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1 Basics of Measure Theory

1.1 Motivation for measure theory

Suppose X ∼ N(0, 1) has a Normal distribution. We have a probability distribution
ϕ(x) = 1√

2π
e−x2/2. We can evaluate the expectation of a function by

E[f(X)] =

∫
f(x)ϕ(x) dx.

If we have a Binomial random variable Y ∼ Binom(n, p), we can write the expectation as

E[f(Y )] =

n∑
y=0

f(y)q(y).

If we have Z = max(X, 0) and we want to calculate the expectation, we could do

E[f(Z)] =
1

2
f(0) +

∫ ∞

0
f(z)ϕ(z) dz.

In general, we could have probability distributions on other sets, such as orthogonal ma-
trices. We want a consistent notation for all of these situations. We want to be able to
write something like

∫
f(x) dP (x).

Especially in applied contexts, you may never need the full power of measure theory,
but measure theory helps us understand what it means to, for example, condition on an
event (and whether we can do so with probability 0 events).

1.2 Measures

Measure theory is a rigorous grounding for probability theory.

Definition 1.1. Let X be a set. A measure µ maps subsets A ⊆ X to non-negative
numbers: µ(A) ∈ [0,∞].

Example 1.1. Let X be countable (e.g. X = Z). The counting measure is #(A) =
# points in A.

Example 1.2. Let X = Rn. Lebesgue measure is the usual notion of volume: λ(A) =∫
· · ·
∫
A dx1 · · · dxn. It is not actually possible to assign a measure to every subset of Rn;

it is possible to construct such a non-measurable set using the axiom of choice.

Example 1.3. The standard Gaussian distribution is a measure. If Z ∼ N(0, 1) and
X = R, we can make a measure via P (A) = P(Z ∈ A) =

∫
A ϕ(x) dx.

In general, the domain of a measure µ is a collection of subsets of X : F ⊆ 2X . Such a
collection is called a σ-field and satisfies certain properties.
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Example 1.4. If X is countable, such as with counting measure, then we can take F = 2X .

Example 1.5. If X = Rn, we can take F to be the Borel σ-field, which is the σ-field you
get if you want to be able to measure all the open subsets of Rn.

Definition 1.2. Given a measurable space (X,F), a measure is a map µ : F → [0,∞]
with µ(

⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) for disjoint Ai.

Notice that measures can take infinite values, such as #(Z) = ∞.

Definition 1.3. A probability measure is a measure µ with µ(X ) = 1.

1.3 Integration with respect to measures

We want to be able to talk about what
∫
f(x) dµ(x) means for a nice enough function f .

Define ∫
1{x∈A} dµ(x) = µ(A).

Extend this definition to other f by linearity and limits:∫ n∑
j=1

ci1{x∈Ai} dµ(x) =
n∑

j=1

ciµ(Ai).

With functions like this, we can approximate a wide class of functions:

Example 1.6. With counting measure,∫
f d# =

∑
x∈X

f(x).

Example 1.7. With Lebesgue measure,∫
f dλ =

∫
· · ·
∫
f(x) dx1 · · · dxn.
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Example 1.8. With the Gaussian distribution,∫
f dP =

∫
fϕ dx.

With a discrete distribution, we cannot write it as a density with respect to Lebesgue
measure. When do we have a density?

1.4 Densities

Definition 1.4. Given (X,F) and two measures P, µ, we say P is absolutely continuous
with respect to µ (denoted P ≪ µ) if µ(A) = 0 =⇒ P (A) = 0. We also say that µ
dominates P .

If P ≪ µ, then (under mild conditions) we can define the density function p : X → [0.∞)
with

P (A) =

∫
A
p(x) dµ(x) =

∫
1{x∈A}p(x) dµ(x).

We can also write ∫
f(x) dP (x) =

∫
f(x)p(x) dµ(x).

The theorem which allows us to do this is the Radon-Nikodym theorem. The common nota-
tion is p(x) = dP

dµ (x), where the density is referred to as a Radon-Nikodym derivative.

Example 1.9. If P is a probability distribution and µ is Lebesgue measure, we call p(x)
a probability density function (pdf).

Example 1.10. If P is a probability distribution and µ is counting measure, we call p(x)
a probability mass function (pmf).

1.5 Probability spaces and random variables

How would we talk about an expression like P(X1···Xn
Y ≥W

Θ̂MLE
)?

Denote Ω as the outcome space and ω ∈ Ω as an outcome variable. A ⊆ Ω is
called an event, and P(A) is the probability of A. All of these elements together are called
a probability space (Ω,F ,P).

Definition 1.5. A random variable is a function X : Ω → X .

With this definition, we can say things likeX(ω) = 5. So Ω contains all the randomness,
and if we knew ω, then we would know the value of X.

Definition 1.6. We say that X has distribution Q (X ∼ Q) if

P(X ∈ B) = P({ω : X(ω) ∈ B}) = Q(B).
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The expectation is then

E[f(X,Y )] =

∫
Ω
f(X(ω), Y (ω)) dP(ω).

In practice, we will still calculate expectations as usual.
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2 Estimation and Introduction to Exponential Families

2.1 Review of measure theory

Last time, we introduced some ideas from measure theory. Let’s review:
A measure µ assigns a “weight” to subsets A ⊆ X (for A ∈ F).

Example 2.1. The counting measure is #(A) = card(A).

Example 2.2. Lebesgue measure gives λ(A) = vol(A) (in Rn).

Example 2.3. The Gaussian distribution gives P (A) =
∫
A ϕ(x) dx.

Measures give rise to integrals:

∫
f(x) dµ(x) =


µ(A) f(x) = 1{x∈A}∑

i ciµ(Ai) f(x) =
∑

i ci1{x∈Ai}

limit f(x) nice enough.

If P ≪ µ (meaning µ(A) = 0 =⇒ P (A) = 0), there is a density p(x) with p : X →
[0,∞) such that

∫
f dP =

∫
fp dµ for all (nice) f .

The outcome space Ω containing outcomes ω is equipped with a measure P. Random
variables are functions with X(ω) ∈ X (e.g. X = R). You can think of X “decoding”
the randomness ω to tell you what the value in our nicer space X is. We write X ∼ Q if
P(X ∈ B) = Q(B).

2.2 Estimation

In statistics, there are multiple possible distributions that could have generated the data.

Definition 2.1. A statistical model is a family of candidate probability distributions
P = {Pθ : θ ∈ Θ} for a random variable X ∼ Pθ. X is called the data, and θ is called the
parameter.

The data X is observed by the statistical analyst, whereas θ is unobserved by the
analyst. For now, θ is fixed and unknown.1 The goal of estimation is to observe X ∼ Pθ

and guess the value of some estimand g(θ).

Example 2.4. Flip a biased coin n times. The parameter θ ∈ [0, 1] is the probability
of heads, and X ∼ Binom(n, θ) is the number of heads after n flips. X has a density
pθ(x) = θx(1 − θ)n−x

(
n
x

)
for x = 0, 1, . . . , n (this is a density with respect to counting

measure on {0, 1, . . . , n}).
1This is a frequentist perspective. With a Bayesian perspective, we may assume that θ follows some

distribution.
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Definition 2.2. A statistic is any function T (X) of X.

In particular, a statistic is not a function of θ. It is something the statistical analyst
can calculate.

Definition 2.3. An estimator δ(X) of g(θ) is a statistic intended to guess g(θ).

Example 2.5. In our coin flipping example, the natural estimator for θ is δ0(X) = X/n.

2.3 Loss and risk

How can we tell if an estimator is good?

Definition 2.4. The loss function L(θ, d) measures how badly an estimate is.

Example 2.6. One important loss function is the squared error loss L(θ, d) = (d −
g(θ))2.

Usually, L(θ, d) ≥ 0 for all θ, d with L(θ, g(θ)) = 0.

Definition 2.5. The risk function R(θ; δ(·)) = Eθ[L(θ, δ(X))] is the expected loss as a
function of θ.

Remark 2.1. The Eθ notation refers to the expectation with respect to X, where θ is
the true parameter. This is in contrast to other disciplines which use the notation EX to
denote what variables we are conditioning on in the expectation. We will use the notation
E[f(X,X ′) | X ′] when we want to only integrate over certain random variables.

Example 2.7. The mean squared error is the risk function MSE(θ, δ0(·)) = Eθ[(δ(x)−
θ)2].

Example 2.8. In our coin flipping example, we have the estimator δ0(X) = X/n with
Eθ[X/n] = θ (this is an unbiased estimator). The loss is

MSE(θ, δ0(·)) = Eθ[(δ(x)− θ)2]

= Varθ(X/n)

=
θ(1− θ)

n
.

Here are other choices of estimators. We could take

δ1(X) =
X + 3

n
.

δ2(X) =
X + 3

n+ 6
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There is no estimator which is always the best; if θ = 3/4, then the constant estimator
δ(X) = 3/4 would be better than any estimator which has a chance of suggesting anything
other than 3/4.

2.4 Comparing estimators

Definition 2.6. An estimator δ(X) is inadmissible if there exists another estimator
δ∗(X) such that

(a) R(θ; δ∗) ≤ R(θ; δ) for all θ,

(b) R(θ; δ∗) < R(θ; δ) for some θ.

In our previous example, δ0 rendered δ1 inadmissible.
Here are some strategies to resolve the ambiguity:

1. Summarize R(θ) by a scalar:

(a) Average-case risk: Minimize
∫
ΘR(θ; δ) dΛ(θ). The minimizer δ is called the

Bayes estimator.

(b) Worse-case risk: Minimize supθ∈ΘR(θ; δ). The minimizer δ is called the
minimax estimator.

2. Constrain the choice of estimator:

(a) Only consider unbiased δ(X) (Eθ[δ(X)] = g(θ)).
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2.5 Exponential families

Definition 2.7. An s-parameter exponential family is a family P = {Pη : η ∈ Ξ}
with densities pη(x) with respect to a common dominating measure µ on X of the form

pη(x) = eη
⊤T (x)−A(η)h(x),

where

• T : X → Rs is called the sufficient statistic,

• h : X → [0,∞) is called the carrier/base density,

• η ∈ Ξ ⊆ Rs is called the natural parameter,

• A : Rs → R is called the cumulant generating function (or the normalizing
constant).

Remark 2.2. A(η) is totally determined by h, T , since we always must have
∫
X pη dµ = 1

for all η. So we can solve

A(η) = log

[∫
X
eη

⊤T (x)h(x) dµ(x)

]
≤ ∞.

Definition 2.8. pη is normalizable if A(η) < ∞. The natural parameter space is
Ξ1 = {η : A(η) <∞}. We say P is in canonical form if Ξ = Ξ1.

Remark 2.3. A(η) is a convex function, so Ξ1 is a convex set.

In general, you can think of an s-parameter exponential family as describing an s-
dimensional hyperplane in the space of log-densities.
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3 Exponential Families and Differential Identities

3.1 Examples of exponential families

Recall from last time that an s-parameter exponential family is a family P = {Pη :
η ∈ Ξ} with densities

pη(x) = eη
⊤T (x)−A(η)h(x)

with respect to a base measure µ on X . Here,

• T : X → Rs is called the sufficient statistic,

• h : X → [0,∞) is called the carrier/base density,

• η ∈ Ξ ⊆ Rs is called the natural parameter,

• A : Rs → R is called the cumulant generating function (or the normalizing
constant).

Last time, we mentioned that we can think of an s-parameter exponential family as an
s dimensional hyperplane in the space of log densities.

An important thing to note about this picture is that it shows us that the h and T are not
unique. Only the span really matters.

Sometimes it is more convenient to use a different parameterization than the natural
parameter:

pθ(x) = eη(θ)
⊤T (x)−B(θ)h(x), B(θ) = A(η(θ)).

Example 3.1. Consider the family of Gaussian distributions, X ∼ N(µ, σ2) with µ ∈ R
and σ2 > 0. Here, θ = (µ, σ2). To describe this as an exponential family, we have

pθ(x) =
1√
2πσ2

e−(x−µ)2/(2σ2)

14



= exp

(
µ

σ2
x− 1

2σ2
x2 − µ2

2σ2
− 1

2
log(2πσ2)

)
.

So we have

η(θ) =

[
µ/σ2

−1/(2σ2)

]
, T (x) =

[
x
x2

]
, h(x) = 1, B(θ) =

µ2

2σ2
+

1

2
log(2πσ2).

In terms of η, we can say

pη(x) = exp

(
η⊤
[
x
x2

]
−A(η)

)
, A(η) = − η21

4η2
+

1

2
log(−π/η2).

Example 3.2. Now suppose X1, . . . , Xn
iid∼ N(µ, σ2). Then

pθ(x) =

n∏
i=1

p
(i)
θ (xi)

= exp

(
n∑

i=1

[
µ

σ2
xi −

1

2σ2
x2i −

(
µ

2σ2
+

1

2
log(2πσ2)

)])

= exp

(
µ

σ2

n∑
i=1

xi −
1

2σ2

n∑
i=1

x2i − n

(
µ

2σ2
+

1

2
log(2πσ2)

))
.

So we have

η(θ) =

[
µ/σ2

−1/(2σ2)

]
, T (x) =

[∑
i xi∑
i x

2
i

]
, h(x) = 1, B(θ) = nB(1)(θ).

Proposition 3.1. Suppose X1, . . . , Xn
iid∼ p

(i)
η (x) = eη

⊤T (x)−A(η)h(x). Then the distribu-
tion of X = (X1, . . . , Xn) follows an exponential family with sufficient statistic

∑n
i=1 T (xi)

and cumulant generating function nA(η).

Proof.

X ∼
n∏

i=1

p(i)η (xi)

=

n∏
i=1

eη
⊤T (xi)−A(η)h(xi)

= exp

(
η⊤
∑
i

T (xi)− nA(η)

)
n∏

i=1

h(xi).

T (X) also follows a closely related exponential family.
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Proposition 3.2. Suppose X ∈ X and T (X) ∈ T ⊆ Rs with h(x) = 1 and X ∼ pη(x) =

eη
⊤T (x)−A(η) with respect to µ. For a set B ⊆ T , define ν(B) = µ(T−1(B)). Then

T (X) ∼ qη(t) = eη
⊤t−A(η)

with respect to ν.

Example 3.3. In the discrete case, this is

Pη(T (X) ∈ B) =
∑

x:T (x)∈B

eη
⊤T (x)−A(η)µ({x})

=
∑
t∈B

∑
x:T (x)=t

eη
⊤t−A(η)µ({x})

=
∑
t∈B

eη
⊤t−A(η) µ(T−1({x}))︸ ︷︷ ︸

ν({x})

.

So T ∼ eη
⊤t−A(η) with respect to ν.

Example 3.4. Let X ∼ Binomial(n, θ). We can turn this into an exponential family as
follows: For θ ∈ (0, 1),

pθ(x) = θx(1− θ)n−x

(
n

x

)
=

(
θ

1− θ

)x

(1− θ)n
(
n

x

)
= exp

(
x log

θ

1− θ
+ n log(1− θ)

)(
n

x

)
The natural parameter is η(θ) = log θ

1−θ .

Example 3.5. Let X ∼ Pois(θ) with density pλ(x) = λxe−λ

x! with respect to counting
measure on N. This is an exponential family

pλ(x) = exp ((log λ)x− λ)
1

x!

with natural parameter η(λ) = log λ.

Most of the families of distributions you can find on, say, Wikipedia, will be exponential
families.
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3.2 Differential identities for the cumulant generating function

Begin with the equation

eA(η) =

∫
eη

⊤T (x)h(x) dµ(x)

and then differentiate. Here is a criterion which lets us differentiate under the integral:

Theorem 3.1 (Theorem 2.4 in Keener). For f : X → R, let Ξf = {η ∈ Rs :
∫
|f |eη⊤Th dµ <

∞}. Then g(η) =
∫
feη

⊤Th dµ has continuous partial derivatives of all orders for interior
points η ∈ Ξ0

f , and we can find them by differentiating under the integral.

In particular, letting f = 1, we get that A(η) has infinitely many partial derivatives in
Ξ0
1. So we can calculate

∂

∂ηj
eA(η) =

∫
∂

∂ηj
eη

⊤T (x)h(x) dµ(x),

which gives

∂A

∂ηj
(η) =

∫
Tj(x)e

η⊤T (x)−A(η)h(x) dµ(x)

= Eη[Tj(X)].

This shows that

Proposition 3.3.
∇A(η) = Eη[T (X)].

Taking second derivatives, we have

∂2A

∂ηj∂ηk
eA(η) =

∫
∂2

∂ηj∂ηk
eη

⊤T (x)h(x) dµ(x),

which gives us (
∂2A

∂ηj
− ∂A

∂ηj

∂A

∂ηk

)
=

∫
TjTke

η⊤T−A(η)h dµ.

So we get
∂2A

∂ηj∂ηk
(η) = Eη[TjTk]− Eη[Tj ]Eη[Tk] = Cov(Tj , Tk).

In total, we get

Proposition 3.4.
∇2A(η) = Varη(T (X)).
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Differentiating repeatedly, we get

e−A(η) ∂
k1+···+ks

∂k1η1 · · · ∂ksηs
(eA(η)) = Eη[T

k1
1 · · ·T ks

s ].

This is because MT
η (u) = eA(η+u)−A(η) is the moment generating function (MGF) of

T (X) when X ∼ pη:

MT (X)
η (u) = Eη[e

u⊤T (X)]

=

∫
eu

⊤T eη
⊤T−A(η)h dµ

= eA(η+u)−A(η)

∫
e(η+u)⊤T−A(η+u)h dµ︸ ︷︷ ︸

=1

.
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4 Sufficient Statistics

4.1 Recap: differential identities for exponential families

Last time, we were talking about exponential families P = {Pθ : θ ∈ Θ} with densities

pθ(x) = eη(θ)
⊤T (x)−B(θ)h(x).

In natural parameters, we have

pη(x) = eη
⊤T (x)−A(η)h(x).

Last time, we proved some differential identities by starting with the equation

eA(η) =

∫
eη

⊤T (x)h(x) dµ(x)

and differentiating with respect to ηj . We saw that

∇A(η) = Eη[T (X)], ∇2A(η) = Varη(T (X)).

In general, we have

e−A(η) ∂
k1+···+ks

∂k1η1 · · · ∂ksηs
(eA(η)) = Eη[T

k1
1 · · ·T ks

s ].

This is saying that eA(η+u)−A(η) is the moment generating function of T :

∂

∂uj
eA(η+u)−A(η)|u=0 =

(
∂

∂ηj
eA(η)

)
· e−A(η).

If we take logs, we get that A(η + u) − A(η) is the cumulant generating function of
T (X).2

Here is another calculation of the MGF for T (X) in an exponential family:

MT (X)
η (u) = Eη[e

u⊤T (X)]

=

∫
eu

⊤T eη
⊤T−A(η)h dµ

= e−A(η)eA(u+η).

2We have been calling A(η) the CGF, but technically that is only the case where η = 0.
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4.2 Sufficiency

Our motivation is going to be the example of coin flipping.

Example 4.1. Suppose X1, . . . , Xn
iid∼ Ber(θ), so our data is X ∼

∏
i θ

xi(1 − θ)xi on
{0, 1}n. Instead of observing the whole sequence, we can observe a summary statistic
T (X) =

∑
iXi ∼ Binom(n, θ) = θt(1 − θ)n−t

(
n
t

)
on {0, 1 . . . , n} which only records the

total number of heads. This is a lossy compression of the data (X1, . . . , Xn) 7→ T (X). Why
can we justify this?

We can think of the information in (X1, . . . , Xn) as coming in two parts: the first part
is T (X), which is the part relevant to estimating θ, and the second part is the ordering,
which doesn’t depend on θ. The reason that T (X) is the important part for estimating θ
is that T (X) is the only part that depends on θ.

Definition 4.1. Let P = {Pθ : θ ∈ Θ} be a statistical model for data X. T (X) is
sufficient for the model P if Pθ(X | T ) does not depend on θ.

Example 4.2. Continuing our coin flipping example,

Pθ(X = x | T = t) =
Pθ(X = x, T = t)

Pθ(T = t)

=
θ
∑

i xi(1− θ)n−
∑

i xi

θt(1− θ)n−t
(
n
t

) 1{
∑

i xi=t}

=
1(
n
t

)1{∑i xi=t}.

The interpretation is that we can think of Nature as generating the data in 2 steps:

1. Generate T (X) ∼ Pθ(T (X)), dependent on θ.

2. Generate X ∼ P (X | T ), not dependent on θ.

Sufficiency principle: If T (X) is sufficient, then any statistical procedure should depend
on the data X only through T .

Why should we believe in this sufficiency principle? Suppose we generate X̃ ∼ P(X | T ).

θ T (X) X

X̃

nature

us

Then X̃
d
= X, so any estimator gives δ(X̃)

d
= δ(X). So we should always be fine using

T (X), since we don’t really lose any information by using it. Later, we will see that using
sufficient statistics can reduce the loss we incur in estimation.
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4.3 Factorization theorem for sufficient statistics

Theorem 4.1 (Fisher-Neyman). Let P = {Pθ : θ ∈ Θ} be a statistical model with densities
pθ(x) with respect to a common dominating measure µ. Then T is sufficient for P if and
only if there exist nonnegative functions gθ, h such that pθ(x) = gθ(T (x))h(x) for µ-a.e. x.

Here is a “physics proof.” For a careful proof, check Keener.

Proof. ( ⇐= ):

pθ(x | T = t) = 1{T (x)=t} ·
gθ(t)h(x)∫

T (z)=t gθ(t)h(z) dµ(z)

= 1{T (x)=t} ·
h(x)∫

T (z)=t h(z) dµ(z)
.

( =⇒ ): Take

gθ(t) =

∫
T (x)=t

pθ(x) dµ(x) = Pθ(T (X) = t),

h(x) =
pθ0(x)∫

T (z)=T (x) pθ0(z) dµ(z)
= Pθ0(X = x | T (X) = T (x)).

for any fixed θ0 ∈ Θ. Then

gθ(T (x))h(x) = P(T (X) = T (x))Pθ(X = x | T (X) = T (x))

= pθ(x).

Example 4.3. For exponential families,

pθ(x) = eη(θ)
⊤T (x)−B(θ)︸ ︷︷ ︸
gθ(T (x))

h(x)︸︷︷︸
h(x)

,

so T is sufficient for θ.

Example 4.4. Suppose X1, . . . , Xn
iid∼ P

(1)
θ for any model P(1) = {P (1)

θ : θ ∈ Θ} on X ⊆ R.
P

(1)
θ is invariant to permuting X = (X1, . . . , Xn). The order statistics X(1) ≤ X(2) ≤

· · · ≤ X(n) are defined by X(k) = the k-th smallest value (counting repeats). For example,
if X = (1, 3, 3,−1), then X(1) = −1, X(2) = 1, X(3) = 3, X(4) = 3.

IfX1, . . . , Xn
iid∼ P

(1)
θ is any univariate model P(1), then the order statistics are sufficient.

For a more general X , we can say the empirical distribution

P̂n(·) =
1

n

n∑
i=1

δXi(·)

is sufficient.
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4.4 Minimal sufficiency

Example 4.5. Consider X1, . . . , Xn
iid∼ N(θ, 1). The following statistics are sufficient:

T (X) =
∑
i

Xi, X =
1

n

∑
i

Xi,

S(X) = (X(1), . . . , X(n)), X = (X1, . . . , Xn).

It seems like the latter two statistics have more information than T (X) or X. These are
all sufficient statistics (and in fact the data itself is always sufficient), so what should we
do with regards to the sufficiency principle? The idea is to find sufficient statistics with
the least amount of information, i.e. the ones that cannot recover the others.

Here is a diagram that expresses which statistics have more information than others:

X

S(X)

T (X) X

Next time, we will talk about minimal sufficient statistics, which have minimal infor-
mation while remaining sufficient.
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5 Minimal Sufficient and Complete Statistics

5.1 Recap: sufficient statistics

Last time, we talked about sufficient statistics. We said that T (X) is sufficient for P =
{Pθ : θ ∈ Θ} if the distribution of X | T (X) does not depend on θ. We encountered the
sufficiency principle, which said that we should only attend to sufficient statistics T in
our statistical analysis, rather than the whole data.

The factorization theorem says that if P has densities pθ(x) with respect to µ, then
T (X) is sufficient iff there exist functions gθ, h such that pθ(x) = gθ(T (x))h(x). For
exponential families, we have

pθ(x) = eη(θ)
⊤T (x)−B(θ)︸ ︷︷ ︸
gθ(T (x))

h(x).

Here are a few examples we saw last time:

Example 5.1 (Order statistics). If X1, . . . , Xn ∈ R, X(k) is the k-th smallest value

(including repeats). Then if X1, . . . , Xn
iid∼ P (1) with any model for P (1) on R, then

S(X) = (X(1), . . . , X(n)) is sufficient.

Example 5.2. If X1, . . . , Xn
iid∼ N(θ, 1), then we have the following hierarchy of sufficient

statistics:
X

S(X)

∑
iXi X

The higher up statistics in this diagram can be “compressed” more to get the ones at the
bottom, which we may think of as minimal sufficient (or the most compressed).

5.2 Minimal sufficient statistics

Proposition 5.1. If T (X) is sufficient and T (X) = f(S(X)), then S(X) is sufficient.

So statistics with more information than sufficient statistics are also sufficient.

Proof. Using the factorization theorem,

pθ(x) = gθ(T (x))h(x)

= (gθ ◦ f)(S(x))h(x).
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Here are the sufficient statistics with the least information.

Definition 5.1. T (X) is minimal sufficient if

1) T (X) is sufficient.

2) For any other sufficient statistic S(X), T (X) = f(S(X)) for some f (a.s. in P).

5.3 Likelihood functions

We will see that the shape of all likelihood ratios will be minimal sufficient, so any statistic
that has the same information will be minimal sufficient.

Definition 5.2. If P has densities pθ(x) with respect to µ the likelihood function (resp.
log-likelihood) is the density (resp. log-density), reframed as a random function of θ.

Lik(Θ;X) = pθ(X), ℓ(θ;X) = log Lik(θ;X).

If T is sufficient, then

Lik(θ;x) = gθ(T (x))︸ ︷︷ ︸
determines shape

· h(x)︸︷︷︸
scalar multiple

.

Theorem 5.1. Assume P has densities pθ and T (X) is sufficient for P. If

Lik(θ;x) ∝θ Lik(θ; y) =⇒ T (x) = T (y),

then T (x) is minimal sufficient.

Proof. Proceed by contradiction. Suppose S is sufficient and there does not exist some f
such that f(S(x)) = T (x). Then there exist x, y with S(x) = S(y) but T (x) ̸= T (y). Then

Lik(θ;x) = gθ(S(x))h(x)

∝θ gθ(S(y))h(y)

= Lik(θ; y),

which is a contradiction.

5.4 Minimal sufficiency in exponential families

Example 5.3. For an exponential family,

pθ(x) = eη(θ)
⊤T (x)−B(θ)h(x).
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Is T (X) minimal? Assume Lik(θ;x) ∝θ Lik(θ; y), We want to show that T (x) = T (y).

Lik(θ;x) ∝θ Lik(θ; y) ⇐⇒ eη(θ)
⊤T (x)−B(θ)h(x) ∝θ e

η(θ)⊤T (y)−B(θ)h(y) ∀θ

⇐⇒ eη(θ)
⊤T (x) = eη(θ)

⊤T (y)c(x, y) ∀θ
⇐⇒ η(θ)⊤T (x) = η(θ)⊤T (y) + a(x, y) ∀θ
⇐⇒ η(θ)⊤(T (x)− T (y)) = a(x, y) ∀θ.

Plug in θ1 and θ2 to get 2 different equations and subtract:

=⇒ (η(θ1)− η(θ2))
⊤(T (x)− T (y)) = 0 ∀θ1, θ2

⇐⇒ T (x)− T (y) ⊥ span{η(θ1)− η(θ2) : θ1, θ2 ∈ Θ}

If span{η(θ1)− η(θ2) : θ1, θ2 ∈ Θ} = Rs, then we will get T (x) = T (y).

Suppose η(θ) =

[
θ
0

]
. Then T1(x) is sufficient. Does this mean that T cannot be

minimal sufficient? In a N(µ, σ2) family with n = 1, then T (X) =

[
X
X2

]
. But if n = 10,

then T (x) =

[∑
iXi∑
iX

2
i

]
in which case T cannot be recovered from T1. So in general, it is

possible that T (X) may not be sufficient.

Here is a picture of exponential families A, B, and C in the natural parameter space Ξ.

• In exponential family A, the parameter space is locally 2-dimensional, so we get the
whole span. Thus, T (X) will be minimal.

• In exponential family B, we still get two vectors that span R2, so T (X) is still minimal.
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• In exponential family C, γ⊤T (x) is minimal, where γ lies along the line. But T (X)
may not be minimal. If we say η(θ) = a+ θγ with θ ∈ R, then η⊤T (x) = a⊤T (x) +
θγ⊤T (x).

Example 5.4. If X ∼ N2(µ(θ), I2) = eµ(θ)
⊤x−B(θ)e−(1/2)x⊤x with θ ∈ R. If Θ = R,

µ(θ) = a+ θb with a, b ∈ R2, then

pθ(x) = eθ(b
⊤x)−B(θ)e−(1/2)(x−2a)⊤x.

Because b⊤x is sufficient, X is not minimal sufficient.

Example 5.5 (Laplace location family). Let X1, . . . , Xn
iid∼ p

(1)
θ (x) = 1

2e
−|x−θ|. Then

pθ(x) =
1

2n
exp

(
−

n∑
i=1

|xi − θ|

)
,

so

ℓ(θ;x) = −
n∑

i=1

|xi − θ| − n log 2.

Here, (X(1), . . . , X(n)) is minimal sufficient.

In many examples beyond exponential families, there aren’t any useful sufficient statis-
tics.

5.5 Complete statistics

Definition 5.3. T (X) is complete for P = {Pθ : θ ∈ Θ} if

Eθ[f(T )] = 0 ∀θ =⇒ f(T )
a.s.
= 0 ∀θ

You should think of this as an upgrading of minimality.
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Example 5.6. In the Laplace location family, are there any complete statistics? Let
f(S(X)) = Med(X)−X. Then Eθ[f(S(x))] = θ − θ = 0, but Med(X) ̸= X a.s.

Definition 5.4. Let P be an exponential family with pθ(x) = eη(θ)
⊤T (x)−B(θ)h(x). If

Ξ0 = η(Θ) = {η(θ) : θ ∈ Θ} contains an open set, then we say P is full-rank. Otherwise,
P is called curved.

Theorem 5.2. If P is a full-rank exponential family, then T (X) is complete sufficient.

For a proof, see Lehmann and Romano Theorem 4.3.1.
Going back to our previous examples, in family A, T will be complete, whereas in

families B and C, T will probably not be complete.

Theorem 5.3. If T (X) is complete sufficient for P, then T (X) is minimal.

Proof. Assume S(X) is minimal sufficient; we will recover T from S. Then S(X) =
f(T (X)). Define

m(S(X)) = Eθ[T (X) | S(X)].

This is a proper statistic (not depending on θ) due to conditioning on the sufficiency of the
statistic S. Then let g(t) = t−m(f(t)). Then

Eθ[g(T )] = Eθ[T ]− Eθ[Eθ[T | S]] = 0 ∀θ,

so g(T )
a.s.
= 0 by completeness. This says that T

a.s.
= m(S(X)).

5.6 Ancillary statistics

Definition 5.5. V (X) is ancillary for P if its distribution doesn’t depend on θ.

This is a statistic that we already know without knowing θ.

Theorem 5.4 (Basu). If T (X) is complete sufficient and V (X) is ancillary, then T ⨿ V
for all θ.

Remark 5.1. Completeness is a property of the model, whereas independence is just a
property of the distributions.
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6 Basu’s Theorem, Rao-Blackwell, and Unbiased Estimation

6.1 Recap: Minimal sufficient, complete, and ancillary statistics

Last time we discussed minimal sufficient statistics, which are

1) T (X) is sufficient.

2) For any other sufficient statistic S(X), T (X) = f(S(X)) for some f (a.s. in P).

For an s-parameter exponential family with pθ(x) = eη(θ)
⊤T (x)−B(θ)h(x), T (X) is minimal

if
span{η(θ1)− η(θ2) : θ1, θ2 ∈ Θ} = Rs.

We also discussed complete statistics, which have the property that

Eθ[f(T (x))] = θ ∀0 =⇒ f(T (x))
a.s.
= 0.

We saw that in an exponential family, T (X) is complete if Ξ contains an open set, but this
is not a necessary condition. In the following picture, T (X) will be complete in exponential
families A and B but not necessarily in family C.

Family B is usually called a curved exponential family since the parameter space is a
lower-dimensional space within the natural parameter space.

We saw that completeness is an upgrading of minimality for sufficient statistics:

Theorem 6.1. Complete sufficient statistics are minimal.

We also introduced ancillary statistics V (X), where the distribution of V doesn’t
depend on θ.
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6.2 Basu’s theorem

Theorem 6.2 (Basu). If T (X) is complete sufficient and V (X) is ancillary for P, then
V (X)⨿ T (X) for all θ ∈ Θ.

Proof. We want to show that for all sets A,B and for all θ,

Pθ(V ∈ A, T ∈ B) = Pθ(V ∈ A)Pθ(T ∈ B).

This is equivalent to showing

Pθ(V ∈ A | T ∈ B) = Pθ(V ∈ A)

whenever Pθ(T ∈ B) > 0. Let

qA(T (X)) = P(V ∈ A | T (X)), pA = P(V ∈ A).

Note that qA, pA are independent of θ. We have

Eθ[qA(T (X))− pA] = pA − pA = 0,

so by completeness of T (X), qA(T (X))
a.s.
= pA.

Remark 6.1. The hypotheses of Basu’s theorem apply to a model, whereas the conclusions
apply to each distribution. So sometimes, to prove that statistics are independent, we can
apply Basu’s theorem to submodels of the original model.

Example 6.1. Let X1, . . . , Xn
iid∼ N(µ, σ2) with µ ∈ R and σ2 > 0. We want to show

that X = 1
n

∑n
i=1Xi ⨿ S2 = 1

n−1

∑n
i=1(Xi − X)2. Let Qσ2 = {N(µ, σ2)n : µ ∈ R}. In

this model, X is complete sufficient (which we can verify by writing this as an exponential

family). To show that S2 is ancillary, let Zi = Xi − µ
iid∼ N(0, σ2) (not that these are not

statistics, since they suppose the value of µ). Then

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 =
1

n− 1

n∑
i=1

(Zi − Z)2︸ ︷︷ ︸
∼ σ2

n−1
χ2
n−1

has distribution not depending on θ. So by Basu’s theorem, X ⨿ S2 for all µ, σ2. Take
note that we split the model into submodels where σ2 was fixed.
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6.3 The Rao-Blackwell Theorem

Why should we use sufficient statistics or complete statistics T (X)? The idea is that if
θ only depends on T (X), then using anything else would be adding extra randomness, or
“noise,” that obscures our result. To talk about what effect this has on our loss functions,
let’s introduce a condition on our loss functions.

Definition 6.1. A function f(x) is convex if for any γ ∈ (0, 1),

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y).

The function f is strictly convex if the inequality is strict (<).

Jensen’s inequality says that this extends to general averages, not just the average of
two points.

Theorem 6.3 (Jensen’s inequality). If f is convex, then

f(E[X]) ≤ E[f(X)].

If f is strictly convex, we get <, unless X
a.s.
= c.

Here, X could be a random vector.
If the loss L(θ; d) is convex in d, then we lose by adding extra noise. Jensen’s inequality

tells us that more the distribution spreads out, the more the average risk increases.

Theorem 6.4 (Rao-Blackwell). Assume T (X) sufficient and δ(X) is an estimator for
g(θ). Let δ(T (X)) = E[δ(X) | T (X)]. If L(θ; d) is convex, then

R(θ; δ) ≤ R(θ; δ) ∀δ.

If L(θ; d) is strictly convex, then the inequality is strict, unless δ
a.s.
= δ.

Proof. The risk is

R(θ; δ) = Eθ[L(θ;E(δ | T ))]
By Jensen’s inequality (applied to the conditional expectation given T ),

≤ Eθ[E[L(θ; δ) | T ]]
= Eθ[L(θ; δ)]

with strict inequality for strict convexity unless δ
a.s.
= δ.

Remark 6.2. Where did we use sufficiency in the proof? We used it when defining δ,
where the conditional expectation should not depend on θ.

Turning δ into δ is called Rao-Blackwellization.
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6.4 Unbiased estimation

Definition 6.2. The bias of an estimator δ(X) for g(θ) is

Biasθ(δ(X)) = Eθ δ(X)− g(θ).

The statistic δ(X) is unbiased for g(θ) if Eθ[δ(X)] = g(θ) for all θ.

An unbiased estimator may not always exist.

Definition 6.3. We say g(θ) is U-estimable if there is an estimator δ(X) that is unbiased
for g(θ).

Definition 6.4. An estimator δ(X) is uniform minimum variance unbiased (UMVU)
if for any other unbiased δ̃, Varθ(δ(X)) ≤ Varθ(δ̃(X)).

We could equivalently say MSE(θ; δ) ≤ MSE(θ; δ̃).

Theorem 6.5 (Lehmann-Scheffé). Suppose T (X) is complete sufficient for P = {Pθ : θ ∈
Θ}. Then for any U -estimable function g(θ), there is an a.s. unique UMVU estimator of
the form δ(T (X)).

Proof. Assume δ0(X) is unbiased for g(θ). Then define

δ(T ) = E[δ0 | T ].

This is unbiased because

Eθ[δ(T )] = Eθ[E[δ0 | T ]] = E[δ0] = g(θ).

If δ̃(T ) is unbiased, then E[δ(T )− δ̃(T )] = 0 for all θ. So by completeness, δ(T )
a.s.
= δ̃(T ).

Now suppose δ∗(X) is unbiased. By Rao-Blackwell,

MSE(θ;E[δ∗ | T ]︸ ︷︷ ︸
=δ

) ≤ MSE(θ; δ∗).

Remark 6.3. The picture is the same for any convex loss, not just the mean squared error.
For strictly convex loss, the unique UMVU has strictly less loss than any other unbiased
estimator.

Remark 6.4. Unbiased estimators are not always the best, but this shows that there is
at least a best one.

How do we find an unbiased estimator? Assume T is complete sufficient. We now have
two options:

1. Find an unbiased estimator δ(T ) which is a function of T .
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2. Find any unbiased estimator δ0(X) and Rao-Blackwellize it.

Example 6.2 (German tank problem3). Let X1, . . . , Xn
iid∼ U [0, θ] with θ > 0.

p(x) =

n∏
i=1

p(1)(xi)

=

n∏
i=1

1{0≤xi≤θ}
1

θ

=
1

θn
1{0≤X(n)≤θ}.

Is the maximum complete sufficient?

Pθ(X(n) ≤ t) =

(
t

θ
∧ 1

)n

=

(
t

θ

)n

∧ 1,

so the density is

pθ(t) =
d

dt
Pθ(X(n) ≤ t)

= n
tn−1

θn
1{t≤θ}.

Suppose that for all θ > 0,

0 = Eθ[f(T )] =
n

θn

∫ θ

0
f(t)tn−1 dt.

Then

0 =

∫ θ

0
f(t)tn−1 dt,

so differentiating with respect to θ tells us that

f(θ)θn−1 = 0

for all θ > 0.
Let’s calculate

Eθ[X(n)] =
n

θn

∫ θ

0
t · tn−1 dt

3Imagine you’re hiding in the bushes in World War II, and you count the serial numbers. You observe
the largest serial number to try to determine the number of German tanks.

32



=
n

θn(n+ 1)
[tn+1]θ0

=
n

n+ 1
θ.

So we can just get an unbiased estimator via

Eθ

[
n+ 1

n
X(n)

]
= θ.

Another way to get an unbiased estimator is to use Eθ[2X1] = θ. Then you can show
that

E[2Xi | X(n)] =
n+ 1

n
X(n).
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7 Computing UMVU Estimators and Lower Bounds for Un-
biased Estimation

7.1 Computing UMVU estimators

Last time, we proved Jensen’s inequality for convex f :

f(E[X]) ≤ E[f(X)].

The Rao-Blackwell theorem told us that if L(θ; d) is convex in d, δ(X) is an estimator,
and T (X) is sufficient, then E[δ | T ] is better than δ. We also saw that if T (X) is complete
sufficient and g(θ) is U -estimable, there is a unique unbiased estimator of the form δ(T ). It
is UMVU (dominates all other unbiased estimators for any convex L). We saw that there
were 2 ways to find UMVU estimators:

1. Directly find an unbiased δ(T ).

2. Rao-Blackwellize any unbiased δ(X).

Example 7.1. If X1, . . . , Xn
iid∼ U [0, θ], then X(n) is complete sufficient for estimating θ.

We saw that n+1
n X(n) is UMVU. However, Keener shows that among estimators of the

form cX(n),
n+2
n+1X(n) actually has the best MSE.

Example 7.2. Let X1, . . . , Xn
iid∼ Pois(θ) with θ > 0 and pmf

p
(1)
θ (x) =

θxe−θ

x!
, x = 0, 1, . . . .

Then T (X) =
∑

iXi ∼ Pois(nθ) is complete sufficient with pmf

pTθ (t) =
(nθ)te−nθ

t!
.

Let’s estimate θ2 with an unbiased estimator. First, we’ll use Method 1: X
2
is not unbiased

because E[X] = θ, so E[X2
] > θ2 by Jensen’s inequality. Observe that

δ(T ) is unbiased ⇐⇒
∞∑
t=0

δ(t)pTθ (t) = θ2 ∀θ > 0

⇐⇒
∞∑
t=0

δ(t)
ntθt

t!
= θ2enθ ∀θ > 0.

Write θ2enθ =
∑∞

k=0
nkθk+2

k! =
∑∞

j=2
nj−2

(j−2)!θ
j . So we get δ(0) = δ(1) = 0, and for t ≥ 2,

δ(t) = nt−2

(t−2)! ·
t!
nt = t(t−1)

n2 . We can write this more compactly as

δ(t) =
t(t− 1)

n2
, t = 0, 1, . . .
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Now we use Method 2, Rao-Blackwellization: We know that Eθ[X1X2] = (Eθ[X1])
2 =

θ2, so we want to condition X1X2 on T =
∑

iXi. Since X | T = t ∼ Multinomial(t, 1/n1n),
we can check that X1 | T = t ∼ Binom(t, 1/n) and X2 | X1 = x1, T = t ∼ Binom(t −
x1, 1/(n− 1)). So we can compute

E

[
X1X2 |

∑
i

Xi

]
= δ(T ),

as before.

7.2 Differential identities for the score function

Assume that P has densities pθ with respect to µ with Θ ⊆ Rd. Suppose there is a
common support {x : pθ(x) > 0} which is the same for all θ. We have the log-likelihood
ℓ(θ;x) = log pθ(x).

Definition 7.1. Define the score function to be ∇ℓ(θ;x).

We have
pθ+η(x) = eℓ(θ+η;x) ≈ pθ(x)e

η⊤∇ℓ(θ,x)

for small η. So we can think of this as locally looking like an exponential family withe the
score function looking like a complete sufficient statistic.

We have differential identities, similar to in an exponential family. Start with

1 =

∫
X
eℓ(θ,x) dµ(x)

Taking ∂
∂θj

on both sides, we get

0 =

∫
X

∂

∂j
ℓ(θ;x)eℓ(θ;x) dµ(x).

This gives the identity
Eθ[∇ℓ(θ;X)] = 0.

It is important that we are integrating using the same θ that we plug into the score function.
If we differentiate again with respect to θk, we get

0 =

∫
X

(
∂2ℓ

∂θj∂θk
+

∂ℓ

∂θj

∂ℓ

∂θk

)
= Eθ

[
∂2

∂θj∂θk
ℓ(θ;X)

]
+ E

[
∂ℓ

∂θj
(θ;X)

∂ℓ

∂θk
(θ;X)

]
which gives the identity

J(θ) := Eθ[−∇2ℓ(θ;X)] = Varθ(∇ℓ(θ;X)).

The quantity J(θ) is called the Fisher information.
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7.3 The Cramér-Rao lower bound

Let’s relate this back to a statistic δ(X). Suppose

g(θ) = Eθ[δ(X)] =

∫
X
δ(x)eℓ(θ;x) dµ(x).

Then

∇g(θ) =
∫
δ∇ℓ(θ)eℓ dµ

= Eθ[δ(X)∇ℓ(θ;X)]

= Covθ(δ(X),∇ℓ(θ;X)).

If we have only one parameter, so θ ∈ R, then Cauchy-Schwarz gives

Varθ(δ)Var(ℓ̇(θ;X)) ≥ Covθ(δ, ℓ̇(θ))
2.

So we get

Theorem 7.1 (Cramér-Rao). Let δ(X) be an unbiased estimator for g(θ). If θ ∈ R,

Varθ(δ(X)) ≥ g′(θ)2

J(θ)
.

More generally, if θ ∈ Rd and g(θ) ∈ R,

Varθ(δ) ≥ ∇g(θ)⊤J(θ)−1∇g(θ).

Remark 7.1. This technically holds for any estimator δ with Eθ[δ(X)] = g(θ). We are
just interpreting it as g(θ) coming first and δ being unbiased for g(θ).

Example 7.3 (iid sample). Suppose X1, . . . , Xn
iid∼ p

(1)
θ (x) with θ ∈ Θ, so X ∼ pθ(x) =∏

i p
(1)
θ (xi). Writing ℓ1(θ;xi) = log p

(1)
θ (xi), we have

ℓ(θ;x) =
∑
i

ℓ1(θ, xi).

Then

J(θ) = Varθ(∇ℓ(θ;X))

= nVarθ(∇ℓ1(θ;Xi))

= nJ1(θ),

where J1(θ) is the Fisher information in a single observation. So Fisher information scales
linearly. This means that the Cramér-Rao lower bound scales like 1/n.
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7.4 The Hammersley-Chapman-Robbins inequality

The Cramér-Rao lower bound requires differentiation under the integral. The Hammersley-
Chapman-Robbins inequality gives a more general bound using finite differences. The idea
is that

pθ+ε(x)

pθ(x)
− 1 = eℓ(θ+ε;x)−ℓ(θ;x) − 1 ≈ ε⊤∇ℓ(θ;x)

for small ε. So in the limit, we will get a similar bound to Cramér-Rao.

Theorem 7.2 (Hammersley-Chapman-Robbins). Let δ be unbiased for g(θ), and assume
that for some collection of ε, pε ≪ p. Then

Varθ(δ) ≥ sup
ε

g(θ + ε)− g(θ)

Eθ

[(
pθ+ε(X)
pθ(X) − 1

)2] .
Proof. Observe that

Eθ

[
pθ+ε(x)

pθ(x)
− 1

]
=

∫ (
pθ+ε

pθ
− 1

)
pθ dµ

=

∫
(pθ+ε − pθ) dµ = 0,

as long as pθ+ε ≪ pθ. Furthermore,

Cov

(
δ(X),

pθ+ε(X)

pθ(X)
− 1

)
=

∫
δ

(
pθ+ε

pθ
− 1

)
pθ dµ

=

∫
δpθ+ε dµ−

∫
δpθ dµ

= Eθ+ε[δ(X)]− Eθ[δ(X)]

= g(θ + ε)− g(θ).

Using Cauchy-Schwarz, we get

Varθ(δ) · Eθ

[(
pθ+ε(X)

pθ(X)
− 1

)2
]
≥ g(θ + ε)− g(θ).

So we get

Varθ(δ) ≥
g(θ + ε)− g(θ)

Eθ

[(
pθ+ε(X)
pθ(X) − 1

)2] .
This lower bound holds for every ε, so we can take the sup over ε on the right hand side.

Remark 7.2. If we let ε → 0, we get the Cramér-Rao lower bound, but taking the sup
over ε gives a better bound.
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7.5 Efficiency

The Cramér-Rao lower bound is not always achievable.

Definition 7.2. The efficiency is

effθ(δ) =
CRLB

Varθ(δ)
≤ 1.

We say that δ(X) is efficient if effθ(δ) = 1 for all θ.

Note that
effθ(δ) = Corrθ(δ(X), ℓ′(θ;X))2

Example 7.4. For exponential families,

pη(x) = eη
⊤T (x)−A(η)h(x), ℓ(η;x) = η⊤T (x)−A(η) + log h(x).

So the score is
∇ℓ(η;x) = T (x)− Eη[T (X)].

This tells us that the Fisher information is

Varη(∇ℓ(η;X)) = Varη(T (X))

= ∇2A(η)

= Eη[−∇2ℓ(η;X)]

Example 7.5. Consider a curved exponential family with θ ∈ R:

pθ(x) = eη(θ)
⊤T (x)−B(θ)h(x).

Then the log-likelihood is

ℓ(θ;x) = η(θ)⊤T (x)−B(θ)− log h(x),

so the chain rule gives the score as

d

dθ
ℓ(θ;x) = η̇(θ)⊤T (x)− Ḃ(θ)

Note that d
dθB(θ) = d

dθA(η(θ)) =
∑n

j=1 η̇(θ)
∂

∂ηj
A(η) = η̇(θ)⊤(∇A(η)).

= η̇(θ)⊤(T (x)− Eη[T (X)])
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8 Bayes Estimation

8.1 Recap: Lower bound for unbiased estimation

Last time, we talked about the score function

∇ℓ(θ;x),

where ℓ(θ;x) = log pθ(x) is a log-likelihood. We saw some properties of the score function,
like

Eθ[∇ℓ(θ;x)] = 0.

The Fisher information was

J(θ) = Varθ(∇ℓ(θ;x)) = −E[∇2ℓ(θ;x)].

If g(θ) = Eθ[δ(X)] with g : Rd → R, then

∇g(θ) = Covθ(δ(X),∇ℓ(θ;X)).

Combining this with Cauchy-Schwarz gives the Cramér-Rao lower bound

Varθ(δ(X)) ≥ ġ(θ)2

J(θ)
, d = 1

with multivariate form

Varθ(δ(X)) ≥ ∇g(θ)⊤J(θ)−1∇g(θ), d ≥ 1.

This gives us a lower bound on how small we can make our risk with unbiased estimation.

Example 8.1. Let X ∼ Binom(n, θ). Consider two estimators δ0(x) = x/n and δ1(X) =
x+3
n+6 . The second estimator weights the estimation more towards 1/2. How can we say that
one is better than the other?

To compare these estimators, we previously ruled out all unbiased estimators. However,
we can alternatively try to reduce the average risk.

8.2 Some problems with unbiased estimation

Unbiased estimation is not always desirable.

Example 8.2. Suppose X ∼ Binom(50, θ) and g(θ) = Pθ(X ≥ 25). The UMVU estimator
is

δ(X) = 1{X≥25},

which is somewhat ridiculous because if we saw X = 25, we would assume this probability
is 1.
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Example 8.3. Suppose X ∼ Nd(θ, Id), where we want to estimate ∥θ∥22. The UMVU
estimator is ∥X∥22 − d because

E[∥X∥22] = ∥θ∥22 + d.

This estimator can be < 0, while ∥θ∥22 cannot be. So we can always improve on the
estimator by instead considering (∥X∥2 − d)+ instead.

8.3 Bayes estimation from a frequentist viewpoint

We have the model P = {Pθ : θ ∈ Ω} for the data X, a loss function L(θ; d), and the risk
R(θ; δ) = Eθ[L(θ; δ(X))].

Definition 8.1. The Bayes risk is

RBayes(Λ; δ) =

∫
Ω
R(θ; δ) dΛ(θ)

= E[R(Θ; δ(X))]

= E[L(Θ; δ(X))],

where Θ ∼ Λ and X | Θ = θ ∼ Pθ. This is the average-case risk, integrated with respect
to a measure Λ on Ω, called the prior.

For now, we assume Λ(Ω) = 1. Later, we will allow for Λ(Ω) = ∞, which is called an
improper prior.

Definition 8.2. δ(X) is a Bayes estimator if it minimizes RBayes(Λ, δ).

This definition depends on P, Λ, and L. How do we find a Bayes estimator? Fortunately,
they are easy to find.

Theorem 8.1. Suppose Θ ∼ Λ and X | Θ = θ ∼ Pθ. Assume that L(θ; d) ≥ 0 for all θ, d
and that RBayes(Λ; δ0) <∞ for some δ0(X). Then

δΛ(x) ∈ argmin
d

E[L(Θ; d) | X = x] for a.e. x ⇐⇒ δΛ(X) is Bayes.

So we split up the problem by solving it for any fixed x.

Proof. ( =⇒ ): Let δ be any other estimator. Then

RBayes(Λ; δ) = E[L(Θ; δ(X))]

= E[E[L(Θ; δ(X)) | X]]

≥ E[E[L(Θ; δΛ(X)) | X]]

= RBayes(Λ; δΛ).

41



In particular, δΛ has finite Bayes risk because we could plug in δ0 for δ.
( ⇐= ): By contradiction. Let Ex(d) := E[L(Θ; d) | X = x]. Define

δ∗(x) =


δΛ(x) if δΛ(x) ∈ argminEx(d)

δ0(x) if Ex(δ0(x)) < Ex(δΛ(x))

d∗(x) otherwise,

where Ex(d
∗(x)) < Ex(δΛ(x)). By construction, we have

Ex(δ
∗(X)) ≤ Ex(δ0(X))

a.s., so RBayes(Λ, δ
∗) <∞. We also have

Ex(δ
∗(X)) ≤ Ex(δΛ(X))

a.s., with < on a positive measure set. So

RBayes(Λ, δ
∗) ≤ RBayes(δΛ(X)),

which is a contradiction.

8.4 Posterior distributions

Definition 8.3. The conditional distribution of Θ given X is called the posterior dis-
tribution.

Definition 8.4. When we have densities λ(θ) for a prior and the likelihood pθ(x), then
the marginal density for X is

q(x) =

∫
Λ
λ(θ)pθ(x) dµ(θ).

The posterior density is

λ(θ | x) = λ(θ)pθ(x)

q(x)
.

In this case, the Bayes estimator is given by

δΛ = argmin
d

∫
Ω
L(θ; d)λ(θ | x) dθ.

Proposition 8.1. If L(θ; d) = (g(θ) − d)2 is the squared error, then the Bayes estimator
is the posterior mean E[g(Θ) | X] of g(Θ).
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Proof.

E[(g(Θ)− δ(X))2 | X] = E[(g(Θ)− E[g(Θ) | X] + E[g(Θ) | X]− δ(X))2 | X]

= Var(g(Θ) | X) + (E[g(Θ) | X]− δ(X))2,

where the cross term is 0 because E[g(Θ)−E[g(Θ) | X] | X] = 0. This equals Var(g(Θ) | X)
if δ(X)

a.s.
= E[g(Θ) | X].

Let’s now consider theweighted square error L(θ; d) = w(θ)(g(θ)−d)2. For example,
we might take the relative error L(θ; d) = ( θ−d

θ )2.

Proposition 8.2. For the weighted square error L(θ; d) = w(θ)(g(θ) − d)2, the Bayes
estimator is

δΛ(X) =
E[w(Θ)g(Θ) | X]

E[w(Θ)]
.

Example 8.4 (Beta-Binomial). Suppose X | Θ = θ ∼ Binom(n, θ) = θx(1−θ)n−x
(
n
x

)
with

prior Θ ∼ Beta(α, β) = θα−1(1− θ)β−1 Γ(α)Γ(β)
Γ(α+β) . Note that in X | Θ = θ, θ is a parameter,

whereas in the prior, we are giving a distribution over values of θ. The posterior distribution
is

λ(θ | x) = λ(θ)pθ(x)

q(x)

Since this will integrate to 1 in θ, we will ignore the quantities not related to θ.

∝θ θ
α−1(1− θ)β−1θx(1− θ)n−x

= θx+α−1(1− θ)n−x+α−1

∝θ Beta(x+ α, n− x+ β).

So the posterior distribution is a different Beta distribution. Using what we know about
the Beta distribution, we have

E[Θ | X] =
X + α

n+ α+ β

The interpretation is that we have k = α + β “pseudo-trials” with α successes. We can
write

δΛ(x) =
x

n
· n

n+ α+ β
+

α

α+ β
· α+ β

n+ α+ β

If n≫ α+ β, we can say “the data swamps the prior,” whereas for n≪ α+ β, we can say
“the prior swamps the data.”
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Example 8.5 (Normal mean). Suppose X | Θ = θ ∼ N(θ, σ2) ∝θ e
−(x−θ)2/(2σ2), where σ2

is known. Take the prior Θ ∼ N(µ, τ2) ∝θ e
−(θ−µ)2/(2τ2). The posterior is

λ(θ | x) ∝θ exp

(
θ
( x
σ2

+
µ

τ2

)
− θ2

2

(
1

σ2
+

1

τ2

))
.

After some algebra,

∝θ N

(
x/σ2 + µ/τ2

1/σ2 + 1/τ2
,

1

1/σ2 + 1/τ2

)
.

The posterior mean is

E[Θ | X] = X
1/σ2

1/σ2 + 1/τ2
+ µ

1/τ2

1/σ2 + 1/τ2
,

which is called a precision-weighted average.

These examples show that when calculating λ(θ | x), we should ignore the parts not
depending on θ and try to recognize the resulting shape of the density as a distribution we
know already.
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9 Priors in Bayesian Estimation

9.1 Recap: Bayesian estimation

Last time, we introduced Bayes estimation, where we want to minimize the Bayes risk

RBayes(Λ; s) =

∫
Ω
R(θ; s) dΛ(θ)

= E[L(Θ; δ(X))],

where Θ ∼ Λ and X | Θ = θ ∼ Pθ.
The Bayes estimator δΛ(x) minimizes

E[L(Θ; d) | X = x]

in d. If we have a prior density λ(θ) and a likelihood pθ(x), then we get the posterior
density

λ(θ | x) = λ(θ)pθ(x)∫
λ(θ)pθ(x) dx

.

Example 9.1 (Beta-Binomial). In this example, X | θ ∼ Binom(n, θ) = θx(1 − θ)1−x
(
n
x

)
with the prior θ ∼ Beta(α, β) = θα−1(1− θ)β−1 Γ(α)Γ(β)

Γ(α+β) . The posterior distribution is

λ(θ | x) ∝θ θ
x+α−1(1− θ)β−1

∝ Beta(α+ x− 1, β + n− x− 1)

It follows that

E[Θ | X] =
X + α

n+ α+ β

is the Bayes estimator for the squared error loss.

We also had a normal location family with a normal prior which gave us a normal
posterior, as well.

9.2 Conjugate priors

Definition 9.1. If the posterior is from the same family as the prior, we say the prior
(family) is conjugate to the likelihood.

Suppose Xi | η
iid∼ pη(x) = eη

⊤T (x)−A(η)h(x) for i = 1, . . . n, with η ∈ Ξ1 ⊆ Rs. For some
carrier density λ0(η), define the (s+ 1)-parameter exponential family.

λkµ,k(η) = ekµ
⊤η−kA(η)−B(kµ,k)λ0(η).
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The sufficient statistic is

[
η

−A(η)

]
with natural parameter

[
kµ
k

]
. If we take λkµ,k as our

prior, then

λ(η | X1, . . . , Xn) ∝η e
kµ⊤η−kA(η) λ0(η) ·

n∏
i=1

eη
⊤T (xi)−A(η)

= exp
(
(kµ+ nT (x))⊤η − (k + n)A(η)

)
λ0(η)

∝η λkµ+nT ,k+n(η).

Here is the interpretation:

1. Suppose we take the prior λkµ,k and observe X1. Then the posterior is λkµ+X1,k+1.

2. Now observe X2 and update the posterior to get λkµ+X1+X2,k+2.

3. . . .

If we have a (possibly improper) prior λ0 and make k+n observations with
∑

i T (Xi) =
kµ + s, this is the same as if we had the prior λkµ,k and observe n observations with∑

i T (Xi) = s.

Example 9.2. Here is a list of some conjugate priors:

Likelihood Prior

Binom(n, θ) θ ∼ Beta(α, β)
N(θ, σ2) θ ∼ N(µ, τ2)
Pois(θ) θ ∼ Gamma(ν, s)

People will say that the Beta, for example, is the conjugate prior to the Binomial.
There can be more than one conjugate prior, which we can get just by changing the carrier
distribution.

9.3 Types of priors

Bayesian estimation requires us to have a prior distribution we believe in. In what ways
do we do this?

1. Direct prior or parallel experience: We can estimate the prior from data. If
there is a broad agreement on the prior, corresponding to many observations, the
prior may be more meaningful. This gives rise to the following types of Bayesian
estimation:

– Hierarchical Bayes

– Empirical Bayes

2. Subjective beliefs:4 Here, the prior represents epistemic uncertainty, and the pos-

4One may call this the “hardcore” Bayesian perspective.
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terior is uncertainty ex post, after observing data and rationally updating.

3. Convenience prior: Generally, we have to calculate posteriors. If dim(Ω) is large,
the posterior is ≈ 0 for most of Ω. This can make it computationally difficult to
perform Bayesian estimation, so we might pick a prior which makes the calculation
easier, such as a conjugate prior.

4. “Objective” prior: We may try to pick a prior which seems to not represent our
individual opinion.

Example 9.3. Suppose Xi | θ ∼ N(θ, 1) for i = 1, . . . , n. We could try to use a flat
prior: λ(θ) ∝θ 1. This prior is is not a probability distribution, but we can still use
it because it gives a valid posterior:

λ(θ)pθ(x) ∝θ e
θ
∑

i xi−nθ2/2

∝θ N(x, 1/n).

The Bayes estimator is X. The posterior arises naturally as taking taking a limit of
priors: limτ2→∞N(0, τ).

The issue with a flat prior is that this is not invariant to reparameterization of the
model.

Example 9.4. Let X ∼ Binom(n,Θ) with Θ ∼ U [0, 1]. Then

P(Θ ∈ [0.5, 0.51]) = P(Θ ∈ [0.0001, 0.0101]) = 0.01.

If we let η = log Θ
1−Θ , then

P(Θ ∈ [0.5, 0.51]) ≈ P(η ∈ [0, 0.01]),

while
P(Θ ∈ [0.0001, 0.0101]) = P(η ∈ [log 0.001, log 0.1]).

Jeffreys proposed using λ(θ) ∝θ |J(θ)|1/2. This is called the Jeffreys prior, which
is invariant under reparameterization. However, the Jeffreys prior can have less of a
claim to being agnostic. In the normal case, the Jeffreys prior is the flat prior, but
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in the binomial case, the Jeffreys prior looks like this:

Remark 9.1. There has been some controversy about Bayesian vs frequentist statistics.
Historically, frequentist statisticians tend to give objections of the form “The object of
interest (such as the number of elephants in Africa5) is not actually random!” However, if
you flip a coin and don’t yet look at the result, even though the outcome is certain, there
is still epistemic uncertainty about the result.

The Bayesian perspective has the advantage (and disadvantage) of being able to ex-
press vague intuitions. Ultimately, making a decision in government may require different
statistics from writing a scientific paper. But subjective beliefs and intuitions can often be
incorrect.

A practical issue is that it is very difficult to express an opinion of a joint distribution
of many random variables.

5The elephants in Africa are just standing around, waiting to be counted.
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10 Hierarchical Bayes

10.1 Recap: Choosing priors and conjugate priors

We’ve been talking about Bayesian statistics and estimation. Last time, we talked about
4 ways to choose a prior:

1. Prior or parallel experience

2. Subjective beliefs

3. Convenience prior

4. Objective prior (flat or Jeffreys)

We also gave examples of conjugate priors, where the posterior, λ(θ | x), comes from the
same family as the prior, λ(θ).

Example 10.1. If Θ ∼ Beta(α, β) and X | Θ ∼ Binom(n,Θ), then Θ | X ∼ Beta(α +
X, η + n−X). The Bayes estimator for the mean squared loss is

E[Θ | X] =
α+X

n+ α+ β
.

10.2 Advantages and disadvantages of the Bayes approach

Here are some advantages of the Bayes approach to statistics.

1. Appealing frequentist properties: We will show later that Bayes estimators are
always admissible. They also minimize average case loss.

2. Estimator defined straightforwardly: Compared to something like UMVU esti-
mators, Bayes estimators are much easier to determine. We will see later that it is
hard in general to find minimax estimators.

3. Detailed output: The posterior distribution gives a lot of information (although
there is danger of overestimating the value of our posterior).

Here are some disadvantages.

1. Difficult to choose prior: There are many ways to choose a prior, and none of
them is always better than the others.

2. Calculations can be hard: There is a significant amount of research on how to do
the calculations for Bayesian statistics.

3. Have to have opinions about everything: If we don’t have a parametric model,
it may not make sense to come up with a prior.
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10.3 Hierarchical Bayes and graphical models

What if we want to solve a number of parallel problems at the same time?

Example 10.2. Suppose we want to predict a baseball batter’s “true” batting average θ
from n at bats. Let X denote the number of hits, with X ∼ Binom(n, θ). The UMVU
estimator is X/n. Most batting averages are between 10% and 30%, so if we observe X = 4
hits out of n = 5, we want to make sure we are not overestimating the player’s batting
average. We could use the convenience prior Beta(α, β), which requires us to pick α, β.
How should we determine these values? The idea is that we should pool information across
players 1, . . . ,m.

Here, α, β ∼ λ(α, β) are hyperparameters, which govern the distribution of the

parameters. Then θ | α, β iid∼ Beta(α, β), and Xi | θ, α, β
ind∼ Binom(ni, θi).

Let’s write this model in a graphical form:

This is called a directed graphical model. The graph above is a directed, acyclic graph,
and it tells us how the joint density of these 2m+2 random variables factorizes. If we have
a graph (V,E), then the joint density factorizes as

p(z1, . . . , zm) =
m∏
i=1

pi(zi | Pa(zi)), Pa(zi) := (zj : (j → i) ∈ E).

For our model,

p(α, β, θ1, . . . , θm, x1, . . . , xm) = λ(α, β)

m∏
i=1

pθ(θi | α, β)px(xi | θi).
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10.4 Markov Chain Monte Carlo

This brings us to the idea of Markov Chain Monte Carlo (MCMC): The posterior
distribution is

λ(θ | x) = pθ(x)λ(θ)∫
Ω pζ(x)λ(ζ) dζ

,

where this integral is a high-dimensional integral (which may be difficult to calculate). An
extremely successful computational strategy6 is to set up a Markov chain whose stationary
distribution is proportional to the numerator and then run the Markov chain for a long
time to get samples from this distribution.

Definition 10.1. A (stationary) Markov chain with transition kernel Q(y | x) and initial
distribution π0(x) is a sequence of random variables X(0), X(1), X(2), . . . such that

X(0) ∼ π0(x), X(t+1) | X(0), . . . , X(t) ∼ Q(· | X(t)).

We can think of this as

Q(y | x) = P(X(t+1) = y | X(t) = x).

This is an example of a directed graphical model:

The marginal probability of X(1) is

P(X(1) = y) =

∫
X
P(X(1) = y | X(0) = x)π0(x) dµ(x) (for discrete random variables)

=

∫
X
Q(y | x)π0(x) dµ(x).

Definition 10.2. If

π(y) =

∫
X
Q(y | x)π(x) dµ(x),

we say that π is stationary for the kernel Q.

A sufficient condition for π to be stationary is detailed balance:

π(x)Q(y | x) = π(y)Q(x | y) ∀x, y.

Proposition 10.1. Detailed balance implies stationarity.

6This changed the general view of Bayesian statistics in the 90s.
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Proof. If we have detailed balance,∫
X
Q(y | x)π(x)︸ ︷︷ ︸
=π(y)Q(x|y)

dµ(x) = π(y)

∫
X
Q(x | y) dµ(x)︸ ︷︷ ︸

=1

= π(y).

Theorem 10.1. If a Markov chain with stationary distribution π is

1. Irreducible (for any x, y, it is possible to eventually get from x to y),

2. Aperiodic (the greatest common divisor of all the possible number of steps for any x
to get back to itself is 1),

then dist(X(t))
t→∞−−−→ π, regardless of the initial distribution.

10.5 The Gibbs Sampler

Suppose we have a generic parameter vector θ = (θ1, . . . , θd) and data X. Here is the
algorithm:

Initialize θ = θ(0)

For t = 1, . . . , T ,

For j = 1, . . . , d,

Sample θj ∼ λ(θj | θ\j , X).

Record θ(t) = θ.

Here are two variations on how we might do the inner loop:

1. Update a random coordinate J (t) ∼ U{1, . . . , d}.

2. Update all coordinates in a random order.

Why is this a good algorithm? If we have a directed acyclic graph, then

λ(θj | θ\j) ∝θj p(θj | θPa(j))
∏

i∈Pa(j)

p(θi | θPa(i)).

In our example, θj ∼ Beta(α + Xj , n + α + β) is easy to sample. The α and β will be
different every time we sample.

Check that the inner loops satisfies detailed balance, so the posterior distribution of
the inner loop is the stationary distribution. This will give us the stationary distribution
from the whole algorithm.
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In practice, there can be issues:
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11 Hierarchical Bayesian Models and the James-Stein Esti-
mator

11.1 Examples of hierarchical Bayesian models

Last time we talked about hierarchical Bayes models

Example 11.1. In our baseball model last time, we had the hyperparameters α, β with
Θ | α, β ∼ Beta(α, β) and Xi | Θi ∼ Binom(ni,Θi).

This was a directed graphical model with

p(γ, θ1, . . . , θm, x1, . . . , xm) = p(γ)
m∏
i=1

p(θi | γ)p(xi | θi).

We also discussed Markov chains with kernels Q(y | x); these had a stationary distri-
bution π which satisfies π(y) =

∫
Q(y | x)π(x) dx. A sufficient (but stronger) condition is

detailed balance, which requires that π(x)Q(y | x) = π(y)Q(x | y) for all x, y.
One particularly useful algorithm for sampling in hierarchical models is the Gibbs

sampler, where we hold all the θi fixed except for one at a time and iteratively update our
θis as we go. Here is an example of where things can go wrong with the Gibbs sampler.

Example 11.2. Let Θ1,Θ2
iid∼ N(0, 1) and Xi | Θ

iid∼ N(Θ1 +Θ2, 1) for i = 1, . . . , n. If we
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do this, for large n, we will get a very highly correlated posterior distribution:

If we reparameterize the problem with β1 = θ1 + θ2 and η2 = θ1 − θ2, the parameters are
much less dependent, so the Gibbs sampler will work better

Another issue would be when we have a bimodal distribution with the two modes having
disjoint supports. Then the Gibbs sampler will not be able to jump from 1 of these modes
to the other.

This can be a general problem with MCMC.

Example 11.3 (Gaussian hierarchical model). Here is a Gaussian hierarchical model. Let

τ2 ∼ λ(τ2) (e.g. 1/τ2 ∼ Gamma), Θi | τ2 iid∼ N(0, τ2), and Xi | τ2,Θi
iid∼ N(Θi, 1) for
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i = 1, . . . , d. The posterior mean is

E[Θi | X] = E[E[Θi | X, τ2] | X]

= E
[

τ2

τ2 + 1
Xi | X

]
=

(
E
[

τ2

1 + τ2
| X
])

︸ ︷︷ ︸
1−E[ζ|X]

Xi,

where ζ = 1
1+τ2

. We can think of this as an optimal shrinkage factor.

If we marginalize out Θ, we get Xi | τ2
iid∼ N(0, 1 + τ2). If we think of this as just a

problem of estimating τ2, the sufficient statistic is

∥X∥2

d
| τ2 ∼ 1 + τ2

d
χ2
d

= (1 + τ2, 2(1 + τ2)2/d),

where this notation means it is some distribution with mean 1+τ2 and variance 2(1+τ2)2/d.

The likelihood for τ2 has a sharp peak near τ2 = ∥X∥2
d − 1 or, equivalently, near ζ = d

∥X∥2
(for large d).

For any reasonably open-minded prior (not prior 3 in the below figure), E[ζ | X] ≈ d
∥X∥2 .

So

E[Θi | X] ≈
(
1− d

∥X∥2

)
Xi.

The moral is that if the prior doesn’t matter so much, we can just try to estimate ζ
directly from the data. This motivates the idea of empirical Bayes models: Write down
a hierarchical model and just try to estimate a parameter like ζ using the data. In this
way, we don’t need to use the Gibbs sampler.

56



11.2 The James-Stein estimator

Empirical Bayes is a hybrid approach in which we treat the hyperparameters as fixed and
treat the paramters as random.

Example 11.4. Think of τ2 (or of ζ) as a fixed parameter, so we have Xi
iid∼ N(0, 1 + τ2)

and ∥X∥2 ∼ (1 + τ2)χ2
d. Then the UMVU estimator for τ2 is

τ̂2 =
∥X∥2

d
− 1, which gives ζ̂ =

1

1 + τ̂2
=

d

∥X∥2
.

This is not great because it can be negative. What if we took the UMVUE for ζ? Then
we get the James-Stein estimator.

James and Stein proposed that for d ≥ 3,

δJS(X) =

(
1− d− 2

∥X∥2

)
X.

The interpretation is that d−2
∥X∥2 is the UMVU estimator for ζ:

Proposition 11.1. If Y ∼ χ2
d = Gamma(d/2, 2) with d ≥ 3, then E[1/Y ] = 1

d−2 .

Proof.

E
[
1

Y

]
=

∫ ∞

0

1

y

1

2d/2Γ(d/2)
yd/2−1e−y/2 dy

=
2(d−2)/2Γ((d− 2)/2)

2d/2Γ(d/2)

∫ ∞

0

1

2(d−2)/2Γ(d/2)
y(d−2)/2−1e−y/2 dy

=
1

2
· 1

(d− 2)/2

=
1

d− 2
.

Using the proposition,

∥X∥2

1 + τ2
∼ χ2

d =⇒ ζ−1 E
[

1

∥X∥2

]
=

1

d− 2
=⇒ ζ̂ =

d− 2

∥X∥2
.

But the James-Stein estimator is more interesting than just this. Going back to a non-
Bayesian model, suppose Xj ∼ N(θj , 1) with θ ∈ Rd. Then for d ≥ 3, X is inadmissible as
an estimator of θ for the MSE. Say we have n observations:
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Proposition 11.2 (James-Stein7). Let Xi
iid∼ Nd(θ, σ

2Id) for i = 1, . . . , n with known
σ2 > 0. For

δJS =

(
1− (d− 2)σ2/n

∥X∥2

)
X,

MSE(θ, δJS) < MSE(θ,X)

for all θ ∈ Rd.

This says that if we have a bunch of unrelated experiments and we pool the observations
together, we can get a better estimator for all of them by combining our observations.

Remark 11.1. We don’t need to shrink around 0. For any θ0 ∈ Rd,

δ(X) = θ0 +

(
1− d− 2

∥X − θ0∥2

)
(X − θ0)

renders X itself inadmissible for the mean squared error.

Next time, we will prove this result using Stein’s lemma.

7This shocking result came out in the 50s, and no one was prepared for it.
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12 Analysis of the James-Stein Estimator

12.1 Recap: introduction of the James-Stein estimator

Last time, we discussed the Bayesian model with prior Θi
iid∼ N(0, τ2) and Xi | Θ

iid∼
N(Θi, 1). This gave E[Θi | X] = (1 − ζ)Xi, where ζ = 1

1+τ2
. The Hierarchical Bayes

approach was to put a prior on ζ, so the posterior mean is

E[Θi | X] = (1− E[ζ | X])Xi.

The Empirical Bayes approach was to estimate ζ by an estimator ζ̂(X) to get the pos-
terior mean

Ê[Θi | X] = (1− ζ̂)Xi.

This brought us to the James-Stein estimator

δJSi (X) =

(
1− d− 2

∥X∥2

)
Xi.

This estimator dominates δ(X) = X, even in the Gaussian sequence model with no
Bayesian assumption. In particular,

MSE(θ; δJS) < MSE(θ;X) ∀θ ∈ Rd.

12.2 Linear shrinkage without Bayes assumptions

Suppose Xi
iid∼ N(θi, 1) with fixed θ1, . . . , θd ∈ R. Consider the estimator δζ(X) = (1−ζ)X

for a fixed parameter ζ. Then

MSE(θ; δζ) = ζ2∥θ∥2 + (1− ζ)2d

Take the derivative over ζ to optimize:

0 =
d

dζ
MSE(θ; δζ) = 2ζ∥θ∥2 − 2(1− ζ)d.

Solving this gives ζ∗ = d
d+∥θ∥2 . Notice that this is always positive, so the optimal shrinkage

is never 0. We can’t use this value of ζ because it depends on θ. However, the James-Stein
estimator is basically an adaptive ζ.

What if we try to estimate ∥θ∥ by using ∥X∥2? We have 1
d∥X∥2 = 1

d

∑d
i=1X

2
i , where

each term has mean θ2i + 1 and variance 2 + 4θ2i . So

1

d
∥X∥2 ∼

(
d+ ∥θ∥2

d
,
2d+ 4∥θ∥2

d2

)
This is nice because

standard deviation

mean
= 2

√
d/2 + ∥θ∥2
d+ ∥θ∥2

d→∞−−−→ 0,

so this should exhibit concentration about the mean for large d.
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12.3 Stein’s lemma

Theorem 12.1 (Stein’s lemma, univariate). Suppose X ∼ N(θ, σ2), and let h : R → R be
differentiable with E[|ḣ(X)|] <∞. Then

E[(X − θ)h(X)] = σ2 E[ḣ(X)].

Proof. Assume without loss of generality that h(0) = 0. First assume θ = 0 and σ2 = 1
for simplicity. Note that

E[Xh(X)] =

∫ ∞

0
xh(x)ϕ(x) dx+

∫ 0

−∞
xh(x)ϕ(x) dx.

Dealing with these separately,∫ ∞

0
xh(x)ϕ(x) dx =

∫ ∞

0
x

[∫ x

0
ḣ(y) dy

]
ϕ(x) dx

=

∫ ∞

0

∫ ∞

0
ḣ(y)ϕ(x)1{y≤x} dx dy

=

∫
ḣ(y)

[∫ ∞

y
xϕ(x) dx

]
dy

Using the fact that dϕ
dx = d

dx
1√
2π
e−x2/2 = −x 1√

2π
e−x2/2 = −xϕ(x),

=

∫ ∞

0
ḣ(y)ϕ(y) dy.

Similarly, ∫ 0

−∞
xh(x)ϕ(x) dx =

∫ 0

−∞
ḣ(y)ϕ(y) dy.

Putting these two together gives

E[Xh(X)] =

∫ ∞

−∞
xh(x)ϕ(x) dx =

∫ ∞

−∞
ḣ(y)ϕ(y) dy = E[ḣ(X)].

For a general θ, σ2, write X = θ + σZ, where Z ∼ N(0, 1). Then

E[(X − θ)h(X)] = σ E[Zh(θ + σZ)]

Applying the result for g(Z) = h(θ + σZ) and using the chain rule,

= σ E[σḣ(θ + σZ)]

= σ2 E[ḣ(X)].

We want to extend this to the multivariate case. Here is what we replace ḣ with:
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Definition 12.1. If h : Rd → Rd, then the derivative is the matrix Dh ∈ Rd×d given by

[Dh(x)]i,j =
∂hi
∂xj

(x).

Definition 12.2. The Frobenius norm of a matrix A ∈ Rd×d is

∥A∥F =

∑
i,j

A2
i,j

1/2

.

Theorem 12.2 (Stein’s lemma, multivariate). Suppose X ∼ Nd(θ, σ
2Id) with θ ∈ Rd, and

let h : Rd → Rd be differentiable with E[∥Dh∥F ] <∞. Then

E[(X − θ)⊤h(X)] = σ2 E[tr(Dh(X))] = σ2
∑
i

E
[
∂hi
∂xi

(X)

]
.

Proof. The i-th term on the left hand side is

E[(Xi − θi)hi(X)] = E[E[(Xi − θi)hi(X) | X\i]]

Conditionally on X\i, Xi ∼ N(θi, σ
2), and hi(X) is just a function of Xi. So we can apply

the univariate lemma.

= E
[
σ2 E

[
∂hi
∂xi

(X) | X\i

]]
= σ2 E

[
∂hi
∂xi

(X)

]
.

Now sum over i on both sides to get the result.

Remark 12.1. This differentiability condition can be relaxed somewhat.

12.4 Stein’s unbiased risk estimator (SURE)

For our estimator δ(X), apply Stein’s lemma on h(X) = X − δ(X). Assuming σ2 > 0 is
known,

MSE(θ; δ) = Eθ[∥X − θ − h(X)∥2]
= Eθ[∥X − θ∥2] + Eθ[∥h(X)∥2]− 2Eθ[(X − θ)⊤h(X)]

Since 1
σ (X − θ) ∼ χ2

d,

= σ2d+ Eθ[∥h(X)∥2]− 2σ2 Eθ[tr(Dh(X))].

So we get the estimator

R̂ = σ2d+ ∥h(X)∥2 − 2σ2 tr(Dh(X)).
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Example 12.1. If we take δ(X) = X, then h(X) = 0, so Dh(X) = 0. In this case, we get

R̂ = dσ2 ∀θ.

Example 12.2. Now look at δζ(X) = (1 − ζ)X, and let h(X) = ζX, so Dh(X) = ζId.
Then

R̂ = σ2d+ ζ2∥X∥2 − 2σ2ζd.

12.5 MSE of the James-Stein estimator

We will take σ2 = 1 for simplicity. We have

δJS(X) =

(
1− d− 2

∥X∥2

)
X,

so

h(X) =
d− 2

∥X∥2
X.

Then

∥h(X)∥2 = (d− 2)2

∥X∥4
∥X∥2 = (d− 2)2

∥X∥2
,

and
∂hi
∂xi

=
∂

∂xi

d− 2

∥x∥2
xi = (d− 2)

∥X∥2 − 2X2
i

∥X∥4
.

Summing over i tells us that

tr(Dh(X)) = (d− 2)
d∥X∥2 − 2∥X∥2

∥X∥4
=

(d− 2)2

∥X∥2
.

So Stein’s unbiased risk estimator is

R̂ = d+
(d− 2)2

∥X∥2
− 2

(d− 2)2

∥X∥2
= d− (d− 2)2

∥X∥2
.

The risk for the James-Stein estimator is

MSE(θ; δJS) = E[R̂]

= d− E
[
(d− 2)2

∥X∥2

]
= MSE(θ;X)− E

[
(d− 2)2

∥X∥2

]
.

This term on the right is the improvement over X.
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If θ = 0,
MSE(θ; δJS) = d− (d− 2) = 2.

This is a huge improvement for large d! On the other hand, if ∥θ∥ → ∞, then

MSE(θ; δJS) ≈ d− d− 2

∥θ∥2
→ d.

Remark 12.2. The James-Stein estimator is inadmissible. Here is an estimator that is
better:

δJS+ =

(
1− d− 2

∥X∥2

)
+

X.

This is also inadmissible because of a “smoothed out” version of this estimator.

Remark 12.3. Here is a more practically useful estimator (when d ≥ 4) when we have a
lot of samples that estimate similar θi:

δJS 2 = X +

(
1− d− 3

∥X −X1d∥

)
(X −X1d),

where X estimates the average value of θ.

Remark 12.4. Should we use the James-Stein estimator in practice?8 It improves the
average risk of the combined problem, but it does not improve the risk of each coordinate
individually. So we may not be able to improve our estimation problem by including others’
data. If we know more information about each model, it also may not be a good idea to
treat them all the same.

8Should we go knocking on all the doors of everyone in Berkeley, asking for their samples?
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13 Minimax Estimation

13.1 Bayes risk

If we have a model P = {Pθ : θ ∈ Θ}, then we have a few main ideas for choosing an
estimator:

1. Constrain the choice of estimator, e.g. unbiased estimation

2. Minimize average-case risk, i.e. Bayes estimation.

In Bayes estimation, we have a prior Λ with Λ(Θ) = 1 (here, Θ is the parameter space).
The Bayes estimator (if it exists) minimizes

R(θ; δ) = E[L(θ; δ(X))].

Definition 13.1. The Bayes risk for the problem Λ,P is

rΛ = inf
δ

∫
R(θ, δ) dΛ(θ).

Example 13.1 (HW 6 Problem 1(c), n=2). In this example, there are only two possible
values of θ, θ1 and θ2. Then we can plot r(δ) = (R(θ1; δ), R(θ2; δ)).

This is a convex set. The Bayes estimators are the ones on the frontier of this set, the
points where the box to the lower left of the point is not in the set. Each vector λ which
is normal to this boundary corresponds to a prior.

13.2 Minimax risk, minimax estimators, and least favorable priors

The idea of the minimax risk is to minimize

min
δ

sup
θ
R(θ; δ).
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Definition 13.2. The minimal achievable sup-risk is called the minimax risk,

r∗ = inf
δ
sup
θ
R(θ, δ),

of the problem. An estimator δ∗ is minimax if it achieves

sup
θ
R(θ, δ∗) = r∗.

There is a game theoretic interpretation: Imagine we pick our δ first, and then nature
tries to maximize the risk (i.e. choosing θ adversarially). The interpretation of Bayes
estimation is that nature picks θ (via a prior), and then we try to minimize the risk.

For any proper prior Λ, the Bayes risk is

rΛ = inf
δ

∫
R(θ; δ) dΛ(θ)

≤ inf
δ
sup
θ
R(θ; δ)

= r∗.

Here is the strategy that nature will pick if it can go first.

Definition 13.3. The least favorable (LF) prior is the prior distribution Λ∗ that gives
the best lower bound:

rΛ∗ = sup
Λ
rΛ.

We know that
sup
θ
R(θ; δ) ≥ r∗ ≥ rΛ∗ ≥ rΛ

for any prior Λ. We hope that we can find a prior and an estimator that collapse all these
inequalities into equalities.

Theorem 13.1. If rΛ = supθ R(θ; δΛ), where δΛ is Bayes for Λ, then

(a) δΛ is minimax.

(b) If δΛ is the unique Bayes estimator (up to a.s. equality) for Λ, then δΛ is the unique
minimax estimator.

(c) Λ is the least favorable prior.

Proof.
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(a) For any other δ,

sup
θ
R(θ; δ) ≥

∫
R(θ; δ) dΛ(θ)

≥
∫
R(θ; δΛ) dΛ(θ) (∗)

= rΛ

= sup
θ
R(θ; δΛ).

(b) Replace ≥ with > in the step (∗).

(c) If Λ̃ is any other prior, then

r
Λ̃
= inf

δ

∫
R(θ; δ) dΛ̃

≤
∫
R(θ; δΛ) dΛ̃

≤ sup
θ
R(θ; δΛ)

= rΛ.

Here are sufficient conditions for a minimax estimator:

1. δ is a Bayes estimator whose risk function is constant.

2. δΛ is a Bayes estimator with 1 = Λ({θ : R(θ; δΛ) = maxζ R(ζ; δΛ)}).
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In our picture of Bayes estimation, a 45 degree line denotes the points corresponding to
estimators with constant risk. The least favorable prior is the corresponding normal vector
at the point where this line reaches the boundary of possible risks.

Example 13.2 (Binomial). SupposeX ∼ Binom(n, θ) with θ ∈ [0, 1]. We want to estimate
θ using the MSE for our risk. Try θ ∼ Beta(α, β), so the Bayes estimator will be

δα,β(X) =
α+X

α+ β + n
.

Then the Bayes risk is

MSE(θ; δα,β) = Eθ

[(
α+X

α+ β + n
−Θ

)2
]

∝θ [(α+ β)2 − n]θ2 + [n− 2α(α+ β)]θ + α2.

To get a minimax estimator, we want to pick α and β to make this constant in θ. So we
set (α+ β)2 = n and 2α(α+ β) = n and get α = β =

√
n/2. So Beta(

√
n/2,

√
n/2) is the

least favorable prior.
This is not such a great estimator, however, since it put a lot of weight around 1/2. So

the pessimistic perspective of minimax estimation can lead us astray for some values of θ.

13.3 Least favorable sequences of priors

Example 13.3. Suppose X ∼ N(θ, 1), and we are estimating θ with the MSE risk. To find
the least favorable prior, we would want a flat prior, but this does not give a probability
distribution. So we can take, say, Λn = N(0, n) as a sequence of priors.

Definition 13.4. As sequence Λ1,Λ2, . . . of priors is least favorable if rΛn → supΛ rΛ.
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Theorem 13.2. Suppose Λ1,Λ2, . . . is any sequence of priors, and suppose δ satisfies

sup
θ
R(θ; δ) = lim

n
rΛn .

Then

(a) δ is minimax.

(b) Λ1,Λ2, . . . is least favorable.

Proof.

(a) Suppose δ̃ is another estimator. Then for all n,

sup
θ
R(θ; δ̃) ≥

∫
R(θ; δ̃) dΛn

≥ rΛn .

Then
sup
θ
R(θ; δ̃) ≥ lim

n
rΛn = sup

θ
R(θ; δ).

(b) If Λ is a prior, then

rΛ ≤
∫
R(θ; δ) dΛ

≤ sup
Θ
R(θ; δ)

= lim
n
rΛn .

So we get
lim
n
rΛn = sup

Λ
rΛ.

Remark 13.1. If we find the Bayes risk, then we get a lower bound on the minimax risk,
and if we provide an estimator, we can get an upper bound on the minimax risk. If these
are close, this gives a good estimate of the hardness of a problem.

This is not a very useful measure if your parameter space has some bad corner which
you never encounter in practice.

13.4 Bayes estimation example: the Gaussian sequence model

Here is an example of Bayes estimation we did not have time to cover before:
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Example 13.4 (Gaussian sequence model). Suppose X ∼ Nd(θ, Id) for θ ∈ Rd. Then the
Jeffreys prior on θ is flat. The objective Bayes estimator for Θ is X because the posterior
distribution is

λ(θ | X) ∝θ pθ(X) ∝θ e
−∥X−θ∥2/2 ∝θ Nd(X, Id).

What about ρ2 = ∥Θ∥2? Since Θi ∼ N(Xi, 1), E[Θ2
i | Xi] = 1 +X2

i , so

ρ̂2 = E[∥Θ∥2 | X] = d+ ∥X∥2.

The UMVU estimator is ρ̂2UMVU = ∥X∥2 − d because

Eθ[∥X∥2] = d+ ∥θ∥2.

Finally, we have the MLE

ρ̂2MLE = ∥X∥2.

Which one of these estimators is the best? The UMVU estimator is inadmissible because
it is negative, but we may not want to rule it out. These all have the same variance, d,
and the UMVU estimator has no bias. This serves as a cautionary tale about constructing
objective priors. Suppose we took the prior Θ ∼ N(0, n), so ρ2 ∼ nχ2

d. Then picking an
“objective prior” may not produce a good result. In this case, λ(ρ2) ∝ρ2 (ρ2)(d−1)/2.
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14 Introduction to Hypothesis Testing

14.1 Null and alternative hypotheses

Suppose we have a model F = {Pθ : θ ∈ Θ} with data X ∼ Pθ, and we want to distinguish
between two submodels, the null hypothesis H0 : θ ∈ Θ0 ⊆ Θ, and the alternative
hypothesis H1 : θ ∈ Θ1. If unspecified, Θ1 = Θ \Θ0.

There is an asymmetry here, where H0 is considered the “default assumption.” We
either

1. reject H0 (conclude θ /∈ Θ0)

2. fail to reject9 H0 (no definite conclusion).

Example 14.1. If X ∼ N(θ, 1), here are common hypothesis tests:

• H0 : θ = 0 vs H1 : θ > 0.

• H0 : θ = 0 vs H1 : θ ̸= 0.

• H0 : |θ| ≤ δ vs not.

We can also consider nonparametric tests.

Example 14.2. Let X1, . . . , Xn
iid∼ P and Y1, . . . , Tm

iid∼. We can consider the hypothesis
test

H0 : P = Q, H1 : P ̸= Q.

14.2 The power function of a hypothesis test

How can we tell how good our hypothesis test is? We can formally describe a test by its
critical function.

Definition 14.1. The critical function (or test function) of a hypothesis test is

ϕ(x) =


0 fail to reject H0

π ∈ (0, 1) reject with probability π

1 reject H0

The power function tells us how good the test is.

Definition 14.2. The power function of a hypothesis test is

βϕ(θ) = Eθ[ϕ(x)] = Pθ(Reject H0).
9We might slip up and say “accept” the null, but really what we are doing is failing to reject the null.

Don’t say “accept” around non-statisticians.
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Definition 14.3. For nonrandomized ϕ, the rejection region is

R = {x : ϕ(x) = 1},

and the acceptance region is
A = X \R.

So the power function is Pθ(X ∈ R). We want the power to be large on the alternative
hypothesis and small on the null hypothesis. Usually, people refer to the power under the
alternative hypothesis, so you want more power for your test.

Definition 14.4. The significance level of ϕ is

sup
θ∈Θ0

βϕ(θ).

We’ll say ϕ is a level-α test if its significance level is ≤ α.

The ubiquitous choice is α = 0.05.10

Example 14.3. Let X ∼ N(θ, 1), where we are testing H0 : θ = 0 vs H1 : θ ̸= 0. Let
zn = Φ−1(1− α), where Φ denotes the normal CDF. The usual 2-sided test is

ϕ2(X) = 1{|X|>zα/2}.

We could also do a 1-sided test
ϕ1(X) = 1{X>zα}.

Both of these are valid hypothesis tests at level α; the 1-sided test has lower power for
θ < 0. We could also try any number of hypothesis tests, such as

ϕ3(X) = 1{x<−zα/3 or X>z2α/3}.

We can plot the power of these tests against θ:

10This is probably ubiquitous because when Fisher came up with the idea of hypothesis testing, he said
that he sometimes likes to use the value 0.05. This is probably this most influential offhand remark in the
history of science.
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Can we tell which hypothesis test is the best? In some situations, there is a best test.

Example 14.4. Let X ∼ (0, 1) with H0 : θ ≤ 0 vs H1 : θ > 0. Then the test ϕ1 is the best
possible test (called uniformly most powerful). We will discuss this in detail next time.

So 1-sided tests have a best test. We’ll start simple and work our way up to more
complicated tests.

Definition 14.5. A simple hypothesis is a singleton. A composite hypothesis is one
that isn’t simple.

14.3 Likelihood ratio tests and the Neyman-Pearson lemma

Suppose we test H0 : θ = θ0 vs H1 : θ = θ1. Without loss og generality, we may assume
θ0 = 0 and θ1 = 1. Without loss of generality, assume P0 and P1 have densities p0, p0 (which
we may do because P0 and P1 are both absolutely continuous with respect to P0 + P1).

The optimal test rejects for large values of p1(x)
p0(x)

.

Definition 14.6. The likelihood ratio test (LRT) is of the form

ϕ∗(x) =


1 p(x)

p0(x)
> c

γ p1(x)
p0(x)

= c

0 p1(x)
p0(x)

< c,

where c, γ are chosen so P0(Reject) = α.

We will prove that this is the best test, but first, here is some intuition. The power
under the alternative hypothesis H1 is∫

R
p1(x) dµ(x),

and the significance level is ∫
R
p0(x) dµ(x).

We want to maximize the first integral subject to constraint that the second integral equals
α. Think of the first integral as the bang, and the second integral as the buck; you want to
get the most bang for your buck. If you think about wanting to buy flour from the grocery
store with a fixed budget, you’ll try to buy bags of flour with the lowest cost per unit until
you run out of money. Here, the cost per unit is p1(x)

p0(x)
, and the γ corresponds to the little

bit of change you have left over, which you use to buy a fractional bag of flour.
To carry out the proof that the likelihood ratio test is the best test, we would like to

use Lagrange multipliers. Since this is over infinitely many parameters, here is a lemma
which lets us carry out this optimization.
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Proposition 14.1 (12.1 in Keener). Suppose c ≥ 0 and ϕ∗ maximizes

E1[ϕ(X)]− cE0[ϕ(X)]

among all critical functions. If E0[ϕ(X)] = α, then ϕ∗ maximizes E1[ϕ(X)] among all
level-α tests ϕ.

Proof. Suppose E0[ϕ(X)] ≤ α. Then

E1[ϕ(X)] ≤ E1[ϕ(X)] + c(α− E0[ϕ(X)])

≤ E1[ϕ
∗(X)]− cE0[ϕ

∗(X)] + cα

= E1[ϕ
∗(X)].

Theorem 14.1 (Neyman-Pearson11). The likelihood ratio test wit h signigicance level = α
is optimal for testing H0 : X ∼ P0 vs H1 : X ∼ P1 (maximizes E1[ϕ(X)] such that
E0[Φ(X)] ≤ α).

Proof. We want to maximize the Lagrangian

L(ϕ; c) := E1[ϕ(X)]− cE0[ϕ(X)]

=

∫
X
(p1(x)− cp0(x))ϕ(x) dµ(x)

=

∫
{p1>cp0}

|p1 − cp0|ϕdµ−
∫
p1<cp0

|p1 − cp0|ϕdµ.

To maximize L(ϕ; c), set

ϕ(x) =

{
1 if p1(x)

p0(x)
> c

0 if p1(x)
p0(x)

< c.

Choose the minimum value of c such that

P0

(
p1
p0

(X) > c

)
≤ α ≤ P0

(
p1
p0

(X) ≥ x

)
,

and choose γ to “top up” the significance level to α:

P0

(
p1
p0

(X) > c

)
+ γP0

(
p1
p0

(X) = c

)
= α.

11This important theorem is often referred to as a lemma.
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Here’s a picture of how we can pick cα and γα for ϕ∗:

Corollary 14.1 (12.4 in Keener). If p0��
a.s.
= p1 and ϕ is the LRT with level α ∈ (0, 1), then

E1[ϕ(X)] > α.

Proof. We have µ({p1 > p0}), µ({p0 > p1}) > 0. We split into a few cases:
c ≥ 1: We split

E1[ϕ]− E0[ϕ] =

∫
{p1/p0>1}

|p1 − p0|ϕdµ−
∫
{p1/p0<1}

|p1 − p0|ϕdµ

> 0.

c < 1: This case is similar.

Example 14.5. Suppose we have a 1-parameter exponential familX ∼ pη(x) = eηT (x)−A(η).
Test the null hypothesis H0 : η = η0 vs the alternative H1 : η = η1 > η0. The likelihood
ratio is

p1(x)

p0(x)
=
eη1T (x)−A(η)

eη0T (x)−A(η)

= e(η1−η0)T (x)−(A(η1)−A(η0))

So the LRT should be to reject when this is large. Since this is a monotone function in
T (x), this is the same as saying we reject when T (x) is large. So we can say the test is

ϕ∗(x) =


1 T (x) > c

γ T (x) = c

0 T (x) < c,
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where we choose c, γ to make

Pη0(T (X) > c) + γPγ0(T (X) = c) = α.

Notice that η1 is nowhere to be found. So this exact test is the best against any alternative
η1, as long as η1 > η0. So the best test only depends on the direction of the alternative.

Next time, we will discuss more situations like this, where we have best tests against
any alternative in a range of alternatives.
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15 One-Sided and Two-Sided Tests

15.1 Recap: Basics of hypothesis testing

Last time, we introduced hypothesis testing, where we have a model P = {Pθ : θ ∈ Θ} and
want to distinguish between H0 : θ ∈ Θ and H1 : θ ∈ Θ (usually, Θ1 = Θ \Θ0). The tests
were described by a critical function ϕ : X → [0, 1] given by

ϕ(x) =


1 reject

π flip a (biased) coin

0 fail to accept.

We defined the rejection region R = {x : ϕ(x) = 1} (ignoring randomization), the power
function βϕ(θ) = Eθ[ϕ(X)] = Pθ(Reject H0), and the significance level supθ∈Θ0

βϕ(θ).
Our goal is to obtain the maximum power for θ ∈ Θ1, relative to the constraint that

the significance level is at α. There are two types of errors in this setting:

Definition 15.1. A Type I error is rejecting the null hypothesis when H0 is true. A
Type II error is failing to reject the null hypothesis when H1 is true.

We introduced the Likelihood Ratio Test (LRT) in the case of a simple null H0 :
θ = θ0 vs a simple alternative hypothesis H1 : θ = θ1. This test is given by

ϕ∗(x) =


1 p1

p0
(x) > c

γ p1
p0
(x) = c

0 p1
p0
(x) < c,

where we choose c, γ such that E0[ϕ(X)] = α. There is a bit of ambiguity because any test
of the form (for c ≥ 0)

ϕ∗(x) =


1 p1

p0
(x) > c

anything p1
p0
(x) = c

0 p1
p0
(x) < c

maximizes E1[ϕ(X)]− cE0[ϕ(X)] =
∫
(p1 − cp0) dµ, as long as we keep the constraint that

the significance level is α.
Last time, we had a proposition that said that any test of this form maximizes E1[ϕ(X)]

subject to Eθ[ϕ(X)] = α =: E1[ϕ
∗]. A corollary to this

Example 15.1. If X ∼ pη(x) = eηT (x)−A(η)h(x) is an exponential family with H0 : η = η0
and H0 : η = η1 > η0, then the LRT gave

LR(X) = e(η1−η0)T (X)−(A(η1)−A(η0)),

which was monotone in T (X). So we saw that the LRT was dependent only on T (X) and
not on the particular value of η1. So the same exact test is the best for all alternative
hypotheses of this form.
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15.2 Uniformly most powerful (UMP) tests

Definition 15.2. If ϕ∗(X) has significance level α, and for any other level-α test ϕ,

Eθ[ϕ
∗(X)] ≥ Eθ[ϕ(X)] ∀θ ∈ Θ1,

we say that ϕ∗ is uniformly most powerful (UMP).

Definition 15.3. A model P is identifiable if θ1 ̸= θ2 =⇒ Pθ1 ̸= Pθ2 .

This is just saying that the different values of θ actually mean different things in our
model.

Definition 15.4. Assume P = {Pθ : θ ∈ Θ ⊆ R} is identifiable and has densities pθ for Pθ

with respect to µ. We say P has monotone likelihood ratios (MLR) in T (x) if
pθ2
pθ1

(x)

is a nondecreasing function of T (x) for all θ2 > θ1.

Remark 15.1. This is different from T (X) being stochastically increasing in θ, which
says that Pθ(T (X) > c) is increasing in θ. This condition is enough to construct a valid
one-sided test that rejects when T is large, but it will not necessarily be uniformly most
powerful.

Theorem 15.1. Assume P has MLR in T (x), and test H0 : θ ≤ θ0 vs H1 : θ > θ0. Let let
ϕ∗(x) reject for large T (x), where c, γ are chosen so Eθ0 [ϕ

∗(X)] = α.

(a) ϕ∗ is a UMP level-α test.

(b) βϕ∗(θ) = Eθ[ϕ
∗(X)] is non-decreasing in θ and strictly increasing if Eθ[ϕ

∗(X)] ∈
(0, 1).

(c) If θ1 < θ0, ϕ
∗ minimizes Eθ1 [ϕ(X)] among all tests ϕ with power = α at θ.
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Proof.

(b): if θ1 < θ2, then
pθ2
pθ1

(x) is nondecreasing i nT (X). So ϕ∗ is a LRT for H0 : θ = θ1 vs

H1 : θ = θ2 (at level α̃ := Eθ1 [ϕ
∗(X)]). Then the corollary from last time says that

Eθ2 [ϕ
∗(X)] > α̃ = Eθ1 [ϕ

∗(X)].

(a): If θ > θ0, then ϕ
∗ is the LRT for H0 : θ = θ0 vs H1 : θ = θ1.

(c): If θ1 < θ0, assume Eθ0 [ϕ̃(X)] = α. Then both 1 − ϕ∗ and 1 − ϕ̃ are level 1 − α
tests of H0 : θ = θ0 vs H1 : θ = θ1. But 1 − ϕ∗ is the LRT for this test. Indeed,
pθ1
pθ0

(x) = [
pθ0
pθ1

(x)]−1 is decreasing in T , and 1 − ϕ∗ rejects for small T (X). So ϕ∗

maximizes Eθ1 [1− ϕ] scuh that Eθ0 [1− ϕ] ≤ 1− α.

15.3 Two-sided tests

What about two-sided alternative hypotheses? Suppose P = {Pθ : θ ∈ Θ ⊆ R} with
θ0 ∈ Θ0, where want to test H0 : θ = θ0 vs H1 : θ ̸= θ0 (this can be generalized to
H0 : θ ∈ [θ1, θ2]).

Definition 15.5. T (X) is stochastically increasing in θ if Pθ(T (X) ≤ t) is nonincreas-
ing in θ for all t.

Assume T (X) is a stochastically increasing summary test statistic.

Example 15.2. For example, this applies to Xi
iid∼ p0(x − θ) where T (X) is the sample

mean or median.

Example 15.3. This also applies to Xi
iid∼ 1

θp1(x/θ) where T (X) =
∑

iX
2
i .

Definition 15.6. The two-tailed test rejects when T (X) is extreme in any direction:

ϕ(x) =


1 T (x) < c1 or T (x) > c2

0 T (X) ∈ (c1, c2)

γi T (x) = ci, i = 1, 2.

In this setting, we will not usually be able to get a UMP test. We usually have a
tradeoff between allocating our type I error to values where θ is large or values where θ is
small. Let

α = Pθ0(T (X) < c1) + γ1P(T (X) = c1)

α2 = Pθ0(T (X) > c2) + γ2P(T (X) = c2).

We need α1 + α2 = α, and we have to balance these considerations. Here are some ideas:
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One natural way to do this is to do an equal-tailed test, i.e. set α1 = α2 = α/2.

Definition 15.7. ϕ(x) is unbiased if

inf
θ∈Θ1

Eθ[ϕ(X)] ≥ α.

The second idea is to choose an unbiased test.

Theorem 15.2. Assume Xi
iid∼ eθT (x)−A(θ)h(x), so the sufficient statistic

∑n
i=1 T (Xi).

Test H0 : θ ∈ [θ1, θ2] (with possibly θ1 = θ2) vs the alternative H1 : θ /∈ [θ1, θ2]. Let ϕ(x) be
the two-tailed test based on

∑n
i=1 T (Xi).

(a) The unbiased two-tailed test for
∑n

i=1 T (Xi) with significance level = α is UMP
among all unbiased tests (UMPU).

(b) If θ1 < θ2, the UMPU test solves Eθ1 [ϕ(X)] = Eθ2 [ϕ(X)] = α.

(c) If θ1 = θ2 = θ0, the UMPU test solves Eθ0 [ϕ(X)] = α and

Eθ0

[
n∑

i=1

T (Xi)(ϕ(X)− α)

]
=

d

dθ
Eθ[ϕ(X)]

∣∣∣∣
θ=θ0

= 0.

Proof. Proof is in Keener.
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15.4 p-values

Here is an informal definition (if ϕ(x) rejects for large T (x)): The p-value is

p(x) = “PH0(T (X) ≥ T (x)).”

= sup
θ∈Θ0

Pθ(T (X) ≥ T (x)).

Example 15.4. Let X ∼ N(θ, 1), and test H0 : θ = 0 vs H1 : θ ̸= 0. The two-sided test
rejects for large |X|, and the two-sided p-value is

p(x) = Pθ(|x| > |x|) = 2(1− Φ(|x|)).

We could instead test H0 : |θ| ≤ δ against H1 : |θ| > δ. It turns out that we will get

p(x) = Pδ(|X| > |x|)
= 1− Φ(|x| − δ) + Φ(−|x| − δ).

Not every test will look like this, so we want a more formal definition.

Definition 15.8. Let ϕα(x) be a family of tests with supθ∈Θ0
Eθ[ϕα(x)] ≤ α and ϕα(x)

monotone in α. Then the p-value is

p(x) = inf{α : ϕα(x) = 1}
= inf{α : x ∈ Rα}.

This is the α for which the corresponding test just barely rejects.
For θ ∈ Θ0,

Pθ(p(X) ≤ α) ≤ inf
α̃>α

Pθ(ϕα̃(X) = 1) ≤ α,

so the p-value is stochastically larger than U [0, 1] under H0.

Remark 15.2. The p-value is dependent on not just the data but also the null hypothesis
and the hypothesis test we use! This is something many people misunderstand in practice.
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16 Confidence Sets and Philosophy of Hypothesis Testing

16.1 Recap: hypothesis tests and p-values

We have been studying hypothesis testing, taking a model P = {Pθ : θ ∈ Θ} and distin-
guishing between two submodels H0 : θ = Θ0 and H1 : θ = Θ1. The hypothesis test is
defined by its critical function ϕ(x) ∈ [0, 1].

In a simple null vs simple alternative hypothesis, we saw that it was optimal to reject
for large p1

p0
(X). When we have one real parameter (Θ = R, Θ = (0,∞), etc.), this let us

analyze 1-sided tests H0 : θ ≤ θ0 vs H1 : θ > θ0. If
p2
p1

is increasing in T (x), for all θ2 > θ1
(MLR), then the UMP test rejects rejects for large T (X). This is also valid if T (X) is
stochastically increasing in θ.

For 2-sided tests, i.e. H0 : θ = θ0 vs H1θ ̸= θ (or H0 : θ1 ≤ θ ≤ θ2 vs H1 : θ < θ1 or
θ > θ2), a 2-sided test rejects for extreme T (X), where T (x) is some test statistic. Here
are two ways of making a two tailed test:

• Equal-tailed: Require Pθ0(T (X) > c2) = Pθ0(T (X) < c1) = α/2.

• Unbiased: Require Pθ0(T (X) < c1 or > c2) = α.

Example 16.1. For an exponential family, the 2-tailed unbiased test is UMPU.

The p-value is the level of α for which the test barely rejects:

p(x) = min{α : ϕα(x) = 1}
often
= Pθ0(T (X) ≥ T (x)).

The p-value is defined with respect to a family of tests.
For θ ∈ Θ0,

Pθ(p(X) ≤ α) = Pθ(ϕα(X) = 1) ≤ α,

so p(X) stochastically dominates the uniform distribution on (0, 1).
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16.2 Confidence sets

Often, the effect size is a much more relevant question of whether there is an effect or in
what direction the effect is.

Definition 16.1. In a model P = {Pθ : θ ∈ Θ} with an estimand g(θ), C(X) is a 1 − α
confidence set for g(θ) if

Pθ(C(X) ∋ g(θ)) ≥ 1− α ∀θ ∈ Θ.

In other words, the probability that we picked a set containing the estimand is ≥ 1−α.

Remark 16.1. Note that we have written C(X) ∋ g(θ), rather than the mathematically
equivalent g(θ) ∈ C(X). This is because g(θ) is fixed; it is just the bullseye we are
shooting for. C(X) is the randomly determined object. People misinterpret this as a
statement about g(θ) conditional on the data, which does not make sense from a frequentist
viewpoint.

This should not be called a “confidence” set because confidence is a Bayesian notion.
This should really be called an “interval estimate” instead.

16.3 Duality of confidence sets and testing

How do we make confidence sets? Suppose for every value a, we have a level-α test ϕ(x;α)
for H0 : g(θ) = a vs H1 : g(θ) ̸= a. Let

C(X) = {a : ϕ(X; a) < 1}
= {all non-rejected values}.

Then for every θ,

Pθ(C(X) ̸∋ g(θ)) = Pθ(ϕ(X; a) = 1) ≤ α.

Note that the two appearances of θ on the left hand side need to be the same θ.

Remark 16.2. Why don’t we need a correction for multiple testing, if we are making
uncountably many tests? There is only one true null, so we only have 1 chance to make a
type I error.

The above procedure is called inverting a test to get a confidence set. We can go the
other way: We could rekect H0 : θ ∈ Θ0 if C(X) ∩Θ0 = ∅. For θ ∈ Θ0,

Pθ(test rejects) = Pθ(θ /∈ C(X)) ≤ α.

Example 16.2. A confidence interval is a confidence set C(X) which is an interval
[C1(X), C2(X)]. This is usually obtained by inverting a two-sided test.
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Example 16.3. An upper confidence bound is C2(X), where C(X) = (−∞, C2(X)],
and a lower confidence bound is C1(X), where C(X) = [X1(X),∞). These are usually
obtained by inverting a one-sided test.

Definition 16.2. A upper/lower confidence bound is called uniformly most accurate
(UMA) if it inverts a UMP test. A confidence interval is called UMAU if it inversets a
UMPU test.

Example 16.4. Suppose we observe X ∼ Exp(θ) = 1
θe

−x/θ with θ > 0. The CDF is

Pθ(X ≤ x) = 1− e−x/θ.

• To get a lower confidence bound for θ, invert the one-sided test for H0 : θ ≤ θ0. Solve

α = Pθ0(X > c(θ0)) = e−c(θ0)/θ0

to get
c(θ0) = θ0(− logα) > 0.

Now

ϕ(x; θ0) = 0 ⇐⇒ X ≤ c(θ0)

⇐⇒ θ0 ≥
X

− logα
.

So the confidence region is C(X) = [ X
− logα ,∞).

• For an upper confidence bound, a similar argument gives C(X) = (−∞, X
− log(1−α) ].

• For a confidence interval derived from inverting an equal-tailed test, the equal-tailed
test is

ϕ2Tα(X; θ0) = ϕ≥θ0
α/2 (X; θ0) + ϕ≤θ0

α/2 (X; θ0),

where these tests test H0 : θ = θ0, H0 : θ ≥ θ0, and H0 : θ ≤ θ0, respectively. Then
the confidence interval is

C(X) =
[

X
− log(α/2) ,∞

)
∩
(
−∞, X

− log(1−α/2)

]
=
[

X
− log(α/2) ,

X
− log(1−α/2)

]
.

16.4 Philosophy: misinterpreting hypothesis tests and objections to hy-
pothesis testing

Here are some ways people misinterpret hypothesis tests:

1. If p < 0.05, then “there is an effect.”
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2. If p > 0.05, then “there is no effect.”

The hypothesis test does not eliminate uncertainty; it just describes or quantifies the
uncertainty.

3. If p = 10−6, then “ the effect is huge.”

4. If p = 10−6, then “the data are significant,” and everything about our model is
incorrect.

5. The effect confidence interval for men is [0.2, 3.2] and for women is [−0.2, 3.8], there-
fore “there is an effect for men and not for women.”

Hypothesis tests ask specific questions about specific data sets under specific modeling
assumptions using a specific testing method. Top tier medical journals, for example, let
people publish claims by reporting p-values without saying what their model was or how
they tested the data. But even if we do hypothesis testing right, here are some more
objections:

1. Why should we ever test H0 : θ = 0? Maybe exact zero effects don’t exist! Here are
some responses:

(a) One answer is that we could test something else, for example H0 : |θ| ≤ δ, where
δ is some minimum effect size we care about. However, in a N(θ, σ2) model, the
power of this δ test = α+O((δ/σ)2)

(b) Usually, directional claims are justified.

(c) In a 2-sample problem, we can test H0 : P = Q vs H1 : P ̸= Q, so this is harder
to answer in non-parametric problems.

2. People only like frequentist results like p-values and confidence intervals because they
mistake them for Bayesian results.

3. p-values ignore P(Data | H0) and only look at P(Data | H1). The data could be more
likely under the null than under the alternative.

4. Maybe we should use something else instead of hypothesis testing, since scientists
often misuse hypothesis tests.
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17 Nuisance Parameters, Tests for Multiparameter Expo-
nential Families, and Permutation Tests

17.1 Nuisance parameters

We have been looking at tests with one real parameter θ ∈ Θ ⊆ R. In a one sided test,
H0 : θ ≤ θ0 vs H1 : θ > θ0, we reject for large T (X). This is valid if T (X) is stochasticly
increasing in θ and UMP if we the density has MLR in T (X).

For two-sided tests, H0 : θ = θ0 vs H1 : θ ̸= θ0, we reject for extreme values of T (X).
We get valid directional inference if T (X) is tochastically increasing, and this is UMPU
if we have an exponential family and calibrate c1, c2(x1, x2). So

dPower

dθ
= 0

at θ0.
What about tests with multiple parameters?
Now, our model is P = {Pθ,λ : (θ, λ) ∈ Ω}, and we want to test H0 : θ ∈ Θ0 vs

H1 : θ ∈ Θ1. We call θ the parameter of interest and λ the nuisance paramater. λ
can affect our hypothesis test, even if we are only interested in estimating θ.

Example 17.1. Let X1, . . . , Xn
iid∼ N(µ, σ2) and Y1, . . . , Yn

iid∼ N(ν, σ2), where µ, ν, σ2 are
unknown. We want to test H0 : µ = ν vs Hi : µ− ν. Here, we only care about θ = µ− ν,
so λ = (µ+ ν, σ) or λ = (µ, σ).

Example 17.2. Let X0 ∼ Binom(n0, π0) and X1 ∼ Binom(n1, π1) with X0 ⨿ X1. Here,
n0, n1 are known (not nuisance parameters). We want to test H0 : π1 ≤ π0 vs H1 : π1 > π0.

A nice choice of θ is the log odds ratio θ = log π1/(1−π1)
π0/(1−π0)

, which we can use to write the
null hypothesis as θ ≤ 0. In this case, λ = π0.

17.2 Dealing with nuisance parameters in hypothesis tests for multipa-
rameter exponential families

Suppose we have an exponential family X ∼ pθ,λ(x) = eθ
⊤T (x)+λ⊤U(x)−A(θ,λ)h(x) with

θ ∈ Rs and λ ∈ Rr both unknown. The distribution of X | U(X) only depends on θ. This
blocks the dependence on λ. Proceed in steps:

1. Make a sufficiency reduction to T,U :

(T (X), U(X)) ∼ qθ,λ(t, u)e
θ⊤t+λ⊤u−A(θ,λ)g(t, u)

2. Condition on U to get

qθ(t | u) =
qθ,λ(t, u)∫
qθ,λ(z, u) dz

= eθ
⊤t−Bu(θ)g(t, u)
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3. Perform the conditional test H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 in the s-parameter model
Qu = {qθ(t | u) : θ ∈ Θ}.

If H0 : θ ≤ θ0, then
ϕ(x) = 1{T (X)>cα(u(x))},

where
Eθ,λ[ϕ(X) | U(X)] ≤ α, ∀θ ∈ Θ0.

Conditional control of the Type I error rate is stronger than marginal control of the Type
I error rate.

Remark 17.1. We may not want conditional control of the Type I error if we don’t need
to get rid of a nuisance parameter because requiring this may give a less powerful test.

Theorem 17.1. Assume P is a full-rank exponential family with densities

pθ,λ(x) = eθ
⊤T (x)+λ⊤U(x)−A(θ,λ)h(x),

where θ ∈ R, λ ∈ Rr, (θ, λ) ∈ Ω is open, and θ0 is possible.

(a) To test H0 : θ ≤ θ0 vs H1 : θ > θ0, there is a UMPU test ϕ∗(x) = ψ(T (x), U(x)),
where

ψ(t, u) =


1 t > c(u)

γ(u) t = c(u)

t < c(u),

where c(u) and γ(u) are chosen so that

Eθ0 [ϕ
∗(X) | U(X) = u] = α.

(b) To test H0 : θ = θ0 vs H1 : θ ̸= θ0, there is a UMPU test ϕ∗(x) = ψ(T (x), U(x)),
where

ψ(t, u) =


1 t < c1(u) or t > c1(u)

γi(u) t = ci(u)

0 t ∈ (c1(u), c2(u))

with ci(u), γi(u) chosen to make

Eθ0 [ϕ
∗(X) | U(X) = u] = α,

Eθ0 [T (X)(ϕ∗(X)− α) | U(X) = u] = 0.

We will prove this theorem next time.
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Example 17.3. Suppose Xi
ind∼ Pois(µi) i = 1, 2, where we want to test H0 : µ1 ≤ µ2 vs

H1 : µ1 > µ2.
12 If we let ηi = logµi, then

pµ(x) =
∏
i=1,2

µxi
i e

−µi

xi!
= ex1η1+x2η2−(eη1eη2 ) 1

x1!x2!
= ex1(µ1−µ2)+(x1+x2)η2−(··· ) 1

x1!x2!
.

The null hypothesis is H0 : µ1 ≤ µ2 ⇐⇒ η1 ≤ η2 ⇐⇒ η1 − η2 ≤ 0. So our test is to
reject when X1 is conditionally large given X1 +X2.

Pθ(X1 = x1 | X0 +X1 = u) =
ex1θ+uλ−A(θ,λ) 1

x1!
(u− x1)!∑u

z=0(· · · )

∝θ e
x1θ 1

x1!(u− x1)!

∝ Binom(u, eθ

1+eθ
)

= Binom(X0 +X1,
µ1

µ1+µ2
).

Here is a sketch of the proof of the theorem:

Proof. We can think of the power function as a function on the set Ω:

12For example, Professor Fithian’s wife has gotten pooped on by a bird 4 times in her life, and Professor
Fithian has only gotten pooped on once. We can test if Professor Fithian’s wife is more unlucky than
average. This is the real reason to learn statistics.
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1. We must have power = α on the boundary θ = θ0.

2. On the boundary, U is complete sufficient. Then E[θ0,λ[ϕ(X)] = α for all λ, so

Eθ0,λ[ϕ(X) | U(X)]
a.s.
= α.

3. ϕ∗ must then be the best among conditional tests.

The idea is the same for the two-sided tests, where we have constant power on the null
hypothesis.

Example 17.4. Let X1, . . . , Xn
iid∼ N(µ, σ2), where µ, ν, σ2 are unknown. Test H0 : µ = 0

vs H1 : µ ̸= 0. We have

ρµ,σ2(x) = e
µ

σ2

∑
i xi− 1

2σ2

∑
i x

2
i−

nµ

σ2

(
1

2πσ2

)n/2

.

Condition on
∑

iX
2
i = ∥X∥2 = U(X). Then under H0, X | ∥X∥2 = u

H0∼ Unif(
√
nSn−1) is

uniform on the sphere. This is equivalent to X
∥X∥

H0∼ Unif(Sn−1), where X
∥X∥ ⨿ ∥X∥2. The

UMPU test rejects when
∑

iXi is extreme given ∥X∥2. Let X = 1
n

∑n
i=1Xi, so

S2 =
1

n− 1

n∑
i=1

(Xi −X)2

=
1

n− 1

(
n∑

i=1

X2
i − 2X

n∑
i=1

Xi + nX
2

)

=
1

n− 1
(∥X∥2 − nX

2
)

=
1

n− 1

(
∥X∥2 −

(
1√
n
1⊤nX

)2
)
.
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This means (n− 1)S2 = ∥Proj⊥X0
X∥. Here is the picture when n = 2:

Reject for extreme
√
nX√

∥X∥2−nX
2
(note that this is monotone in X). This is

√
nX/∥X∥√

1− nX
2
/∥X∥2

,

which is a function of X/∥X∥. So this is independent of U = ∥X∥2. This statistic is a
scaled version of the T -statistic:

1√
n− 1

√
nX√
S2

,

where
√
n

X

√
S
2 H0∼ tn−1.

17.3 Permutation tests

Example 17.5. Let X1, . . . , Xn
iid∼ P and Y1, . . . , Yn

iid∼ Q be independent, where we

want to test H0 : P = Q vs H1 : P ̸= Q. Under H0, X1, . . . , Xn, Y1, . . . , Xn
iid∼ P . So

condition on the complete sufficient statistic for the null hypothesis (which is not complete
for the alternative!): Define (Z1, . . . , Zn+m) = (X1, . . . , Xn, Y1, . . . , Ym). Under H0, the
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order statistics U(Z) = (Z(1), . . . , Z(n+m)) is complete sufficient. So let Sn+m = {π :
permutation on n+m elements}. Then

Z = (X,Y ) | U H0∼ Unif({πU : π ∈ Sn+m}).

For any test statistic Y , if P = Q, then

PP,Q(T (Z) ≥ t | U) =
1

(n+m)!

∑
π∈Sn+m

1{T (πZ)≥t}.

In practice, we can do a Monte Carlo version of this; sample π1, . . . , πB
iid∼ Unif(Sn+m).

Then Z, π1Z, π2Z, . . . , πBZ
iid∼ Unif(Sn+mU). Let the p-value be

p =
1

1 +B

B∑
b=1

1{T (Z)≤T (πbZ)}

H0∼ Unif({ 1
1+B , . . . ,

B+1
1+B}).

So if we take a test statistic and apply it to all permutations of the data, if the original
data looks special, then we should reject.
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18 Hypothesis Tests for Gaussian Models

18.1 Recap: hypothesis testing with nuisance parameters

Last time, we discussed hypothesis testing with nuisance parameters. If we have an ex-
ponential family X ∼ eθT (x)+λ⊤U(x)−A(θ,λ)h(x) with the one-sided test H0 : θ ≤ θ0 vs
H1 : θ > θ0, then the UMPU test rejects for conditionally large T | U . If we have the
two-sided test H0 : θ = θ0 vs H1 : θ ̸= θ0, the UMPU test rejects for conditionally extreme
T | U . Here, Pθ(T | U) depends only on θ (U is sufficient after fixing θ).

We saw the nonparametric test where if Xi
iid∼ P , Yi

iid∼ Q, then we can test H0 : P = Q
vs H1 : P ̸= Q by conditioning on the pooled order statistics. There are various choices of
test statistics to use for permutation tests with various properties.

18.2 Distributions related to Gaussians

Example 18.1 (χ2 distribution). If Z1, . . . , Zd
iid∼ N(0, 1), then

V =

d∑
i=1

Z2
i ∼ χ2

d = Gamma(d/2, 2)

with
E[V ] = d, Var(V ) = 2d.

Note that the standard deviation grows slower than the mean, so as d→ ∞,

V

d

p−→ 1.

That is,
P(|Vd − 1| ≥ ε) → 0

for all ε > 0. This is what we would expect from the law of large numbers. The central

limit theorem tells us that V ≈ N(d, 2d) because
√
d(Vd − 1)

d−→ N(0, 2).

Example 18.2 (t-distribution). If Z ∼ N(0, 1) and V ∼ χ2
d with Z ⨿ V , then

Z√
V /d

∼ td,

the Student’s T -distribution, where td ≈ N(0, 1) for large d.

Example 18.3 (F -distribution). If V1 ∼ χ2
d1

and V2 ∼ X2
d2

with V1 ⨿ V2, then

V1/d1
V2/d2

∼ Fd1,d2 ,
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the F -distribution, which has 2 degrees of freedom. Fd1,d2 ≈ χ2
d1

if d2 → ∞. If t ∼ td,
then

T 2 ∼ Z2

V/d
∼ F1,d.

Example 18.4. If Z ∼ Nd(µ,Σ) with A ∈ Rk×d and b ∈ Rk, then

AZ + b ∼ N(Aµ+ b, AΣA⊤).

18.3 Analysis of the one-sample t-test

We saw earlier that if X1, . . . , Xn
iid∼ N(µ, σ2) with both µ ∈ R and σ2 > 0 unknown and

we test H0 : µ = 0 vs H1 : µ ̸= 0, then the UMPU test says to reject for extreme X given
∥X∥2. We could also say to reject for large |X|/∥X∥; this gets rid of the conditioning given
∥X∥2, since under the null, |X|/∥X∥ ⨿ ∥X∥2. Equivalently, we can reject for large values
of

nX

∥X∥2 − nX
2 =

nX
2
/∥X∥2

1−X
2
/∥X∥2

.

If we didn’t want to square this, we could equivalently reject for extreme
√
nX

√
S
2 ,

H0∼ tn−1,

where S2 = 1
n−1

∑n
i=1(Xi −X)2. This has a T -distirbution because

S2 =
1

n− 1
∥Proj⊥1n

X∥2 ∼ σ2χn−1.

Here is a picture for n = 2:
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What’s happening geometrically is that

nX

S2
∼ F1,n−1

is a ratio of squared magnitudes in different directions. If µ = 0, then no direction should
be special. Let’s make this more precise with linear algebra.

Here is a change of basis: Let

Q =

 | |
q1 · · · qn
| |

 =

 |
q1 Qr

|


with q1 = 1√

n
1n and q2, . . . , qn completing this to an orthonormal basis. Then Q⊤Q =

QQ⊤ = In, and X ∼ Nn(µ1n, σ
2In). Let

Z = Q⊤X =

[
q⊤1 X
Q⊤

r X

]
=

[√
nX

Q⊤
r X

]
.

Then

Q⊤X ∼ Nn



√
nµ
0
...
0

 , σ2In
 ,

so
∥Q⊤

r X∥2 = ∥Q⊤X∥2 − nX
2
= ∥X∥2 − nX

2
= (n− 1)S2.

This tells us that
Q⊤

r X ∼ Nn−1(0, σ
2In−1).

Here, we have
(n− 1)S2 ∼ σ2χ2

n−1,
√
nX ∼ N(

√
nµ, σ2).

18.4 Canonical linear model

Assume

Z =

Z0

Z1

Zr

 ∼ Nn

µ0µ1
µr

 , σ2In


where Zi has dimension di with n− d0 − d1 = dr. Here, µ0 ∈ Rd0 , µ1 ∈ Rd1 , µr ∈ Rdr . We
want to test H0 : µ1 = 0 vs H1 : µ1 ̸= 0.

This is an exponential family, with

p(z) ∝ e
µ⊤1
σ2 Z1+

µ⊤
0

σ2 Z0− 1
2σ2 ∥z∥2h(z).

We want to condition on (i.e. ignore) the nuisance parameter Z0.
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• If σ2 is known and d1 = 1, then the UMPU test rejects for large/small/extreme values
of

Z1

σ

H0∼ N(0, 1), (Z-test).

• For known σ2 and d1 ≥ 1, reject for large values of

|Z1|∥2

σ2
H0∼ χ2

d1 (χ2-test13).

• For d1 = 1 and unknown σ2, condition on Z0, ∥Z∥2 = ∥Z0||2 + Z2
1 + ∥Zr∥2. We

reject for conditionally large/small/extreme Z1, which is the same as conditioning on
extreme values of Z1√

Z
2
1+∥Zr∥2

. This is equivalent to rejecting for extreme values of

Z1√
∥Z1∥2/d1

H0∼ td1 (t-test).

• If d1 ≥ 1 and σ2 is unknown, condition on Z0, ∥Z1∥2 + ∥Zr∥2. Reject for large

∥Z1∥2/d1
∥Zr∥2/dr

H0∼ Fd1,dr (F -test).

Remark 18.1. This is related to the Beta distribution.

∥X1∥2 ∼ σ2Gamma(d1/2, 2σ
2)

and
∥Zr∥2 ∼ σ2χ2

dr = Gamma(dr/2, 2σ
2).

so
∥Z1∥2

∥Z1∥2 + ∥Zr∥2
∼ Beta(d1/2, dr/2).

More generally, if U ∼ Beta(d1/2, dr/2), then

U/d1
(1− U)/dr

∼ Fd1,,d2 .

The normalized residual vector is

1

dr
∥Zr∥2 ∼

σ2

dr
χ2
dr ≈ σ2.

13There are a number of hypothesis tests refered to as a “χ2-test.”
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If we write

σ̂2 =
∥Zr∥2

dr
,

then the t-statistic is
Z1

σ̂
,

and the F -statistic is
1

d1

∥Z1∥2

σ̂2
.

This is a solution to a problem presented in a nice form. Next time, we will talk about
how to use a change of basis to solve more general Gaussian model problems.
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19 General Linear Model for Gaussian Hypothesis Tests

19.1 Recap: Canonical linear model for Gaussian hypothesis tests

Last time, we the χ2 distribution: if Z1, . . . , Zd
iid∼ N(0, 1), then V = ∥Z∥2 ∼ χ2

d. We also
had the t distribution, where if Z ∼ N(0, 1) ⨿ V ∼ χ2

d, then Z/
√
V/d ∼ td. We also had

the F -distribution, where if V1 ∼ χ2
d1

⨿ V2 ∼ χ2
d2
, then V1/d1

V2/d2
∼ Fd1,d2 .

In our canonical linear model, we had

Z =

Z0

Z1

Zr

 ∼ Nn

µ0µ1
µr

 , σ2In


where Zi has dimension di with n− d0 − d1 = dr. Here, µ0 ∈ Rd0 , µ1 ∈ Rd1 , µr ∈ Rdr . We
are interesting in testing H0 : µ1 = 0 vs H1 : µ1 ̸= 0. We ended up with 4 cases last time:

σ2 known σ2 unknown

d1 = 1 Z1/σ
H0∼ N(0, 1) Z1/σ̂

H0∼ tn−d

d1 ≥ 1 ∥Z1∥2/σ2
H0∼ χ2

d1
∥Z!∥2/d1

∥Zr∥2/(n−d)
= ∥Z1∥2/d1

σ̂2

H0∼ Fd1,n−d

where σ̂2 = ∥Zr∥2
dr

.

19.2 General linear model for testing Gaussian means

In the general linear model for testing Gaussian means, we have Y ∼ Nn(θ, σ
2In) with

σ2 > 0. We want to test H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ \ Θ0, where Θ0 ⊆ Θ ⊆ Rn are
subspaces. Denote dd0 = dim(Θ0) and d = dim(Θ) = d0 + d1.

Let
Q =

[
Q0 Q1 Qr

]
,

where Q0 is an orthonormal basis for Θ0, Q1 is an orthonormal basis for Θ ∩ θ⊥0 , and Qr

is an orthonormal basis for Rn ∩Θ⊥. Then

Z = Q⊤Y ∼ N

([
Q⊤

0 θ
Q⊤

1 θ

]
, σ2In

)
.

In this basis, we are testing H0 : Q
⊤
1 θ = 0 vs H1 : Q

⊤
1 θ ̸= 0.

19.3 Linear regression

Let xi ∈ Rd be fixed, and let Yi = x⊤i β+ εi, where εi
iid∼ N(0, σ2). Then Y ∼ N(Xβ, σ2In),

where

X =

− x1 −
...

− xd −

 =

 | |
X1 · · · Xn

| |

 ∈ Rn×d
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Assume that X has full column rank. Our model is to estimate θ = E[Y ] = Xβ, where
θ ∈ span(X1, . . . , Xd). Our null hypothesis is H0 : β1 = β2 = · · · = βd1 = 0, where
1 ≤ d1 ≤ d. This is the same as θ ∈ span(Xd1+1, . . . , Xd) (or {0} if d1 = d). In this model,
we have Q0 = Projspan(xd1+1,...,xd)

and Q1 = Projspan(x1,...,xd)∩Θ⊥
0
.

We have

∥Zr∥ = ∥Y − ProjΘ Y ∥2

= ∥Y −Xβ̂OLS∥2

=
n∑

i=1

(Yi − x⊤i β)
2,

the residual sum of squares (RSS). Here,

β̂OLS = (X⊤X)−1X⊤Y = argmin
β∈Rd

∥Y −Xβ∥2 = argmin
θ∈Θ

∥Y − θ∥2.

Note that
∥Z1∥2 + ∥Zr∥2 = ∥Y − ProjΘ0

(Y )∥ = RSS0 .

The F -statistic is

∥Z1∥2/(d− d0)

∥Zr∥2/(n− d)
=

(RSS0−RSS)/(d− d0)

RSS /(n− d)

H0∼ Fd−d0,n−d.

If d = 1, let X0 =
[
X2 · · · Xd

]
∈ Rd0×n. Then let

X1⊥ = X1 − ProjΘ0
(X1)

= X1 −X0 (X
⊤
0 X0)

−1X⊤
0 X1︸ ︷︷ ︸

γ

= X1 −X0γ

To make X1 special, write θ = Xβ = X1⊥β1 +X0(β−1 + γβ1) = X1⊥β1 +X0δ. Then[
β̂1
δ̂

]
= ((X1⊥X0)

⊤(X1⊥X0))
−1(X1⊥X0)

⊤Y

=

[
(X⊤

1⊥X1⊥)
−1 0

0 (X⊤
0 X0)

−1

] [
X⊤

1⊥Y
X⊥

0 Y

]
,

so

β̂1 =
X⊤

1⊥Y

∥X1⊥∥2
=

Z1

∥X1⊥∥
.

Here Q = [q1] =
X1⊥

∥X1⊥∥ , so Z1 = q⊤1 Y =
X⊤

1⊥Y

∥X1⊥∥ .
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The variance of the OLS estimator is

Var(β̂1) = Var

(
Z1

∥X1⊥∥

)
=

σ2

∥X1⊥∥2
.

So the standard error of β̂1 is

s. e.(β̂1) =
σ

∥X1⊥∥
.

The t-statistic is
q⊤1 Y√

RSS /(n− d)
=

β̂1
σ̂/∥X1⊥∥

=
β̂1

ŝ. e.(β̂1)
.

19.4 One way ANOVA (fixed effect)

ANOVA is short for “analysis of variates.”

Our model has Yk,i
ind∼ µk + εk,i, where εk,i

iid∼ N(0, σ2) with k = 1, . . . ,m and i =
1, . . . , n. We want to test H0 : µ1 = · · · = µm = µ for any µ ∈ R. Then the null has
dimension d0 = 1, and the whole model has dimension d = m. The residual dimension is
dr = m(n− 1).

If we concatenate everything into 1 long vector,

Q0 =

1...
1

 , Q1 = basis for orthogonal complement of 1mn.

Denote

Y k =
1

n

∑
i

Yk,i.S
2
k =

1

n− 1

∑
i

(Yk,i − Y k)
2,

Y =
1

mn

∑
k

∑
i

Yk,i, S2
0 =

1

mn− 1

∑
k

∑
i

(Yk,i − Y )2.

Then
RSS =

∑
k

∑
i

(Yk,i − Y k)
2 = (n− 1)

∑
k

S2
k = ∥Y ∥2 − n

∑
k

Y
2
k,

RSS0
∑
k

∑
i

(Yk,i − Y )2 = (mn− 1)S2
0 = ∥Y ∥2 −mnY

2
.

The F -statistic is

(RSS0−RSS)/(m− 1)

RSS /(m(n− 1))
=

n
m−1(

∑
k Y

2
k −mY

2
)

1
m(n−1)

∑
k

∑
i(Yk,i − Y i)2

=
between variance

within variance
.
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An equivalent test statistic would be

RSS0−RSS

RSS0
=

∥Z1∥2

∥Z1∥2 + ∥Zr∥2
.

This is asking “by what percentage does the residual sum of squares goes down?’” or “what
fraction of the variance is explained by adding these extra variables to the model?” We
reject when the residual variance goes down by a larger than expected percentage.
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20 Convergence, Consistency, and Limit Theorems

20.1 A note about linear regression

Last time, we discussed linear regression, where we have xi ∈ Rd and yi = x⊤i β+ εi, where

εi
iid∼ N(0, σ2). Then we can write the density as

p(y) =
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

(yi − x⊤i β)
2

)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2
∥y −Xβ∥2

)
=

1

(2πσ2)n/2
exp

(
− 1

2σ2
y⊤y +

1

σ2
(Xβ)⊤y − β⊤X⊤Xβ

2σ

)
=

1

(2πσ2)n/2
exp

(
− 1

2σ2
∥y∥2 + β⊤

σ2
(X⊤y)−A(β)

)
.

Then X⊤y, ∥y∥2 are sufficient iff (X⊤X)−1X⊤y and ∥y∥2 are sufficient. This is equiv-
alent to the OLS estimator β̂ and RSS = ∥y∥2 − ∥Xβ̂∥2 being sufficient. So we can
make a suffiicencty reduction to β̂, σ̂2. Here, one can show that β̂ = (X⊤X)−1X⊤y ∼
Nd(β, σ

2(X⊤X)−1)with β̂⨿σ̂2. Note that this is d-dimensional, rather than n-dimensional,
so we have a dimensionality reduction.

20.2 Convergence and consistency

Let X1, X2, · · · ∈ Rd be random variables.

Definition 20.1. Xn converges in probability to c, written Xn
p−→ c, if

P(∥Xn − c∥ > ε) → 0 ∀ε > 0.

This says that Xn becomes roughly constant.

Definition 20.2. Xn converges in distribution to X, written Xn
D−→ X or Xn =⇒ X,

if E[f(Xn)] → E[f(X)] for all bounded, continuous functions f .

This says that when n is large, the distribution of Xn looks a lot like the distribution
of X.

Theorem 20.1. If X1, X2, · · · ∈ R, let the CDFs be Fn(x) = P(Xn ≤ x) and F (x) =
P(X ≤ x). Then Xn =⇒ X iff Fn(x) → F (x) for all x such that F is continuous at x.

This is a weaker version of pointwise convergence, and convergence in distribution is
sometimes called weak convergence. Here is why we want to only consider continuity
points:
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Example 20.1. Let Xn ∼ δ1/n and X ∼ δ0. We want our definition to say Xn =⇒ X.
The CDFs are

Fx(x) = 1{1/n≤x}, F (x) = 1{0≤x}.

This example suggests that convergence in probability and in distribution are related.

Proposition 20.1. Xn
p−→ c if and only if Xn =⇒ δc.

The kind of convergence we care most about in statistics is consistency:

Definition 20.3. If Pn = {Pθ,n : θ ∈ Θ} with Xn ∼ Pn,θ, then we say that δn(Xn) is

consistent for g(θ) if δn(Xn)
p−→ g(θ) for all θ, i.e.

Pθ(∥δn(Xn)− g(θ)∥ > ε) → 0.

20.3 Limit theorems

20.3.1 The law of large numbers and the central limit theorem

Theorem 20.2 ((Weak) law of large numbers). Let X1, X2, . . . be iid random vectors, and

let Xn = 1
n

∑n
i=1Xi. If E[∥Xi∥] <∞ and E[Xi] = µ, then Xn

p−→ µ.

Remark 20.1. You may have seen a stronger version of this theorem, in which we can
prove that Xn → µ almost surely. In statistics, we are interested in convergence in
probability, so this will suffice for our purposes.

Theorem 20.3 (Central limit theorem). Let X1, X2, · · · ∈ Rd be iid random vectors, and
let Xn = 1

n

∑n
i=1Xi. Assume that E[Xi = µ and Var(Xi) = Σ <∞. Then

√
n(Xn − µ) =⇒ Nd(0,Σ).

20.3.2 The continuous mapping theorem

Here are three tools for how we propagate convergence to other kinds of random variables:

Theorem 20.4 (Continuous mapping). Let X1, X2, . . . be random variables, and let g be

a continuous function. If Xn =⇒ X, then g(Xn) =⇒ g(X). In particular, if Xn
p−→ c,

then g(Xn)
p−→ g(c).

Proof. If f is bounded and continuous, then f ◦ g is bounded and continuous, so

E[f(g(Xn))] = E[f ◦ g(Xn)] → E[f ◦ g(Xn)] = E[f(g(X))].
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20.3.3 Slutsky’s theorem

Theorem 20.5 (Slutsky). Assume Xn =⇒ X and Yn
p−→ c. Then

Xn + Yn =⇒ X + c, XnYn =⇒ X · c, Xn

Yn
=⇒ X

c

(where we assume c ̸= 0 for the last one).

Proof. Here is a sketch: The first step is to show that (Xn, Yn) =⇒ (X, c). Then apply
the continuous mapping theorem.

20.3.4 The delta method

Last is the delta method, which informally says that if Xn ≈ (µ, σ2) with σ2 small and f
is differentiable, then f(Xn) ≈ N(f(µ), σ2ḟ(µ)2).

Theorem 20.6 (Delta method). If
√
n(Xn − µ) =⇒ N(0, σ2) and f(x) is continuously

differentiable at µ, then

√
n(f(Xn)− f(µ)) =⇒ N(0, σ2ḟ(µ)2).

Proof. Here is the idea: Write f(Xn) = f(µ) + ḟ(ζn)(Xn − µ), where ζn is between µ and

Xn (by the mean value theorem). Xn
p−→ µ because Xn − µ

p−→ 0. Then ζn
p−→ 0, as well,

because
P(∥ζn − µ∥ > ε) ≤ P(∥Xn − µ∥ > ε) → 0.

So, by the continuous mapping theorem applied to ḟ ,

√
n(f(Xn)− f(µ)) = ḟ(ζn)︸ ︷︷ ︸

p−→ḟ(µ)

√
n(Xn − µ)︸ ︷︷ ︸
=⇒ N(0,σ2)

,

So by Slutsky’s theorem,
√
n(f(Xn)− f(µ)) =⇒ N(0, σ2ḟ(µ)2).

Remark 20.2. We don’t need to have
√
n in the front. The theorem is still true if we

replace
√
n with an, as long as an → ∞. Where in the proof did we use that

√
n → ∞?

This was necessary for the fact that Xn
p−→ µ.
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Here is a picture of the delta method:

There is also a multivariate version:

Theorem 20.7 (Delta method, multivariate). If
√
n(Xn−µ) =⇒ N(0,Σ) and f : Rd → R

is continuously differentiable at µ, then

√
n(f(Xn)− f(µ)) =⇒ N(0,∇⊤Σ∇f).

The proof is the same as the univariate case.

Example 20.2. Let X1, . . . , Xn
iid∼ (µ, σ2), and let Y1, . . . , Yn

iid∼ (ν, τ2) be independent of
the Xi. Suppose we estimate (µ+ ν)2 with (X + Y )2. We can say a few things:

1. By the law of large numbers, X
p−→ µ and Y

p−→ ν as n→ ∞. The function f(x, y) =

(x+ y)2 is continuous, so f(X,Y )
p−→ f(µ, ν). In other words,

(X + Y )2
p−→ (µ+ ν)2,

so (X + Y )2 is consistent for (µ+ ν)2.

2. The central limit theorem says that
√
n(X − n) =⇒ N(0, σ2) and

√
n(Y − n) =⇒

N(0, τ2). Here,
∂f

∂x
(x, y) =

∂f

∂y
(x, y) = 2(x+ y).
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So the delta method tells us that

f(X,Y ) ≈ N

(
f(µ, ν),

1

n
∇f(µ, ν)⊤

[
σ2 0
0 τ2

]
∇f
)

= N
(
(µ+ ν)2, 4(µ+ ν)2(σ2 + τ2)/n

)
.

More rigorously,

√
n((X + Y )2 − (µ+ ν)2) =⇒ N(0, 4(µ+ ν)2(σ2 + τ2)).

3. What if (µ+ ν)2 = 0? Then

√
n((X − Y )2 − (µ+ ν)2)

p−→ 0.

We also know √
nX +

√
nY =⇒ N(0, σ2 + τ2),

so if we square this sum,

n(X + Y )2 =⇒ (σ2 + τ2)χ2
1.

If we keep getting things converging to 0, we can keep blowing up the error to find
what the distribution of the error rate is in this way.
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21 Maximum Likelihood Estimation and Asymptotic Effi-
ciency

21.1 Recap: Convergence in probability and distribution

Last time we introduced notions of convergence. We had

• Convergence in probability:

Xn
p−→ c if P(∥Xn − c∥ > ε) → 0 ∀ε > 0.

• Convergence in distribution (sometimes called weak convergence14):

Xn =⇒ X if E[f(Xn)] → E[f(X)] ∀ bounded, continuous f.

If Xn, X ∈ R, then Xn =⇒ X if and only if Fn(x) → F (x) for all x where F is
continuous at x, where Fn(x) = P(Xn ≤ x) and F (x) = P(X ≤ x).

We had a few theorems will allow us to extend convergence to more random variables:

Theorem 21.1 (Continuous mapping). If f is continuous,

Xn → pX =⇒ f(Xn)
p−→ f(X), Xn → DX =⇒ f(Xn)

D−→ f(X).

Theorem 21.2 (Slutsky). If Xn =⇒ X and Yn =⇒ c, then

Xn + Yn =⇒ X + c, Xn · Yn =⇒ cX, Xn/Yn =⇒ X/c (c ̸= 0),

Theorem 21.3 (Delta method). Suppose g(n)(Xn − µ) =⇒ Nd(0,Σ), where g(n) → ∞.
Then for f : Rd → Rk, where

Df(x) =

− ∇f1(x)⊤ −
...

− ∇fk(x)⊤ −


exists and is continuous at µ, then g(n)(f(Xn)− f(µ)) =⇒ Nk(0, Df(µ)ΣDf(µ)

⊤).

14The real reason this is called weak convergence is that it corresponds to convergence of the distribution
measures in a weak topology on BC(Rn)∗, the dual space of the bounded continuous functions on Rn.
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21.2 Maximum likelihood estimators

Definition 21.1. Let P = {Pθ : θ ∈ Θ} be a dominated family with densities pθ for Pθ

with respect to µ. The maximum likelihood estimator (MLE) is

θ̂MLE(X) = argmax
θ∈Θ

pθ(X)

= argmax
θ∈Θ

ℓ(θ;X).

If we are worried about whether this exists, i.e. if the maximum is achieved, we can
just take some ε tolerance instead. For now, we won’t worry about that.

Remark 21.1. This is invariant to parametrization. If we have two different parameteri-
zations θ and η(θ), then η̂MLE = η(θ̂MLE). This is not the case for, for example, the UMVU
estimator.

Example 21.1. Let pη(x) = eη
⊤T (x)−A(η)h(x). The log likelihood is

ℓ(η;x) = η⊤T (x)−A(η) + log h(x),

so

∇ℓ(η;X) = T (X)−∇A(η)
= T (X)− Eη[T (X)].

Note that ∇ℓ is concave. If we set it equal to 0, we get something like a method of moments
estimator.

η̂MLE solves T (X) = Eη̂[T (X)].

Let µ = ψ(η) = ∇A. Then η̂ = ψ−1(T (X)).

Example 21.2. Let Xi
iid∼ eηT (x)−A(η)h(x) with η ∈ Ξ ⊆ R. Then

η̂ = ψ−1(T ), T =
1

n

n∑
i=1

T (Xi).

Assume η ∈ Ξo and ψ̇(η) = Ä(η) > 0. Then ψ−1 is continuous, so

d

dµ
ψ−1(µ) =

1

ψ̇(ψ−1(µ))
=

1

Ä(η)
.

By the law of large numbers, T
pη−→ µ. Here, we write pη to emphasize that this convergence

depends on η. So the continuous mapping theorem gives consistency: ψ−1(T )
pη−→ η.
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The central limit theorem gives

√
n(T − µ) =⇒ N(0,Varη T (X1)) = N(0, Ä(η)),

where the Fisher information is Jη
1 (µ) = Ä(µ)−1. The delta method gives

√
n(η̂ − η) =

√
(ψ−1(T )− η) =⇒ N(0, 1

Ä(η)2
Ä(η)) = N(0, Ä(η)−1).

Recall that Jη
1 (µ) = Varη(T (X1)) = Ä(η). Asymptotically, η̂ is unbiased and achieves the

Cramér-Rao lower bound because Jη
n(η) = nÄ(η).

What do we mean by asymptotically unbiased?

Example 21.3. Let X1, . . . , Xn
iid∼ Pois(θ) = θxe−θ

x! , and let η = log θ. Then η̂ = logX.
The central limit theorem says (X − θ) =⇒ N(0, θ), so the delta method tells us that

√
n(η̂ − η) =

√
n(logX − log θ) =⇒ N(0, 1

θ2
θ) = N(0, θ−1).

What if X = 0? In fact, η̂ has bias −∞ and infinite variance, so the bias does not converge
to 0. What we mean by asymptotically unbiased is that the scaled limiting distribution
has no bias.

If you are a glass half-empty person, you might say that we can never use η̂, since it
will always have infinite mean squared error. But if you are a glass half-full person, you
might say that

Pη(X = 0) = Pθ(X1 = 0)n = e−nθ,

which is an exponentially decaying probability of anything bad happening.

Proposition 21.1. If Xn =⇒ X, Zn is arbitrary, and Bn is an event such that P(Bn) →
0, then

Xn1Bc
n
+ Zn1Bn =⇒ X.

Proof. Observe that Zn
p−→ 0:

P(∥Zn1Bn∥ > ε) ≤ P(∥1Bn∥ > ε) → 0.

So Zn1Bn

p−→ 0. Since 1Bc
n

p−→ 1, use Slutsky’s theorem to get the result.

21.3 Asymptotic efficiency

Let X1, . . . , Xn
iid∼ pθ(x) with θ ∈ Rd. Assume that pθ is “smooth” in θ, e.g. it has 2

continuous integrable derivatives. Let

ℓ1(θ;Xi) = log pθ(Xi), ℓn(θ,X) =

n∑
i=1

ℓ1(θ;Xi).
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Recall the Fisher information for a single observation is

H1(θ) = Varθ(∇ℓ1(θ;Xi)).

The likelihood ratio, which captures everything about the data, looks like

Lik(θ + δ;X)

Lik(θ;X)
= log(ℓn(θ + δ)− ℓn(θ)) ≈ log(δ⊤∇ℓn(θ)).

The Fisher information for n observations is

Jn(θ) = Varθ(∇ℓn(θ;X)) = nJ1(θ).

Recall that E[∇ℓ1(θ)] = 0.

Definition 21.2. An estimator θ̂n is asymptotically efficient if

√
n(θ̂n − θ)

Pθ=⇒ N(0, J1(θ)
−1).

Really this is a sequence of estimators converging, but this is usually understood from
context. For continuously differentiable g(θ) : Rd → R,

√
n(g(θ̂n)− g(θ)) =⇒ N(0,∇g(θ)⊤J1(θ)−1∇g(θ)).

You may recognize this as the Cramér-Rao lower bound.
Let θ0 be the true value, and let θ be a generic value of the parameter. We will maximize

ℓn(θ;X) by setting ∇ℓn(θ̂MLE) = 0. We know ∇ℓ1(θ0;Xi)
iid∼ (0, J1(θ0)), so by the central

limit theorem,

1√
n
∇ℓn(θ0;X) =

√
n
1

n

n∑
i=1

∇ℓ1(θ0, Xi) =⇒ N(0, J1(θ0)).

Now calculate the second derivative: Using the law of large numbers,

1

n
∇2ℓn(θ0, X)

p−→ Eθ0 [∇2ℓ(θ0;Xi)] = −J1(θ).

Here is an informal proof of why the MLE should be asymptotically efficient.

Proof. Assume
0 = ∇ℓn(θ̂n;X) = ∇ℓn(θ0) +∇2ℓn(θ0)(θ̂n − θ),

using a Taylor expansion. Then√
(θ̂n − θ0) ≈

(
− 1

n
∇2ℓn(θ0)

)−1

︸ ︷︷ ︸
p−→J1(θ0)−1

(
1√
n
∇ℓn(θ0)

)
︸ ︷︷ ︸
=⇒ N(0,J1(θ0))

=⇒ N(0, J1(θ0)
−1),

which gives asymptotic efficiency.
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What’s missing from this proof? To do our Taylor expansion, we need to first show
that θ̂n is close to θ0; that is, we want to show consistency: θ̂n

p−→ θ0.
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22 Asymptotic Consistency of the Maximum Likelihood Es-
timator

22.1 Recap: Maximum likelihood estimation

Last time, we introduced maximum likelihood estimation. If our model is P with densities

pθ(x) with respect to µ and if our sample is X1, . . . , Xn
iid∼ pθ0 , then the maximum

likelihood estimator (MLE) is

θ̂n = argmax
θ∈Θ

pθ(X)

= argmax
θ∈Θ

ℓn(θ;X)

= argmax
θ∈Θ

n∑
i=1

ℓ1(θ;Xi)− ℓ1(θ0, Xi)︸ ︷︷ ︸
Wi(θ)

= argmax
θ∈Θ

Wn(θ),

where

Wn(θ) =
1

n

n∑
i=1

Wi(θ).

We are interested in how Wn converges to its expectation.
Last time, we made a quadratic expansion of the log-likelihood (or a linear expansion

of the score),
0 = ∇ℓn(θ̂n) = ∇ℓn(θ0) +∇2ℓ(θ̃n)(θ̂n − θ0),

where θ̃n is some value given by the mean value theorem. Then

√
n(θ̂n − θ0) =

(
− 1

n
∇2ℓ(θ̂n)

)−1( 1√
n
∇ℓn(θ0)

)
︸ ︷︷ ︸
=⇒ Nd(0,J1(θ0))

.

We want to say that the first term converges in probability to J1(θ0)
−1. We need a few

ingredients:

• θ̂n
p−→ θ0.

• J1(θ0) ≻ 0.

• We need to deal with a random function at the random value θ̂n.
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22.2 Pointwise convergence of likelihood ratio averages

We can say Wn(θ) is a sample mean of iid W1(θ), . . . ,Wn(θ). Recall the KL-Divergence

D
(1)
KL(θ0 || θ) = Eθ0

[
log

pθ0(X1)

pθ(X1)

]
.

Then by Jensen’s inequality,

−D(1)
KL(θ0 || θ) ≤ logEθ0

[
pθ0(X1)

pθ(X1)

]
≤ log 1

= 0.

Since log is strictly concave, this is a strict inequality unless pθ0 = pθ.
Now let’s calculate the expectation of the W s:

Eθ0 [Wn(θ)] = Eθ0 [Wi(θ)]

= Eθ0 [ℓ1(θ;X1)− ℓ1(θ0;Xi)]

= −DKL(θ0 || θ)
< 0,

unless pθ0 = p0. Then

Wn(θ)
p−→ −DKL(θ0 || θ) < 0

unless pθ0 = p0. We need a way to make this convergence uniform.

22.3 Uniform convergence of random functions

Definition 22.1. For a compact K, let C(K) be the set of all continuous functions f :
K → R.

Definition 22.2. For any f ∈ C(K), the L∞ norm is

∥f∥∞ = sup
t∈K

|f(t)|.

Definition 22.3. We say that fn → f in this norm (fn converges uniformly to f) if
∥fn − f∥∞ → 0.

Theorem 22.1 (Law of large numbers for random functions). Assume K is comapct, and
W1,W2, · · · ∈ C(K) are iid with E[∥Wi∥∞] <∞. Let µ(t) = E[Wi(t)]. Then µ(t) ∈ C(K),
and ∥∥∥∥∥ 1n

n∑
i=1

Wi − µ

∥∥∥∥∥
∞

p−→ 0.

That is, 1
n

∑n
i=1Wi → µ uniformly in probability.
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We won’t prove this.

Theorem 22.2 (9.4 in Keener). Let G1, G2, . . . be random functions in C(K) with K

compact. Assume that ∥Gn − g∥∞
p−→ 0 for some fixed g ∈ C(K). Then

1. If tn
p−→ t∗ with tn random and t∗ ∈ K fixed, then Gn(tn)

p−→ g(t∗).

2. If g is maximized at a unique value t∗ ∈ K and Gn(tn) = maxtGn(t), then tn
p−→ t∗.

3. If K ⊆ R, g(t) = 0 has a unique solution t∗, and tn solves Gn(tn) = 0, then tn
p−→ t∗.

Proof.

1.

|Gn(tn)− g(t∗)| ≤ |Gn(tn)− g(t− n)|+ |g(tn)− g(t∗)|
≤ ∥Gn − g∥∞︸ ︷︷ ︸

p−→0

+ |g(tn)− g(t∗)|︸ ︷︷ ︸
p−→0

,

where the second term converges to 0 in probability by the continuous mapping
theorem. So Gn(tn)

p−→ g(t∗).

2. Fix ε > 0, and let Bε(t
∗) = {t : ∥t− t∗∥ < ε}. Let Kε = K \Bε(t

∗); this intersection
is also compact. Let

δ = g(t∗)−max
t∈Kε

g(t) > 0.
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If tn ∈ Kε, then

Gn(tn) ≤ max
t∈Kε

g(t) + ∥Gn − g∥∞. = g(t∗)− δ + ∥Gn − g∥∞.

We also know that

Gn(tn) ≥ Gn(t
∗) ≥ g(t∗)− ∥Gn − g∥∞.

Subtracting these inequalities gives

2∥Gn − g∥∞ ≥ δ.

The probability of this is going to 0 by assumption, so P(tn ∈ Kε) → 0.

3. The proof of this is analogous to the proof of the second statement.

What if we don’t need the exact maximizer or if there is no exact maximizer? We can
modify part 2 of the theorem:

Theorem 22.3. Let G1, G2, . . . be random functions in C(K) with K compact. Assume

that ∥Gn − g∥∞
p−→ 0 for some fixed g ∈ C(K). Then if g is maximized at a unique value

t∗ ∈ K and Gn(tn) = maxtGn(t)− αn with αn → 0, then tn
p−→ t∗.

Proof. We can repeat the same argument, except this time we get

Fn(tn) ≥ Gn(t
∗)− αn ≥ g(t∗)− ∥Gn − g∥∞ − αn.

This gives
2∥Gn − g∥∞ ≥ δ − αn,

and the proof still works.

22.4 Consistency results for the MLE

Theorem 22.4 (Consistency of the MLE for compact Θ). Let X1, . . . , Xn
iid∼ pθ0, where P

has continuous densities pθ for θ ∈ Θ. Assume that

• Θ is compact,

• Eθ0 [∥Wi∥∞] = Eθ0 [∥ℓ1(θ;Xi)− ℓ1(θ0;Xi)∥∞] <∞,

• The model P is identifiable.

Then θ̂n
p−→ θ0 if θ̂n ∈ argmax ℓn(θ;X).

So it doesn’t matter which value we pick for the MLE; we still get consistency.
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Proof. Since the densities are continuous, Wi ∈ C(Θ). They are iid with mean µ(θ) =
−DKL(θ0 || θ), where µ(θ0) = 0 and µ(θ) < 0 for all θ ̸= θ0. So θ0 uniquely maximizes µ.

By definition, θ̂n maximizes Wn, so ∥Wn − µ∥∞
p−→ 0 by the law of large numbers. Now

apply the previous theorem.

Here is a way (but not the only way) to restrict our attention to a compact set.

Theorem 22.5 (Keener 9.11 with slightly stronger assumptions). Let X1, . . . , Xn
iid∼ pθ0,

where the model P has continuous densities pθ for θ ∈ Θ ⊆ Rd. Assume

• The model is identifiable.

• For all compact K ⊆ Rd, E[supθ∈K |Wi(θ|] <∞.

• There exists an r > 0 such that

E

[
sup

∥θ−θ0∥>r
Wi(θ)

]
< 0.

Then θ̂n
p−→ θ0 if θ̂n ∈ argmax ℓn(θ;X).

Proof. Let A = {θ : ∥θ − θ0∥ > r}, and let α = E[supθ∈AWi(θ)] < 0. Then

sup
θ∈A

Wn(θ) ≤
1

n

n∑
i=1

sup
θ∈A

Wi(θ) → α < 0.

So
P(θ̂n ∈ A) ≤ P(Wn(θ0) ≤ sup

θ∈A
Wn(θ))

0−→,

as α
p−→ 0 implies supθ∈AWn(θ)

p−→ 0. Now let

θ̂An = θ̂n1{θ̂n∈Ac} + θ01{θ̂n ∈ A} p−→ θ0.

Then θ̂n
p−→ θ0.
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23 Asymptotic Consistency of the MLE and Likelihood-Based
Hypothesis Tests

23.1 Recap: Uniform convergence of random functions

Last time, we were interested in uniform convergence of the random functions given by the
sample mean of Wi(θ;Xi) = ℓ1(θ;Xi)− ℓ1(θ0;Xi). The nice thing about these is that

E[Wi(θ)] = DKL(θ || θ0),

which is ≤ 0, with equality iff Pθ = Pθ0 . We saw that θ̃n
p−→ θ0 if the Wi are continuous

and ∥Wn − E[Wn]∥∞
p−→ 0 on compact Θ (otherwise, we need an extra argument).

We also proved the helpful fact

Proposition 23.1. If ∥Gn − g∥∞
p−→ 0, tn

p−→ t, and Gn, g are continuous with compact
domain, then

Gn(tn)
p−→ g(t).

23.2 Asymptotic distribution of the MLE

Theorem 23.1. Suppose X1, . . . , Xn
iid∼ pθ0, where θ0 ∈ Θo ⊆ Rd. Assume that

• θ̂n
p−→ θ0, where θ̂n ∈ argmaxθ∈Θ ℓn(θ;X)

• In some neighborhood Bε(θ0) = {θ : ∥θ − θ0∥ ≤ ε} ⊆ Θo,

(i) ℓ1(θ;X) has 2 continuous derivatives on Bε(θ0) for all x.

(ii) Eθ0 [supθ∈Bε
∥∇2ℓ1(θ;Xi)∥] <∞.

(iii) Fisher information condition:

Eθ0 [∇ℓ1(θ0;Xi)] = 0, Varθ0(∇ℓ1(θ)) = −Eθ[∇2ℓ1(θ0)] ≻ 0.

Then √
n(θ̂n − θ0) =⇒ Nd(0, J1(θ0)

−1),

i.e. the MLE is asymptotically efficent.

The conditions in this theorem can be relaxed somewhat.

Proof. Let An be the event {∥θ̂n − θ0∥ ≥ ε}. Then Pθ0(An) → 0 by assumption. All we

care about is what happening on Ac
n. On Ac

n, θ̂n ∈ Bε(θ0), and

0 = ∇ℓn(θ̂n;X)

= ∇ℓn(θ0;X) +∇2ℓn(θ̃0;X)(θ̂n − θ0)
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for some θ̃n. Now

√
n(θ̂n − θ0) =

(
1

n
∇2ℓn(θ̃n)

)−1

︸ ︷︷ ︸
p−→J1(θ0)−1

1√
n
∇ℓn(θ0)︸ ︷︷ ︸

=⇒ Nd(0,J1(θ))

,

=⇒ Nd(0, J1(θ0)
−1).

The proof basically says that the second derivative of the likelihood is approximately
non-random and equals the Fisher information.

If the fisher information is very large, the second derivative of the likelihood function is
huge at θ0. This makes the likelihood more strongly peaked, so the MLE won’t be so far
from θ0.

23.3 Likelihood-based hypothesis tests

We can develop likelihood-based tests based on measuring different aspects of the above

MLE picture. Let X1, . . . , Xn
iid∼ pθ(x), where pθ(x) is “smooth” in θ. Assume that

Eθ[∇ℓ1(θ;Xi)] = 0, Varθ(∇ℓ1(θ;Xi)) = −Eθ[∇2ℓ1(θ;Xi)] = J1(θ) ≻ 0,

and θ̂MLE
p−→ θ0. Then if θ = θ0,

1√
n
∇ℓn(θ0) =⇒ Nd(0, J1(θ0),

− 1

n
∇2ℓn(θ0)

p−→ J1(θ0),

√
n(θ̂n − θ0) =⇒ Nd(0, J1(θ)

−1).
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23.3.1 Wald-type confidence regions

Assume we have an estimator Ĵn ≻ 0 such that 1
n Ĵn

p−→ J1(θ0) ≻ 0. Then

(J1(θ0))
1/2√n(θ̂n − θ0) =⇒ Nd(0, Id),

and by Slutsky’s theorem,

Ĵ1/2
n (θ̂n − θ0) =⇒ Nd(0, Id).

To get a test statistic, we can do the simplest (but not always the best) thing and take the
2-norm:

∥Ĵ1/2
n (θ̂n − θ0)∥2 =⇒ χ2

d.

Here,
P(∥Ĵ1/2

n (θ̂n − θ0)∥2 > χ2
d(α)) → α,

where χ2
d(α) is the upper-α quantile.

To test H0 : θ = θ0, we reject if ∥Ĵ1/2
n (θ̂n − θ0)∥22 > χ2

d(α). Equivalently, we can

say we reject θ0 iff Ĵ
1/2
n (θ̂n − θ0) /∈ Bχ2

d(α)
(0). So we can reject θ0 if and only if θ0 /∈

θ̂ + Ĵ
1/2
n Bχ2

d(α)
(0). This gives a confidence ellipsoid.

Here are some options for Ĵn:

1.

Ĵn = nJ1(θ̂n)

= nVarθ(∇ℓn(θ;X))|
θ=θ̂n

= nVar
θ̂n
(∇ℓn(θ̂n;X))

2. Observed Fisher information:

Ĵn = −∇2ℓn(θ̂n;X)

The observed Fisher information is generally preferred and is used in practice. We can
get a Wald interval for θj by

θn ≈ Nd(θ0, Jn(θ0)
−1),

which tells us that
θ̂n,j ≈ N(θ0,j , (Jn(θ0)

−1)j,j).

So the univariate Wald interval for θj is

Cj = θ̂n,j ± ŝ.e.(θ̂n,j)zα/2

= θ̂n,j ±
√
(Ĵ−1

n )j,jzα/2
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23.3.2 The score test

Here is a test which only assumes normality of the Fisher information. Test J0 : θ = θ0 vs
H1 : θ ̸= θ0. Then

1√
n
∇ℓn(θ0;X)

H0=⇒ Nd(0, J1(θ0)),

and the score statistic looks like

Jn(θ0)
−1/2∇ℓn(θ0;X)

H0=⇒ Nd(0, Id).

So we reject H0 if ∥Jn(θ0)−1/2∇ℓn(θ0;X)∥2 > χ2
d(α).

If d = 1, this looks like
ℓ̇n(θ0)√
Jn(θ0)

=⇒ N(0, 1).

This is actually invariant of parameterization. For simplicity of notation, assume d = 1 for
now. Let θ = g(ζ) with ζ̇) > 0 be a reparameterization, and denote qζ(x) = pg(ζ)(x). Then
the score is

ℓ̇(ζ)(ζ, x) =
d

dζ
log pg(ζ)(x)

= ℓ̇(g(ζ))ġ(ζ)

by the chain rule. The Fisher information is

J (ζ)(ζ) = J (θ)(g(ζ)ġ(ζ)2.

So the score statistic is unchanged by the parameterization.

Example 23.1. Let X1, . . . , Xn
iid∼ eη

⊤T (x)−A(η)h(x) be an s-parameter exponential family.
THen

∇ℓn(η) =

(
n∑

i=1

T (Xi)

)
− nµ(ζ), where µ(η) = Eη[T (Xi)].

Then ∥∥∥∥∥Jn(η0)−1/2

(∑
i

T (Xi)− nµ(η)

)∥∥∥∥∥
2

2

=⇒ χ2
d

gives us our test. In particular, if d = 1, we get∑
i T (Xi)− nµ(η0)√
nVarη0(T (X1))

H0=⇒ N(0, 1),

so this is a Z-test.
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The test statistic for the score test is

∥(J1(θ0))−1/2 1√
n
∇ℓn(θ0)∥2,

while the test statistic for the Wald test is

∥Ĵ1/2
1

√
n(θ̂n − θ0)∥2,

where
√
n(θ̂n − θ0) ≈ J1(θ

−1
0 ) 1n∇ℓn(θ0). So these are asymptotically the same test.
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24 Generalized Likelihood Ratio Tests, Asymptotic Relative
Efficiency, and Pearson’s χ2 Test

24.1 Recap: Likelihood-ratio based hypothesis tests

We have been assuming a parametric model X1, . . . , Xn
iid∼ pθ0(x), where θ0 ∈ Θo ⊆ Rd.

pθ(x) sufficiently regular in θ. We have the MLE

θ̂ = argmax
θ∈Θ

ℓn(θ;X),

which we assume converges in probability to θ0. The central limit theorem tells us that

1√
n
∇ℓn(θ0;X) =⇒ nd(0, J1(θ0)),

where we can think of ∇ℓn as a complete sufficient statistic for all the likelihood ratios.
We had the Taylor expansion

0 = ∇ℓn(θ̂n) = ∇ℓn(θ0) +∇2ℓn(θ̃n)(θ̂n − θ0),

which told us that

√
n(θ̂n − θ0) =

(
− 1

n
∇2ℓn(θ̃n)

)−1

︸ ︷︷ ︸
p−→J1(θ0)−1

1√
n
∇ℓn(θ0)︸ ︷︷ ︸

=⇒ N(0,J1(θ0))

=⇒ Nd(0, J1(θ0)
−1).

We have following picture of the second order Taylor approximation of the log-likelihood

ℓn(θ)− ℓn(θ0) ≈ ℓ̇n(θ0)(θ − θ0)−
1

2
Jn(θ0)(θ − θ0)

2.
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Different parts of this picture give us different likelihood-based test statistics for hypothesis
testing.

For large n,
2(ℓn(θ̂n)− ℓn(θ0)) ≈ ∥J1/2

n (θ̂n − θ0)∥2,

which gives us the Wald test. Looking at

2(ℓn(θ̂n)− ℓn(θ0)) ≈ ∥Jn(θ0)−1/2∇ℓn(θ0)∥2,

gives us the score test, and

2(ℓn(θ̂n)− ℓn(θ0)) ≈ ∥Jn(θ)1/2(θ̂n − θ0)∥2,

gives us the generalized likelihood ratio test. This is looking at the vertical distance in the
above picture.

24.2 Generalized likelihood ratio tests

24.2.1 GLRT with a simple null

Suppose we want to test H0 : θ = θ0 vs H1 : θ ̸= θ0. We have

ℓn(θ0)− ℓn(θ̂n) =�����:0
∇ℓn(θ̂n) +

1

2
(θ0 − θ̂n)

−1∇2ℓn(θ̃n)(θ0 − θ̂n)

= −1

2
∥ (− 1

n∇
2ℓn(θ̃n))

1/2︸ ︷︷ ︸
p−→J1(θ0)1/2

√
n(θ0 − θ̂n)︸ ︷︷ ︸

=⇒ Nd(0,J1(θ0)−1)

∥2

=⇒ −1

2
χ2
d.

This means that
2(ℓn(θ̂n)− ℓn(θ0)) =⇒ χ2

d.

We should reject θ0 if and only if

ℓn(θ0) ≤ ℓn(θ̂n)−
1

2
χ2
d(α).

This has some of the advantages of the Wald test, such as invariance under parameteriza-
tion, but without requiring the confidence set to always be an ellipsoid.

24.2.2 GLRT with a composite null or with nuisance parameters

Theorem 24.1. Suppose we are testing H0 : θ ∈ Θ0 vs H1 : θ /∈ Θ0. Assume that

• Θ ⊆ Rd, where Θ0 ⊆ Θ is a d0-dimensional manifold contained in Θo.
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• θ0 is in the relative interior of Θ0.

• θ̂n
p−→ θ0 with smooth likelihood.

• J1(θ) ≻ 0.

Then
2(ℓn(θ̂n)− ℓn(θ̂0)) =⇒ χ2

d−d0 ,

where θ̂0 = argmaxθ∈Θ0
ℓn(θ;X).

Here is an informal derivation.

Proof. Assume without loss of generality that θ0 = 0 and J1(0) = Id. Then θ̂n ≈
Nd(0,

1
nId), and locally (θ ≈ 0), ∇2ℓn(θ) ≈ −nId. Then

ℓn(θ)− ℓn(θ̂n) ≈
n

2
∥θ − θ̂n∥2.

Then
θ̂0 ≈ argmin

θ∈Θ0

∥θ − θ̂n∥2 = ProjΘ0
(θ̂n).

This means that −1 times the test statistic looks like

2(ℓn(θ̂0)− ℓ(θ̂n)) ≈ −n∥θ̂n − ProjΘ0
(θ̂n)∥2

= −∥Proj⊥Θ0
(
√
nθ̂n︸ ︷︷ ︸

≈N(0,Id)

)∥2

=⇒ −χ2
d−d0 .

Here is a picture when d = 2 and d0 = 1.

The segment looks like χ2
1.
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24.3 Asymptotic relative efficiency

Suppose θ̂
(i)
n with i = 1, 2 are two estimators with d = 1 and

√
n(θ̂(i)n − θ0) =⇒ N(0, σ2i .

Definition 24.1. The asymptotic relative efficiency (ARE) of θ̂(2) with respect to
θ̂(1) is σ21/σ

2
2.

This has a nice interpretation of telling us that using an inefficient estimator is really
like throwing away a fraction of our data set. Suppose σ21/σ

2
2 = γ ∈ (0, 1). Then

θ̂
(1)
⌊γn⌋(X1, . . . , X⌊γn⌋) ≈ N(θ0, σ

2
2/n)

D
≈ θ̂(2)n (X1, . . . , Xn).

24.4 Pearson’s χ2 test for goodness of fit

Let N = (N1, . . . , Nd) ∼ Multinom(n, π), where π = (π1, . . . , πd) with
∑

j πj = 1 and all
πj > 0. The multinomial density is

pθ(N) =
n!πN1

1 · · ·πNd
d

N1! · · ·Nd!
1{

∑
j Nj=n}.

We can parameterize this as a d− 1-parameter exponential family by

πj =


1

1+
∑

k>1 e
ηk

j = 1,

eηj

1+
∑

k>1 e
ηk

j > 1

so that
ηj = log(πj + π1).

We can calculate the score

∇ℓn(η,N) = (N2, . . . , Nd)− (nπ2, . . . , nπd).

The variance of the score is

Varη(∇ℓn(η;N)) =


nπ2(1− π2) · · · −πiπj · · ·

. . .

nπd(1− πd)


= n(diag(π2−d)− π2−dπ

⊤
2−d)
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If we use the formula

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
,

we get

Jn(η)
−1 =

1

2
(diag(π−1

2,...,d) + π−1
1 1d11

⊤
d2).

After some algebra, it follows that the score test fo H0 : π = π0 vs H1 : π ̸= π0 is

∇ℓn(η0)J−1
n (η0)∇ℓn(η0) = (N2,...,d − nπ2,...,d)

⊤( 1n(diag(π
−1
2,...,d) + π01))(N2,...,d − nπ0)

=
∑
j>1

(Nj − nπj)
2

nπj
− 1

nπn
1⊤(N2,...,d + nπ2,...,d)

2

=
∑
j

(Nj − nπj)
2

nπj
.

This is the test statistic for Pearson’s χ2 test.
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25 Introduction to Bootstrap

25.1 Recap: Comparison of bootstrap to other kinds of inference

So far we have done:

• Exact, finite-sample inference

– Requires special structure

– No reliance on asymptotic approximation

– Parametric or non-parametric (e.g. permutation tests)

• Parametric, asymptotic inference

– Simple ideas, leading to asymptotically optimal results.

– Only relies on regularity conditions

Today, we will study asymptotic, nonparametric inference.

25.2 Functionals and plug-in estimators

Suppose we have a nonparametric iid sample X1, . . . , Xn
iid∼ P . We want inference on some

“parameter” θ(P ) ⊆ Rd. More precisely, we want a functional θ(P ).

Example 25.1. If the sample space X ⊆ R, we could look at

θ(P ) = median(P ).

Example 25.2. If the sample space X ⊆ Rd, we could look at

θ(P ) = λmax(VarP (Xi)).

Example 25.3. If we are doing linear regression, we could look at

θ(P ) = argmin
θ∈Rd

EP [(Yi − θ⊤Xi)
2],

where (Xi, Yi)
iid∼ P .

Example 25.4. More generally, we can set

θ(P ) = argmin
θ∈Θ

DKL(P || Pθ)

= argmax
θ

EP [ℓ1(θ;Xi)].
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Note that in these cases, we may have many distribution with the same value θ(P ).

Definition 25.1. The empirical distribution of X1, . . . , Xn is the random measure

P̂n =
1

n

n∑
i=1

δXi , P̂n(A) =
#{i : Xi ∈ A}

n
.

Definition 25.2. The plug-in estimator of θ(P ) is θ̂n = θ(P̂n).

Example 25.5. If θ(P ) is the median, θ̂n is the sample median.

Example 25.6. If θ(P ) = λmax(VarP (Xi)), then the plug-in estimator is λmax(samplevariance).

Example 25.7. For linear regression, the plug-in estimator is the OLS etimator.

Example 25.8. For the minimizer of the KL-divergence, the plug-in estimator is the MLE
for {Pθ : θ ∈ Θ}.

25.3 Convergence of plug-in estimators

Does using the plug-in estimator work? It depends. Whether P̂n
p−→ P depends on what

distance we use. We have pointwise convergence, P̂n(A)
p−→ P (A) for all A by the weak law

of large numbers. We can consider convergence in the total variation distance (i.e. uniform
convergence of these functions):

sup
A

|P̂n(A)− P (A)| p−→ 0?

This is true if the sample space X is finite. However, if X = R and P is continuous, this
is not true because if A∗ = {x1, . . . , xn}, then P (A∗) =) but P̂n(A

∗) = 1.
If X ⊆ R, we can look at convergence of the CDFs:

sup
x

|P̂n((−∞, x])− P ((−∞, x])| p−→ 0 ∀x ∈ R.

We want the functional θ(·) to be continuous with respect to some topology in which

P̂n
p−→ P , so θ(P̂n)

p−→ θ(P ) by the continuous mapping theorem.
Here is a counterexample to keep in mind, so you don’t think that bootstrap always

works:

Example 25.9. Let

θ(P ) =

{
1 P

X1,X2
iid∼P

(X1 = X2) > 0,

0 otherwise.

If P is continuous, then θ(P ) = 0. But θ(P̂n) = 1 for all n.
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25.4 Bootstrap standard errors

Suppose θ̂n is any estimator of θ(P ). We want to know the standard error s. e.(θ̂n) =√
VarP (θ̂(X1, . . . , Xn)).

The only thing here we don’t know is P , so we will plug in P̂n:

ŝ.e.(θ̂n) =
√

Var
P̂n

(θ∗n).

Here, the star notation is just to make sure we know that θ̂∗n is a random variable drawn
from P̂n. We can write

Var
P̂n

(θ̂∗n) = Var
X∗

i
sim∼ P̂n

(θ̂n(X
∗
1 , . . . , X

∗
n)).

Often, bootstrap is defined algorithmically.
How do we calculate this? We will use Monte Carlo with P̂n instead of P : For

b = 1, . . . , B, Sample X∗b
1 , . . . , X

∗b
n

iid∼ P̂n (resampling n values with replacement from

X1, . . . , Xn), and let θ̂∗b = θ̂(X∗b
1 , . . . , X

∗b
n ). Then let θ

∗
= 1

B

∑B
b=1 θ̂

∗b, so the standard
error is

ŝ.e.(θ̂n) =

√√√√ 1

B

B∑
b=1

(θ̂∗b − θ
∗
)2.

25.5 Bootstrap Bias Estimation/Correrction

Let θ̂n be some estimator. What is its bias?

BiasP (θ̂n) = EP [θ̂n − θ(P )].

The idea is to plug in P̂n for P :

B̂ias(θ̂n) = Bias
P̂n

(θ̂∗n) = E
P̂n

[θ̂∗n − θ(P̂n)].

We can calculate this using Monte Carlo: Sample X∗b
1 , . . . , X

∗b
n

iid∼ P̂n, and calculate the

estimator θ̂∗b = θ̂(X∗b). Then we have the average θ
∗
= 1

B

∑B
b=1 θ̂

∗b, so we can calculate

B̂ias(θ̂n) = θ
∗ − θ(P̂n).

Remark 25.1. The advantage of thinking of this as a plug-in estimator instead of just
defining it algorithmically is that it becomes more conceptually clear why we subtract
θ(P̂n) instead of θ(P ).
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We can then define the Bias-corrected estimator

θ̂BC
n = θ̂n − B̂ias(θ̂n)

If θ(P̂n) = θ̂n,

= 2θ̂n − θ
∗
.

Remark 25.2. If we know the actual bias, it’s always better to subtract it because we
reduce the bias while keeping the variance the same. However, it is not always better to
subtract out the estimated bias because the estimate could be wrong. In particular, the
estimate of the bias might be noisy, so it might introduce some variance. Typically, θ̂BC

n

has a lower bias but a higher variance than θ̂n.

Here is a picture. The things that we can’t see are in gray, and what we can see is in
black.

Here is a table of analogies between the “real world” and “bootstrap world.”

“Real world” “Bootstrap world”

Samplingdistribution P P̂n

Parameter θ(P ) θ(P̂n) (maybe θ̂n)

Dataset X1, . . . , Xn
iid∼ P X∗

1 , . . . , X
∗
n

iid∼ P̂n

Estimator θ̂n(X1, . . . , Xn) θ̂∗n(X
∗
1 , . . . , X

∗
n)

Standard error of estimator

√
VarP (θ̂n)

√
Var

P̂n
(θ̂∗n)

Bias of estimator BiasP (θ̂n) Bias
P̂n

(θ̂∗n)
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26 Bootstrap Confidence Intervals and Double Bootstrap

26.1 Recap: Bootstrap methods

Bootstrap is an asymptotic nonparametric method, where we use the empirical distribution
as an asymptotic approximation to the true distribution. Anything we want to do with
the true distribution, we substitute in the empirical distribution and call it a day.

If we have a nonparametric model X1, . . . , Xn
iid∼ P with “parameter” θ(P ) (not neces-

sarily 1 to 1), then we discussed the notion of a plug-in estimator θ̂n(X) = θ(P̂n), where
P̂n is an estimator of P . A typical choice is the empirical distribution P̂n = 1

n

∑n
i=1 δXi .

(Note: There ar eother choices, estpeically for non-i.i.d. sampling models, e.g. time series.)

Remark 26.1. Bootstrap is often conflated with permutation tests. They are both non-
parametric and involve resampling from the data, but they have very different underlying
statistical logic. The permutation test is an exact, finite sample method; if you take enough
permutations, you will get the exact conditional distribution of the test statistic under the
null hypothesis. On the other hand, bootstrap is an approximation which only becomes
accurate asymptotically.

We have seen two bootstrap algorithms so far:

• If θ̂n(X) is any estimator we want, its standard error is

s. e.(θ̂n(X)) =

√
Var

Xi
iid∼P

(θ̂n(X)),

and the bootstrap standard error is

ŝ. e.(θ̂n(X)) =

√
Var

X∗
i
iid∼ P̂n

(θ̂n(X∗)).

• If θ̂n(X) is any estimator we want, its bias is

Bias(θ̂n) = E
Xi

iid∼P
[θ̂n(X)]− θ(P ),

and the bootstrap bias estimator is

B̂ias(θ̂n) = E
X∗

i
iid∼ P̂n

[θ̂n(X
∗)]− θ(P̂n).

We also have the bias corrected bootstrap estimator

θ̂BC
n = θ̂n − B̂ias.
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26.2 Bootstrap confidence intervals

Suppose we want a confidence interval for θ(P ). Instead of inverting a hypothesis test, we
can define a random variable Rn(X,P ) = θ̂n(X) − θ(P ) for any estimator θ̂n; if we know
the distribution of Rn, we can construct the confidence interval using a point estimate for
Rn.

Define the CDF
Gn,P (r) = PP (θ̂n(X)− θ(P ) ≤ r).

The lower α/2 quantile is
r1 = G−1

n,P (α/2),

and the upper α/2 quantile is
r1 = G−1

n,P (1− α/2).

Then

1− α = PP (r1 ≤ θ̂n − θ ≤ r2)

= PP (θ ∈ [θ̂n − r2, θ̂n − r1])

The interval we get only depends on Gn,P .

If we don’t know P , then we can use P̂n instead:

G
n,P̂n

(r) = P
X∗iid∼ P̂n

(θ̂(X∗)− θ(P̂n) ≤ r).

This depends only on the sample X. Using this CDF in the above calculation gives us the
bootstrap confidence interval

Cn,α(X) = [θ̂n(X)− r̂2, θ̂n(X)− r̂1],

where
r̂1 = G−1

n,P̂n
(α/2), r̂2 = G−1

n,P̂n
(1− α/2).

Here is the procedure in practice:

1. For b = 1, . . . , B, let X∗b
1 , . . . , X

∗b
n

iid∼ P̂n.

2. For b = 1, . . . , B, let R∗b
n = θ̂n(X

∗b)− θ(P̂n).

3. Return Ĝn(r) =
1
B

∑B
k=1 1{R∗b

n ≤r}

4. Invert this to recover r̂1 and r̂2.

This is not the only way to make a bootstrap confidence interval. Other examples of
estimators we could use bootstrap with for confidence intervals are
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• The studentized root

Rn(X,P ) =
θ̂n(X)− θ(P )

σ̂(X)
.

• The relative error

Rn(X,P ) =
θ̂n(X)

θ(P )
.

With the studentized root,

Cn,α = [θ̂n − r2σ̂, θ̂n − r1θ̂],

where we can estimate r1, r2 using a the plug-in estimator Rn.

Remark 26.2. Our first version of the bootstrap confidence interval works best when Gn,P

is not so sensitive to varying P .

26.3 Double bootstrap

Bootstrap is an approximation. Is it a good approximation? Suppose we have, for example,
a bootstrap confidence interval

Cn,α = [θ̂n(X)− r̂2(X)σ̂(X), θ̂n(X)− r̂1(X)σ̂(X)].

What is the probability
P
Xi

iid∼P
(θ̂n(P ) ∈ Cn,α(X))?

We can use bootstrap to estimate this:

P
X∗

i
iid∼ P̂n

(θ̂n(P̂n) ∈ Cn,α(X
∗))?

Suppose we estimate that Cn,0.1 has ≈ 87% coverage, but Cn,0.08 has ≈ 90% coverage. Then
we want the latter confidence interval. In particular, we are using bootstrap to calibrate
the confidence level of the confidence interval.

Remark 26.3. We could do this bootstrap “tuning” of α using any confidence interval,
not just one that was originally obtained through bootstrap.

Here is how we can implement this α “tuning” in practice:

1. For a = 1, . . . , A, let X∗a
1 , . . . , X∗a

n
iid∼ P̂n.

2. Calculate Cn,α′(X∗a) for α′ in some grid (try α′ = 10%, 9%, 8%, etc.) using whatever
method you are using to obtain a confidence interval (bootstrap or not).

We can specify this in particular for the double bootstrap:
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(a) Let P̂ ∗a
n = 1

n

∑n
i=1 δX∗

i
.

(b) For b = 1, . . . , B,

i. Let X∗∗a,b
1 , . . . , X∗∗a,b

n
iid∼ P̂ ∗a

n .

ii. Let

R∗∗a,b
n =

θ̂n(X
∗∗a,b)− θ(P̂ ∗a

n )

σ̂(X∗∗a,b)
.

(c) Let G∗a
n = ecdf(R∗∗a,1

n , . . . , R∗∗a,B
n ).

(d) For α′ in the grid, let

Cn,α′(X∗a) = [θ̂∗n − σ̂∗ar̂2(G
∗a
n ), θ̂∗n − σ̂∗ar̂1(G

∗a
n )].

3. For α′ in this grid, let

̂Coverage(α′) =
1

A

A∑
a=1

1{Cn,α′ (X∗a)∋θ(P̂n)}.

4. Take α̂ = max{α′ : ̂Coverage(α′) ≥ 1− α}, and return Cn,α̂(X).

Remark 26.4. This seems like circular logic, where this method will suffer from the
same issues as the original bootstrap confidence interval. The heuristic idea is that the
double bootstrap confidence interval may be less sensitive to changes in P than the original
confidence interval.
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27 Introduction to Multiple Hypothesis Testing

27.1 Correcting p-values to account for multiple hypotheses

Suppose X ∼ Pθ ∈ P. We have hypotheses H0,i : θ∈θ0,i for i = 1, . . . ,m. We will let

R(X) = {i : H0,i is rejected}, H0(θ) = {i : θ ∈ Θ0,i}

and denote R(X) = |R| and m0 = |H0|. The central issue is that the more hypotheses we
test, the more likely we are to reject a hypothesis by chance.

Example 27.1. Let Xi
iid∼ N(θi, 1) with H0,i : θi = 0. Reject H0,i if |Xi| > zα/2. Then

P0(any H0,i rejected) = 1− (1− α)m
m→∞−−−−→ 1.

Definition 27.1. The familywise error rate (FWER) is

Pθ(any false rejections) = Pθ(R∩H0 ̸= ∅).

The classical view of multiple testing to say that we want

sup
θ

FWERθ ≤ α.

Remark 27.1. Why should we make a correction for the FWER? If you conduct 10
experiments and submit your analysis to a journal, they’ll require you to make a familywise
error correction. But if you submit the 1 experiment each to 10 journals, then no one will
hassle you.

Sometimes, when we are testing many hypotheses, we care individually about each one.
But sometimes, such as if we are testing hypotheses for a large number of genes, where
we should expect most of our null hypotheses to be true, we might be okay with some
percentage of our hypotheses being falsely rejected.

One way we can account for multiple hypotheses is to alter our p-values. Denote the
p-values by p1(X), p2(X), . . . , pm(X). Here are some procedures for altering the p-values:

Example 27.2 (Šidák’s correction). Assume pi ≥ U [0, 1] for i ∈ H0. If the pi are inde-
pendent and we reject if pi ≤ α̃m,

1− α = Pθ(no false rejection)

= P(pi ≥ α̃m ∀i ∈ H0)

≥ (1− α̃m)m0

≥ (1− α̃m)m.

If we solve this, we get
α̃m = 1− (1− α)1/m.

If α is small, this is close to α/m.
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Here is what we can do if we don’t necessarily have independence.

Example 27.3 (Bonferroni correction). Bonferroni rejects if pi ≤ α/m. Then

Pθ(any false rejection) = Pθ

 ⋃
i∈H0

{pi ≤ α/m}


≤
∑
i∈H0

Pθ(pi ≤ α/m)

≤ m0 ·
α

m

= α
m0

m
.

The Bonferroni correction is still conservative. Here is a strictly better procedure:

Example 27.4 (Holm’s procedure).

Step 0: Order the p-values from small to large:

p(1) ≤ p(2) ≤ · · · ≤ p(m).

Let H(i) denote the hypothesis corresponding to p(i).

Step 1: If p(i) ≤ α/m, reject H(i) and continue. Otherwise, stop and accept all null
hypotheses.

...

Step k: If p(k) ≤ α
m−k+1 , reject H(k) and continuous. Otherwise, stop and accept all

hypotheses.

...

Step m: If p(m) ≤ α, reject H(m).
We can analyze this procedure by

RHolm = max

{
r : p(i) ≤

α

m+ i− 1
∀i ≤ r

}
.

We reject H(1), . . . ,H(RHolm).

Proposition 27.1. Holm’s procedure controls FWER ≤ α.
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Proof. Let p∗0 = min{pi : i ∈ H0}. Then

P(p∗0 ≤ α/m0) ≤ α

by the union bound. We claim that if p∗0 > α/m0, there are no false rejections. Let
k = #{i : pi ≤ p∗0} ≤ m−m0 + 1. Then

p(k) = p∗0 >
α

m0
≥ α

m− k + 1
.

Then Holm makes < k rejections.

27.2 The closure principle

Holm’s procedure is an instance of the more general closure principle, which is used in
a lot of modern developments in multiple testing methodology.

For S ⊆ [m], let Hs be the hypothesis where all Hi are true for i ∈ S: θ ∈
⋂

i∈S Θ0,i.
Assume we have a level-α test for each subset. For example, we could reject Hs if
mini∈S pi ≤ α/|S|.

Step 1: Provisionally reject HS if the corresponding marginal test ϕS rejects.

Step 2: Reject Hi if Hs is rejected for every S ∋ i.

We can analyze the closure principle as follows:

P(any false rejections) ≤ P(HH0 is rejected in Step 1)

≤ α.

Here is a picture:

If H1 and H2 are the null hypotheses that are true, then they are protected as long as we
don’t reject the hypothesis H1,2.
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Remark 27.2. This might seem computationally inefficient, but as in our description of
Holm’s procedure, there can be computationally tractable ways to implementing this.

27.3 Testing with dependence

Example 27.5 (Scheffe’s S-method). Let X ∼ Nd(θ, Id) with θ ∈ Rd, and test Hλ :
θ⊤λ = 0 for λ ∈ Sd−1 (this is uncountably infinitely many hypotheses). Reject Hλ if
(X⊤λ)2 ≥ χ2

d(α) ≈ 3 + 3
√
d if α = 0.05. This controls the FWER because

sup
λ:θ⊤λ=0

(X⊤λ)2 ≤ sup
λ∈Sd−1

((X − θ)⊤λ)2

= ∥X − θ∥2

∼ χ2
d.

Scheffe’s method is a deduction from a spherical confidence region for θ: We can use
∥X − θ∥2 ∼ χ2

d to get a confidence region for X. We get a confidence interval for θλ via

X⊤λ±
√
χ2
d(α) ≈ X⊤λ±

√
d.
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28 Simultaneous Confidence Bounds for Multiple Hypothe-
sis Testing

28.1 Recap: Multiple testing

Last time, we began discussing multiple hypothesis testing, where X ∼ Pθ ∈ P = {Pθ : θ ∈
Θ} with hypotheses H1, . . . ,Hm (Hi : θ ∈ Θ0,i). The setup includes individual p-values
p1(X), . . . , pm(X), rejection set R(X), and true null set H0.

The classical approach was to control the familywise error rate (FWER),

Pθ(any false rejections).

The Bonferroni correction, a popular procedure, says to reject Hi if pi ≤ α/m and
works under arbitrary dependence. We also learned about a direct improvement, the
closure principle, with an intersection null for S ⊆ {1, . . . ,m}. Here, HS : Hi true for
all i ∈ S, which is equivalent to θ ∈

⋂
i∈S Θ0,i. Then we use some local test ϕS(X) which

is valid for HS . The closed testing procedure rejects Hi if ϕS(X) = 1 for all S ∋ i.

28.2 Simultaneous upper confidence bounds via closed testing

Definition 28.1. Suppose g1(θ), . . . , gm(θ) are estimands. Then C1(X), . . . , Cm(X) are
simultaneous confidence bounds if

Pθ(any gi(θ) /∈ Ci(X)) ≤ α.

We can use the closed testing procedure to get an upper confidence bound on the
number of null indices in S, |H0 ∩ S|.

Example 28.1. Suppose we are looking at an experiment for the brain, and each voxel
i, a tiny region of the brain, corresponds to a null hypothesis Hi (about how the voxel
behaves in testing vs control). If we look at a region S of the brain, the scientist gives the
subset S, the software will give back US(X).

Proposition 28.1. If we take

US(X) = max
ϕS0

(x)=0
|S ∩ S0|,

we get simultaneous confidence bounds.

Proof.

Pθ(any US(X) ≤ |S ∩H0(θ)|) ≤ Pθ(ϕH0(X) = 1)

because the first event is a subset of the other. Indeed, if ϕH0(X) = 0, then H0 is going to
be one of the S0 sets we take the max over. In this case,

US(X) = max
ϕS0

(x)=0
|S ∩ S0| ≥ |S ∩H0(θ)|.
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We can get simultaneous confidence bounds for the proportion of null indices by looking
at US(X)/|S|. Goeman, Solari, and other coauthors have developed this procedure in a
series of papers.

28.3 Simultaneous confidence intervals for the Gaussian sequence model

Example 28.2 (Gaussian sequence model). Suppose have X ∼ Nd(θ, Id) with θ ∈ Rd and
we want simultaneous confidence intervals for θ1, . . . , θd. Let cα be the upper α quantile of
maxi=1,...,d |Xi − θi|. Then if we take Ci(X) = (Xi − cα, Xi + cα), these are simultaneous
confidence intervals for θi. Why? If any θi /∈ Ci(X), then |Xi − θi| > cα; in particular,
maxi=1,...,d |Xi − θi| > cα. In this case, we can show that cα = zα̃d/2, where α̃ − d is the

Šidák correction.
What if we want to make pairwise comparisons? We can deduce a confidence interval

for θi − θj from the intervals for θi, θj .

|(θi − θj)− (Xi −Xj)| ≤ |Xi − θi|+ |Xj − θj |,

so we could construct a confidence interval with 2cα. But this is not very good. Instead,
let c′α be the upper-α quantile of maxi,j |(Xi −Xj) − (θi − θj)| = maxi,j |Zi − Zj |, where
Z = X − θ; this is something we can directly simulate. Then, let

Ci,j(X) = (Xi −Xj − c′α, Xi −Xj + c′α).

This is called Tukey’s Honestly Significant Difference procedure (HSD).
More generally, we may want simultaneous confidence intervals cλ(X) for λ⊤θ, there

λ ∈ Sd−1. Let

c′α = upper-α quantile of sup
λ∈Sd−1

|λ⊤(X − θ)|

= upper-α quantile of ∥X − θ∥2
∼ χd(α).

28.4 Simultaneous confidence intervals in linear regression

Example 28.3 (Linear regression). Suppose we have β̂−β
σ ∼ Nd(0, (X

⊤X)−1) with β ∈ Rd

and σ̂2

σ2 ∼ 1
n−dχ

2
n−d, and suppose we want simultaneous confidence intervals for β1, . . . , βd.

Let cα be the upper-α quantile of maxj=1,...,d |β̂j − βj |/σ̂. We can directly simulate

η̂ − β

σ̂
=
Nd(0, (X

⊤X)−1)√
1

n−dχ
2
n−d

.
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This has what is known as a multivariate t distribution. If we want simultaneous
confidence intervals for βi, then we can use

Cj = (β̂ − j − σ̂cα, β̂ − j + σ̂cα).

If any βj /∈ Cj , then, as before,

max
i=1,...,d

|β̂i − βi| > cασ̂.

We can do the same procedure with Tukey’s HSD, where we let c′α = maxi,j |Zi −Zj | with
Z = (β̂ − β)/σ̂ and use the intervals

Ci,j(X) = (Xi −Xj − c′α, Xi −Xj + cα).

Observe that maxi |Xi − θi| ≤ cα ⇐⇒ ∥Xi − θ∥α ≤ Cα. Alternatively, we could try to
control ∥X − θ∥2 ≤ χd(α).

Our method involves constructing this rectangle and projecting it onto each of the axes.
The naive method of estimating θi− θj from before is projecting in the direction of θi− θj ;
so the projection we use may make a difference.

Example 28.4. Consider testing the global null H0 : θ = 0. The max test rejects if
max|Xi| > cα ≈

√
2 log d, and the χ2 test rejects if ∥X∥22 ≥ χ2

d(α) ≈ d + 3
√
d. If θ is

1-sparse (only θ1 ̸= 0), then the max test needs |θ1| >
√
2 log d, whereas the χ2 test needs

|θ1 = ∥θ∥2 ≈ d1/4. If θ is dense, the χ2 test is vastly more powerful, but if θ is sparse, then
the max test is vastly more powerful.

Next time, we will discuss controlling what is known as the false discovery rate.
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29 Multiple Testing via Control of the False Discovery Rate

29.1 False discovery rate

In our multiple testing setup, we have data X ∼ Pθ, hypotheses Hi : θ ∈ Θ0,i for
i = 1, . . . ,m, and p-values p1, . . . , pm. We also denote the rejection set as R(X) ⊆
{1, . . . ,m}and the true null set as H0 ⊆ {1, . . . ,m}. We have been trying to control
the familywise error rate (FWER),

Pθ(|H0 ∩R| ≥ 1) ≤ α.

However, if we are making several hundred rejections, it might be okay if we only have a
few false alarms.

Definition 29.1. Benjamini and Hochberg (1995)15 defined the false discovery propor-
tion (FDP)

FDP =
V

R ∨ 1
, V = |H0 ∩R|, R = |R|.

This is the probability is that a randomly selected rejection is a false one, which we
want to control. The maximum in the denominator is just so if R = 0, we don’t divide by
0.

Definition 29.2. Benjamini and Hochberg also define the false discovery rate (FDR)

FDR = Eθ[FDP].

Benjamini and Hochberg didn’t just introduce the FDR; they introduced a way to
control it.

15They proposed this in 1988, but this radical idea of accepting some false discoveries took 7 years for
any journal to accept. Professor Fithian has heard that this is the most cited paper in the entire field of
statistics.
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29.2 The Benjamini-Hochberg procedure

Let the p-values have order statistics p(1) ≤ · · · ≤ p(n). Then let RBH = max{r : p(r) ≤ αr
m },

so the RBH rejection set is H(1), . . . ,H(RBH). That is, we reject Hi if pi ≤ αRBH

m .

In this procedure, we reject all the hypotheses with p-values up until the last point
which is below the line; even if a point is above the line, we reject it as long as there is
a further point which is below the line. We can compare this to Holm’s procedure, which
has a lower line, since we are comparing p(k) to

α
m−k+1 :

If m = 10000, then for Holm’s procedure to make R = 100 rejections, p(R) ≤ α
9901 . But for

BH to make 100 rejections, we need p(R) ≤ α100
10000 = α

100 .

Remark 29.1. One issue with controlling the FDR instead of the FWER is that you
can cheat. Suppose you have 5000 hypotheses you care about, but you can’t make any
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rejections. Then you can throw in 10000 clearly false hypotheses and be able to make a
lot more rejections.

To understand this procedure, first consider rejectingHi iff pi ≤ t for some fixed t. What
is the false discovery proportion? Suppose t = 5/m. Then we expect about 5 rejections of
null hypotheses. If we get 100 rejections, then we can say with more confidence that we
must have had some correct rejections.

An equivalent formulation of the Benjamini-Hochberg procedure is to define

F̂DPt =
mt

Rt ∨ 1
, Rt = #{i : pi ≤ t}.

Then we can let
t∗(X) = max{t : F̂DPt ≤ α}

and reject Hi if pi ≤ t∗.

This is equivalent because the rejection set only depends on the order statistics of the
p-values and does not actually need the information of t∗; we reject H(1), . . . ,H(R), where

R = max{r : F̂DPp(r) ≤ α}

= max{r : mp(r)
r ≤ α}

= max{r : p(r) ≤ αr
m }.

29.3 Finite sample control of FDR using the Benjamini-Hochberg pro-
cedure

This makes sense on controlling the FDR from an asymptotic perspective (if we let the
number of samples and rejections both go to infinity), but there are many interesting
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multiple testing problems where we only reject, say, 10 hypotheses. Asymptotic control is
philosophically unsatisfactory here, but fortunately, we do have finite sample control with
the Benjamini-Hochberg procedure.

Theorem 29.1. The Benjamini-Hochberg procedure controls FDR ≤ α.

Here is a celebrated proof due to Stoiey, Taylor, and Siegmund (2002) based on optional
stopping of a martingale. Since we are looking at the last time the line crosses the α
threshold, we need to index time backwards, starting from t = 1. This proof assumes that
the p-values pi are independent and that pi ∼ U [0, 1] for i ∈ H0.

Proof. Then define Vt = #{i ∈ H0 : pi ≤ t} ≤ Rt. Then we estimate

FDPt =
Vt

R ∨ 1

by

F̂DPt =
mt

Rt ∨ 1
.

This gives

FDPt = F̂DPt ·
Vt
mt︸︷︷︸
:=Qt

.

This quotient Qt is what we will apply the optional stopping argument to. This gives

FDR = E[FDPt∗ ]

= E[F̂DPt∗ ·Qt∗ ]

= αE[Qt∗ ]

Using the optional stopping theorem,

= αE[Q1]

= α
m0

m
.

It now remains to show that Qt is a martingale and t∗ is a stopping time with respect
to the filtration Ft = σ(pi ∨ t, i = 1, . . . ,m); we could alternatively use Ft = σ(Vs : s ≥ t).

Conditional on Ft, we know Vs and F̂DPs for all s ≥ t. As a result, t∗ is a stopping time
(1{t∗≥s} is Ft-measurable). To check that this is a martingale, we have for s < t that

E[Vs | Vt = v] = v
s

t
.
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(More precisely, we have that E[Vs | Ft] = Vt
s
t .) So

E
[
Vs
ms

| Vt
mt

= q

]
=

1

ms
· (qmt) · s

t
= q.

(More precisely, we have E[Qs | Ft] = Qt.)

Here is another proof:

Proof. Define Bi = 1{Hi rejected}. The we can decompose

V

R ∨ 1
=
∑
i∈H0

Vi
R ∨ 1

.

By the linearity of expectation, we can say that

FDR =
∑
i∈H0

E
[
1{i rejected}

R ∨ 1

]
︸ ︷︷ ︸
want to show ≤ α/m

.

Assume that p1, . . . , pm are independent. Then condition on p−i. We will be in good shape
if we can show that

E
[
1{i rejected}

R ∨ 1
| p−i

]
≤ α

m
.

Rewrite the indicator as 1{pi≤αR/m}. We would like to pull out R, but R is not a deter-
ministic function of p−i. The key observation (which is generalizable) is that if pi were
already being rejected and we send it to 0, then it is still rejected:

Define R(i) = R(p−i, 0). We claim that on the event {pi ≤ αR
m }, R(i) = R. So we can

look at

E

[
1{pi≤αR

m
}

R ∨ 1
| p−i

]
= E

[
1
{pi≤αR(i)

m
}

R(i)
| p−i

]
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=
1

R(i)
P

(
pi ≤

αR(i)

m
| p−i

)

=
1

R(i)

αR(i)

m

=
α

m
.

Professor Fithian and a collaborator were able to generalize this proof to non-independent
pi by conditioning on something other than p−i.
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