).

Let ϕj ∈ C0 with 0 ≤ ϕj ≤ 1 and ϕj ↑ 1. Then ϕj(A)u→ u in H. Also,

‖A(ϕj(A)− ϕk(A))u‖2 =

∫
λ2(ϕ2

j (λ)− ϕ2
k(λ)) dµu(λ)

j,k→∞−−−−→ 0

by dominated convergence, so Aϕj(A)u → v in H. A is closed (as it is self-adjoint), so
u ∈ D(A), and Au = limj→∞Aϕj(A)u.

Remark 23.1.

‖dµu,v‖ = sup
|ϕ|≤1

∣∣∣∣∫ ϕdµu,v

∣∣∣∣︸ ︷︷ ︸
〈ϕ(A)u,v〉

≤ ‖u‖ · ‖v‖.
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23.3 Summary of properties of the functional calculus

Let’s summarize our results:

Proposition 23.1 (continuous bounded functional calculus). Let A be self-adjoint. The
map Φ : CB(R)→ L(H,H) sending ϕ 7→ ϕ(A) has the following properties:

1. Φ is an algebra homomorphism.

2. ϕ(A)∗ = ϕ(A).

3. ‖ϕ(A)‖ ≤ ‖ϕ‖L∞(Spec(A))

4. For all u ∈ H, the map dµu : ϕ 7→ 〈ϕ(A)u, u〉 is a positive measure.

5. 1(A) = 1 ∈ L(H,H).9

6. If ϕj → ϕ pointwise boundedly, then ϕj(A)→ ϕ(A) strongly.

7. We have D(A) = {u ∈ H :
∫
λ2 dµ(λ) <∞}, where Au = limj→∞Aϕj(A)u if ϕj ↑ 1

and ϕj ∈ C0.

23.4 Extension of the functional calculus to bounded Baire functions

Next, we extend the functional calculus to the algebra of bounded Baire functions.

Definition 23.1. Let K be a class of functions f : R → C. We say that K is closed
under pointwise limits if for any sequence fj ∈ K such that f = limj fj exists, we have
f ∈ K. We let the Baire functions Ba(R) be the smallest class of functions R → C
containing C(R) which is closed under pointwise limits.

Remark 23.2. Ba(R) is an algebra under pointwise multiplication: Let f ∈ C(R), and
let K = {g : fg ∈ Ba(R)}. K ⊇ C(R) and is closed under pointwise limits, so K ⊇ Ba(R).
Similarly, we extend to f ∈ Ba(R).

Remark 23.3. If µ is a positive (Radon) measure and f ∈ Ba(R), then f is µ-measurable.

Let Bab(R) be the Banach algebra of bounded Baire functions (Bab(R) ⊆ L1(µu)
for all u ∈ H).

Proposition 23.2. Let ϕ ∈ Bab(R). There exists a unique, bounded linear map ϕ(A) ∈
L(H,H) such that

〈ϕ(A)u, v〉 =

∫
ϕ(λ) dµu,v(λ).

9This actually follows from the fact that Φ is an algebra homomorphism.
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Proof. We have to check that (u, v) 7→
∫
ϕ(λ) dµu,v is sesquilinear; the Riesz-representation

theorem will provide ϕ(A). We may assume that ϕ is real, so |ϕ| ≤M . Let us check that∫
ϕ(λ) dµλ1u1+λ2u2,v = λ1

∫
ϕ(λ) dµu1,v(λ) + λ2

∫
ϕ(λ) dµu2,v(λ).

Let K = {ϕ ∈ Bab(R;R) : |ϕ| ≤ M, this condition holds}. Then K contains continuous
functions, and K is closed under pointwise limits (by dominated convergence). We need
one more claim:

Claim: The class {ϕBab(R;R) : |ϕ| ≤ M} is the smallest class of functions R →
[−M,M ] containing continuous functions R → [−M,M ] which is closed under pointwise
limits. Check that this holds. We get that K = {ϕ ∈ Bab(R;R) : |ϕ| ≤ M}, and the
proposition follows.
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24 The Spectral Theorem for Unbounded, Self-Adjoint Op-
erators

24.1 Multiplicative properties of the functional calculus for bounded
Baire functions

Last time, we set about extending our functional calculus to the class of bounded Baire
functions Ba(R), the smallest class of functions R → C containing C(R) which is closed
under pointwise limits. We showed that for any ϕ ∈ Bab(R), there is a unique map
ϕ(A) ∈ L(H,H) such that 〈ϕ(A)u, v〉 =

∫
ϕ(λ) dµu,v(λ).

As in the case for continuous functions, we get

‖ϕ(A)‖ ≤ ‖ϕ‖L∞(Spec(A)).

If ϕ ∈ Bab(R) is real, then 〈ϕ(A)u, u〉 ∈ R, so ϕ(A) is self-adjoint. In general, ϕ(A)∗ =
ϕ(A).

Next, we have the multiplicative property:

Proposition 24.1. Let A be self-adjoint, and let ϕ,ψ ∈ Bab(R). Then

(ϕψ)(A) = ϕ(A)ψ(A).

Proof. We may assume that ϕ,ψ are real. Fix ϕ ∈ CB and consider KM = {ψ ∈ Ba(R;R) :
|ψ| ≤ M,mult. prop. holds}. Then KM contains the continuous functions, and KM is
closed under pointwise convergence: if ψj ∈ KM with ψj → ψ pointwise, then ψj(A) →
ψ(A) ∈ KM weakly, so (ϕψj)(A) → (ϕψ) weakly. It follows that KM = {ψ ∈ Ba(R;R) :
|ψ| ≤M}. Next, keeping ψ ∈ Bab(R;R) fixed, we extend the multiplicative property to all
ϕ ∈ Bab.

It follows as in the continuous case that if ϕj ∈ Bab(R) with ϕj → ϕ pointwise bound-
edly, then ϕj(A)→ ϕ(A) strongly (for all u ∈ H, ‖ϕj(A)u− ϕ(A)u‖ → 0).

Remark 24.1. Assume that ϕ ∈ Bab is such that ψ(λ) = λϕ(λ) ∈ Bab. Let

r(λ) =
1

z − λ
,

Im z 6= 0, ϕz(λ) = r(λ)−1ϕ(λ) = ψ(λ)− zϕ(λ) ∈ Bab .

We can write
ϕ(λ) = r(λ)ϕz(λ),

so
ϕ(A) = r(A)ϕz(A).
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Now r(A) = R(z) (λr(λ) ∈ CB, so Ar(A) = λ
λ−z (A) = 1 + zr(A)). We get that Imϕ(A) ⊆

D(A) and
Aϕ(A) = AR(z)︸ ︷︷ ︸

!+zR(z)

ϕz(A) = ψ(A).

So we get that the multiplicative property holds when one of the functions is λ (which is
unbounded), as long as the result is still bounded.

24.2 The spectral theorem for unbounded, self-adjoint operators

Theorem 24.1 (spectral theorem). Given a self-adjoint operator A, there is a unique
algebra homomorphism Φ : Bab(R)→ L(H,H) sending ϕ 7→ ϕ(A) such that:

1. ϕ(A) = ϕ(A)∗

2. ‖ϕ(A)‖ ≤ ‖ϕ‖L∞(Spec(A))

3. If ϕj ∈ Bab with ϕj → ϕ pointwise boundedly, then ϕj(A)→ ϕ(A) strongly.

4. If ϕ,ϕ1(λ) (= λϕ(λ)) ∈ Bab, then ϕ1(A) = Aϕ(A).

5. u ∈ D(A) if and only if there is a uniform upper bound for ‖ϕ1(A)u‖ when ϕ1(λ) =
λϕ(λ), 0 ≤ ϕ ≤ 1, and ϕ ∈ Bab with compact support. In this case,

Au = lim
j→∞

ϕ1,j(A)u,

where ϕj ↑ 1.

Proof. Only uniqueness remains to be checked. Let rz(λ) = 1
λ−z , where Im z 6= 0. Then

λrz(λ) = 1 + zrz(λ), so by property 4, AΦ(rz) = 1 + zΦ(rz). So we conclude that Φ(rz) =
R(z), the resolvent of A. Given u ∈ H, let µ be the measure on R sending ϕ 7→ 〈Φ(ϕ)u, u〉.
Then

〈Φ(rz)u, u〉 = 〈R(z)u, u〉 =

∫
1

λ− z
dµ(λ).

By the proof of Nevanlinna’s theorem,

dµ = lim
ε→0+

1

π
Im 〈R(λ+ iε)u, u〉 dλ,

which shows the uniqueness.
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24.3 Extending the functional calculus to unbounded Baire functions

Next, we will define ϕ(A) as an unbounded operator when ϕ ∈ Ba(R). Recall that if
ϕ ∈ Bab, then

‖ϕ(A)u‖2 =

∫
|ϕ(λ)|2 dµu(λ).

Define

D(ϕ(A)) = {u ∈ H :

∫
|ϕ(λ)|2 dµi(λ) <∞}

=

{
u ∈ H : sup

|ψ|≤|ϕ|,ψ∈Bab

‖ψ(A)u‖ <∞

}
.

This is a linear subspace of H.
To define ϕ(A), let ϕj ∈ Bab be such that ϕj → ϕ with |ϕj | ≤ |ϕ|. Then, for any

u ∈ D(ϕ(A)), limj→∞ ϕj(A)u exists (‖ϕj(A)u− ϕk(A)u‖2 =
∫
|ϕj − ϕk|2 dµi

j,k→∞−−−−→ 0 by
dominated convergence). So we let

ϕ(A)u = limϕk(A)u,

which is independent of the chosen sequence.

Proposition 24.2. Let A be self-adjoint, and let ϕ ∈ Ba(R). Then ϕ(A) is densely defined,
and ϕ(A)∗ = ϕ(A) (so D(ϕ(A)∗) = D(ϕ)). In particular, ϕ(A) is closed.
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25 Projection-Valued Measures

25.1 Unbounded functional calculus

Let A be self-adjoint, and let ϕ ∈ Ba(R). We want to define ϕ(A) by

D(ϕ(A)) =

{
u ∈ H :

∫
|ϕ(λ)|2 dµu(λ) <∞

}
,

ϕ(A)u = lim
j→∞

ϕj(A)u, ϕj ∈ Bab(R), ϕj → ϕ, |ϕj | ≤ |ϕ| <∞.

Proposition 25.1. Let A be self-adjoint, and let ϕ ∈ Ba(R). Then ϕ(A) is densely defined,
and ϕ(A)∗ = ϕ(A) (so D(ϕ(A)∗) = D(ϕ)). In particular, ϕ(A) is closed.

Proof. Let’s check the first claim. If u ∈ H, let χn = 1{|ϕ|≤n}. Then χn ∈ Bab, and
χn → 1. So χn(A)u → u. Notice that if u ∈ H and ϕ ∈ Bab(R), then dµϕ(A)u = |ϕ|2 dµu:
for any f ∈ C0,∫

f dµϕ(A)u = 〈f(A)ϕ(A)u, ϕ(A)u〉 =
〈
(f |ϕ|2)(A)u, u

〉
=

∫
f |ϕ|2 dµu.

In particular, supp(dµχn(A)u) ⊆ {|ϕ| ≤ n}, so∫
|ϕ|2 dµχn(A)u <∞,

which implies that χn(A)u ∈ D(ϕ(A)). Now use this argument with χnϕ to get the
claim.

25.2 Projection-valued measures

Let M ⊆ R be a Baire set (1M ∈ Ba) and set E(M) := 1M (A) ∈ L(H,H). Then

• E(M) is an orthogonal projection on H.

• E(R) = 1.

• E(M1)E(M2) = E(M1 ∩M2).

• E(∅) = 0.

• If M =
⋃∞
j=1Mj with Mj ∩Mk = ∅, then E(M) is the strong limit of

∑N
j=1E(Mj)

as N →∞.
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The map M 7→ E(M) is an orthogonal projection-valued measure.
Recall next that if µ is a positive bounded measure on R, then there exists a unique

left continuous increasing function ϕ such that ϕ(λ)→ 0 as λ→ −∞ and
∫
f dµ =

∫
f dϕ

for all f ∈ C0: We have ϕ(λ) = µ(1(−∞,λ)).
In particular,

µu(1(−∞,λ)) =
〈
1(−∞,λ)(A)u, u

〉
= 〈Eλu, u〉 , where Eλ = E((−∞, λ)) = 1(−∞,λ)(A).

We have:

• Eλu→ 0 as λ→ −∞,

• Eλu→ u as λ→∞,

• Eλ−εu→ Eλu as ε→ 0+.

If ϕ ∈ Bab, we have

〈ϕ(A)u, u〉 =

∫
ϕ(λ) dµu(λ) =

∫
ϕ(λ) d〈Eλu, u〉.

If u ∈ D(A), then Au = limj→∞Aϕj(A)u, where 0 ≤ ϕj ≤ 1 with ϕj ∈ Ba and supp(ϕj)
compact. Then

〈Au, u〉 = lim
j→∞

∫
λϕj(λ) d〈Eλu, u〉 =

∫
λ d〈Eλu, u〉.

Formally, we write

A =

∫
λ dEλ.

25.3 Properties of projection-valued measures

There is nothing new here, but we are taking a different (and useful) point of view. Here
is a proposition that expresses this point of view.

Proposition 25.2.

1. Let λ ∈ R. Then λ ∈ Spec(A) if and only if E((λ− ε, λ+ ε)) 6= 0 for all ε > 0.

2. E({λ}) 6= 0 if and only if λ is an eigenvalue of A and E({λ}) is the orthogonal
projection onto ker(A− λ).

Proof.
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1. (⇐= ): For any ε > 0, pick uε ∈ H such that ‖uε‖ = 1 and uε = E((λ− ε, λ+ ε))uε.
Then dµuε(t) = 1(λ−ε,λ+ε) dµuε(t). So uε ∈ D(A) and

‖(A− λ)uε‖ =

∫
(t− λ)2 dµuε(t) ≤ ε2

∫
dµuε(t) = ε2

It follows that λ ∈ Spec(A): for any ε > 0 there is a uε ∈ H such that ‖uε‖ = 1 and
‖(A− λ)uε‖ ≤ ε, so A− λ has no bounded inverse.

( =⇒ ): If E((λ− ε, λ+ ε)) := E(Iε) = 0 for some ε > 0, then for any u ∈ H,

u = E(R)u = E(R \ Iε)u

Then for any u ∈ H, dist(λ, supp(µu)) ≥ ε. Let ϕ(t) = 1
t−λ , which is continuous

and bounded on supp(µu) for all u. Then define ϕ(A) ∈ L(H,H) by 〈ϕ(A)u, u〉 =∫
ϕ(t) dµu(t). We get (A− λ)ϕ((A) = 1, so λ /∈ Spec(A).

2. ( =⇒ ): If E({λ0}) 6= 0, then let u 6= 0 be such that u = E({λ0})u. Then
supp(µu(λ)) ⊆ {λ0}, so u ∈ D(A) and

‖(A− λ0)u‖2 =

∫
(λ− λ0)2 dµu(λ) = 0.

So λ0 is an eigenvalue, and imE({λ0}) ⊆ ker(A− λ− 0).

On the other hand, if (A − λ0)u = 0 for some 0 6= u ∈ D(A), then for Im z 6= 0,
(A− z)u = (λ0 − z)u, so

R(z)u =
1

λ0 − z
u, 〈R(z)u, u〉 =

‖u‖2

λ0 − z
.

So by the uniqueness in our Nevanlinna representation, we get µu(λ) = ‖u‖2δ(λ−λ0).
So for any ϕ ∈ Bab, ϕ(A)u = ϕ(λ0)u. So E({λ0}) 6= 0, and E({λ0})u = u. Thus,
imE({λ0}) = ker(A− λ0).
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26 Weyl’s Criterion and Weyl’s Theorem

26.1 Weyl’s criterion

Last time, we had Spec(S) = Specd(A) t Specess(A), where Specd(A) is the set of isolated
eigenvalues of A of finite multiplicity.

Proposition 26.1 (Weyl’s criterion). λ ∈ Specess(A) if and only if there exists a sequence
un ∈ D(A) with ‖un‖ = 1, such that un → 0 weakly and ‖(A− λ)un‖ → 0.

Such a sequence is called a Weyl sequence.

Lemma 26.1. Let λ be an isolated point of Spec(A). Then λ0 is an eigenvalue, and

E({λ0}) =
1

2πi

∫
γ
(z −A)−1 dz,

where γ is a small circle centered at λ0 with Spec(A) \ {λ} away from int(γ).

Proof. E(M) = 0 if M ∩ Spec(A) = ∅. For all small enough ε > 0, we have

0 6= E((λ0 − ε, λ0 + ε)) = E({λ0}),

so λ0 is an eigenvalue. Compute

1

2πi

∫
γ
〈(z −A)−1u, u〉 dz =

1

2πi

∫
γ

∫
1

z − λ
d〈Eλu, u〉 dz

=

∫ (
1

2πi

∫
γ

1

z − λ
dz

)
d〈Eλu, u〉

The part in the parentheses equals 1 if λ ∈ int(γ) and 0 if λ /∈ int(γ).

=

∫
1int(γ)∩R(λ) d〈Eλu, u〉

= 〈E({λ0})u, u〉
= 〈E(int(γ))u, u〉.
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Now we can prove Weyl’s criterion.

Proof. ( ⇐= ): Assume that there is a sequence un ∈ D(A) with ‖un‖ = 1, such that
un → 0 weakly and ‖(A − λ)un‖ → 0. Then λ ∈ Spec(A). Assume that λ ∈ Specd(A).
Then, using

(z −A)un = (λ−A)un) + (z − λ)un,

we have

(z −A)−1un =
1

z − λ
un − (z −A)−1 1

z − λ
(λ−A)un.

Integrate over γ to get

E({λ})un = un −
1

2πi

∫
γ
(z −A)−1(z − λ)−1(λ−A)un dz︸ ︷︷ ︸

→0 in H

.

We get that ‖E({λ})un − un‖ → 0. E({λ}) is finite rank, so it is compact. Therefore,
E({λ})un → 0, which contradicts the fact that ‖un‖ = 1.

( =⇒ ): Let λ ∈ Specess(A). We claim that for all ε > 0, dimE((λ− ε, λ+ ε))H =∞.
Indeed, assume that dimE(I)H <∞ for some I = (λ− ε, λ+ ε). Then write

H = E(I)H⊕ E(Ic)H,

which is a closed, orthogonal direct sum. This composition reduces A, and Spec(A|E(I)H)∩
I 6= ∅. Hence, Spec(A) ∩ I = Spec(A|E(I)H), which is finite, of finite multiplicity. So
λ ∈ Specd(A).

If dimE({λ})H = ∞ (λ is an eigenvalue of ∞ multiplicity), we let un ∈ E({λ})H be
an orthonormal sequence. In general, we can find a sequence εn ↓ 0 such that

Pn = E((λ− εn, λ− εn+1) ∪ (λ+ εn+1, λ− εn)) 6= 0, PnPm = 0, n 6= m.

It suffices to take un ∈ PnH of norm 1.

26.2 Weyl’s theorem

Theorem 26.1 (Weyl). Let A,B be self-adjoint, bounded from below, and such that for
some c ∈ R, (A+ c)−1 − (B + c)−1 is compact. Then Specess(A) = Specess(B).

Proof. We check that Specess(A) ⊆ Specess(B). Let λ ∈ Specess(A), let un be a Weyl
sequence for A at λ, and let vn = (B + c)−1(A + c)un ∈ D(B). Write (B + c)−1 =
(A+ c)−1 +K, where K is compact. Then

vn = un +K(A+ c)un
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= un +K(A− λ)un︸ ︷︷ ︸
→0

+K (λ+ c)un︸ ︷︷ ︸
→0 weakly︸ ︷︷ ︸
→0

.

So ‖vn‖ ≥ 1/2 for all large n. Hence, wn = vn
‖vn‖ ∈ D(B), wn → 0 weakly, and (B−λ)wn →

0 since

(B − λ)vn) = (B + c)vn − (−λ− c)vn
= (A+ c)un − (λ+ c)vn

= (A− λ)un︸ ︷︷ ︸
→0

−(λ+ c) (vn − un)︸ ︷︷ ︸
→0

.

26.3 Applications

Example 26.1. Consider P0 = −∆ on Rn, and let P = P0 + q with q ∈ C(Rn;R) such
that q → 0 as |x| → ∞. P and P0 are self-adjoint with D(P ) = D(P0) = H2(Rn), and let
us check that (P + c)−1 − (P0 + c)−1 is compact:

Let us write (P+x)u = (P0+c)u+qu and replace u ∈ H2 by (P0+c)−1u for u ∈ H2(Rn).
Then u ∈ L2 with

(P + c)(P0 + c)−1u = u+ q(P0 + c)−1u.

Apply (P + c)−1 to get

(P0 + c)−1u = (P + c)−1u+ (P + c)−1q(P0 + c)−1u.

We get the resolvent identity

(P + c)−1 − (P0 + c)−1 = −(P + c)−1q(P0 + c)−1.

Let us check that q(P0 + c)−1 : L2 → L2 is compact: Approximating q by a sequence
qj ∈ C0 (uniformly), we may assume that q ∈ C0(R). If χ ∈ C∞0 (Rn) with χq = q, we get

q(P0 + c)−1 = q(χ(P0 + c)−1) : L2 → H2 ∩ E(supp(χ))→ L2,

where the second map is compact. We get

Specess(P ) = Specess(P0) = [−∞),

so
Spec(P ) = [0,∞) ∪ {negative eigenvalues},

where negative eigenvalues may only accumulate at 0.
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If q is rapidly decreasing at ∞, then Spec(P ) ∩ (−∞) is finite and

# of negative eigenvalues ≤ Cn
∫
|q|n/2 dx.

For n ≥ 3, this is the Cwikel-Lieb-Rozenblum estimate (1972-1977). Observe that there
are no negative eigenvalues if q is small.

Example 26.2. Let P = −∆ + q with q ∈ C(Rn) and q ≥ 0. Let η = lim inf |x|→∞ q(x) ∈
[0,∞]. We claim that inf Specess(P ) ≥ η (Spec(P ) is discrete in (0, η)). We may assume
that η <∞. Let

A = −∆ + max(q, η), B = q −max(q, η) ∈ C(Rn).

Then B(x) → 0 as |x| → +∞. We get that B(A + c)−1 is compact on L2, since (A +
c)−1(L2) ⊆ H1(Rn). Thus,

Specess(−∆ + q︸ ︷︷ ︸
=A+B

) = Specess(A) ⊆ Spec(A) ⊆ [η,∞).
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