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1 Martingale Concentration Inequalities

1.1 Motivation and overview

Our goal is to get a tail bound for X; + --- 4+ X,,, where the X; are independent. Here is
our solution so far:

(a) Chernoff inequality bounded by MGF.
(b) Bound MGF using sub-Gaussian and sub-exponential properties.
(¢c) Many commonly used random variables are sub-Gaussian or sub-exponential.

What about more complicated structure?

1. Sometimes, we want to show concentration of S,, = f(X1,...,X,,) = f(X1.n).

2. Sometimes, we want to show concentration of S,, = Zthl X¢, where {X;}4>1 is cor-
related. We can deal with this if it is a Martingale difference sequence.

This lecture, we will take the approach of a Martingale concentration inequaltiy. We
will use Markov’s inequality on e* along with a conditional MGF bound and optimizing

over . We will see
(a) Doob’s Martingale representation
(b) Azuma-Hoeffding, Azuma- Bernstein, and bounded difference inequalities
(c) Applications
)

(d) Variants: Freedman’s inequality and Doob’s maximal inequality



Example 1.1. Suppose X1, ..., X, © Py € P([a,b]). We want to estimate 6 = E. oidp [g(X, X")],
) ~ X

where we assume that g : R> — R is symmetric (such as g(z,2') = |z — 2/| or g(z,2') =
2(z — 2/)2. In the latter case, 6 = Var(X).
Hoeffding introduced U-statistics for estimating these parameters 6:

U(Xl;n) = (nl) Z g(Xi,Xj).

2/ 1<i<j<n

If we let 1
Pxx = ﬁ Z 0(x;,X;)

2/ 1<i<j<n

be the empirical distribution, then U(Xi.,) = E(X,X/)[g(X, X")]. The U statistic is an
unbiased estimator of 6 because

E[U(X1.0)] = Elg(Xi, X;)] = 6.

This has the smallest variance among all unbiased estimators.
Today, we will show the concentration bound

nt?
P(U — 0] > t) <2exp <_2‘9H ) .

This is significant because U is not a sum of independent random variables, so our previous
technology does not work here.

1.2 Doob’s martingale representation of f(X;,...,X,)

Now return to the setting where we are dealing with f(Xi,...,X,), where the X, are
independent. Define
Vi = E[f(X1:0) | X1] B 2>0.

We can think of conditioning on X;.; as conditioning on the o-algebra Fj, = o(X7.x)

Example 1.2. Here is the example to keep in mind: Let f(X;.,) = X1 +--- + X, with
independent X;. Then

Vi=X1+ -+ Xp +E[Xp1] + - + E[X,,].
Further define the difference
Dy =Y, — Y 1.
In the previous example, Dy = X — E[X)]. We can in general write

n n

FXO)-E[f(X)] =Y, - Yo=Y (Vi —Yi1)=> Di

k=1 k=1



We call {Y}} a martingale sequence and {D;} a martingale difference sequence.
Let us recall what a martingale is.

Definition 1.1. A filtration is an increasing nested sequence of o-algebras
F1CFhC- - CF, T

Often, we take Fj, = o(Xy.). If the filtration is not defined properly, the result you
get may not be true.

Definition 1.2. If we have {Y}}32,, where Y} is Fi-measurable, then we way that {Y}}
is {F)}-adapted.

Definition 1.3. {(Y}, Fi)}r>1 is a martingale sequence if
1. {Y%} is adapted to {Fy}.
2. E[[%il] < oo,
3. E[Y; | Fe1] = Yi1.

Martingales are often used to model gambling problems where your strategy can depend
on the outcomes of the past. If you don’t have a martingale, you can sometimes subtract
the mean to get one.

Definition 1.4. {Dy};>1 is a martingale difference sequence if {} ;| Di}n>1 is a
martingale with respect to {F }i>1.

Example 1.3. Let {X;}i>1 % Py, where E[|X]|] < co. Denote p = Ex[X] and S =
25:1 Xs. Then {(Xy — kp,0(X1.%)) }k>1 is a martingale.

Proof. We only need to check the third property:

E[Sk —kp | Xip—1] = Sk—1 — (B = 1)p
=Y. O

Example 1.4 (Doob’s martingale). Let {X;};>1 be independent! and E[|f(X1, ..., X,)|] <
0o. Then {(Yy = E[f(X1.n) | X1:4), 0(X1.1)) }i>1 Is a martingale sequence.

Proof. Again, we only check the third property:

E[Yit1 | 0(X11)] = E[E[f (X1:n) | X1ma1] X1k]
= E[f(Xln) | Xl:k]
— Y,

The second equality is by the tower property of conditional expectation. O

'In class, we had this assumption, but I don’t think it is actually needed.



1.3 Martingale concentration

Most inequalities for an iid sum have a martingale version. Here is a martingale version of
Bernstein’s inequality.?

Theorem 1.1. Let {(Dy, Fi)} be a martingale difference sequence. If

1
E[e*Px | o] < X0/ a.s. VA < —,
893

then

1. 304y Dy is sE(\/ 20—y v k2, maxg<, o).

2 t
P >t <2 — mi _ —
( - )— ‘”‘p( mm{azzluz’aa*b

This condition is that a random variable given by the MGF is bounded. We will see
later how to check this condition.

>o,

k=1

Proof. We can start with the Chernoff bound

n n
. E[er2k=1Dx]
k=1
Then we can bound the moment generating function by using the tower property of con-
ditional expectation
E[e* Yo Dr] = B[A Xist Do B[eADn | F,y_ ]

Using A < é,

< E[e’\ SPZi Dy, e,\2y,§/2]

_ E[e)\ 22;11 Dk]e)\zuz/Q
Iterating this argument, we get

< M (Sia D)2

forall N\ < —1L O

maxg<n Ok

Remark 1.1. In this theorem, the v, are deterministic. In the case where the v are
Fir_1-measurable, we will get a related but different bound.

Here is a corollary which is sometimes easier to use than the previous theorem.

2This inequality does not have a formal name, but you may call it an Azuma-Bernstein inequality.



Corollary 1.1 (Azuma-Hoeffding inequality). Let {(Dy, Fr)} be a martingale difference
sequence. Suppose there exists {(ar,b)}}_, such that Dy € (ag,by) a.s., where by, ay are
Fr—1-measurable and |by, — a| < Ly. Then

1. Y Dy is sG(4/> g L%/2).

2t2
’ ( - t) = e <_ > e (b — ak)2> ’

Proof. We have E[e*Pk | Fj,_1] < X (55=1)*/8 Use the same proof as before. O

>

k=1

Now specialize to Doob’s martingale
Dk = E[f(Xln) | Xl:k] - E[f(Xln) | Xl:k—l]-

Definition 1.5. f(x1,...,z,) is a bounded difference function if for all k € [n], z1.,, x},

T1:k—1yLky Tk4+1:n) — T1:k—1y Ly Th4+1:n)| S Lk
| £( ) — f( i )<L

This is a condition on how much the function changes if we change 1 coordinate. Here
is a corollary of the Azuma-Hoeffding inequality

Corollary 1.2. Suppose that f : R®™ — R is L1, bounded and Xi., has independent
components. Then for all t > 0,

2
P (1) = B (X 2 6 < 2050 (s )
> k=1 Ly
Proof. This is Azuma-Hoeffding with >}, Dy = f(X1.n) — E[f(X1.,,)]. Here, there exist
Ay < Dy < By, where |B — Ai| < Ly, because we can let

By, =supE[f(X1.n) | Xik—1, Xk = 2] — E[f (X1:0) | X1:k—1],
Ak = lng[f(Xln) | Xl:k—lan = l‘] - E[f(Xln) | Xl:k—1]~ O

1.4 Applications

Example 1.5 (U-statistics). Here is how we can get a cncentration inequality for U-
statistics: Recall that

UXim) = o S0 IXi—Xjl,  X;~ Py € P(=b,b)).

5)
2/ 1<i<j<n



Then

1
U(X 1k, Xby Xy 1m) = U(X i1, Xfoy Xy 1) = o D X = Xi| - X - X
2] |s#k
1
< @ Z | Xk — X
2 s#k
2
<——-(n—1)-2b
“n(n—-1) (n—1)
4b
< .
n

So U is (4—b, b %)—bounded difference. This gives the tail bound

n’n
2t2 12
P(|U(X1m) — 0] > t) < 2exp | —15 | =2exp <_”>
N,z 16
That is,

log(2/6
U(X1, — 0| S0 og(n/) with probability 1 — 4.

Example 1.6 (Supremum of empirical process). Suppose we have samples (Z;);c[n) id Pz,

where Z; = (X;,Y;). We can define the loss function ¢ : Zx© — [0, 1] and the empirical
risk

~ 1 <&
Ro(0) =~ _U(Z;;0).
k=1
Correspondingly, we have the population risk
R(6) = E[R, | 6] = E[(Z;0)]
In statistical learning theory, we are often concerned with the excess risk

E[Z1.m] :=sup R(6 — Ry (6).
0cO

~

We can use an empirical risk minimizer 6,, and we want to upper bound R(an) <

~ o~

Ri9)

R




We claim that £(Z1.,) is (1/n,...,1/n)-bounded difference. Then

|g(len) - E[S(Zln)” < 10g(2/5)

- 2n

with probability 1 — §.

Proof. Fix Zi.,, and let 0, = arg maxycq(R(60) — Ry (0)). Then E(Z1.,) = R(6.) — R, (6.).
We want to look at

n

|5(Z1;n) - 5(lek—1a Zl{cv Zk—l—l:n)’ = % Z(E(Zi; 9*) B E[E(Zi; 9*)])
=1
_Sggnz (Zi;0) —E[0(Z;;0))
_ %(z(z,g;e) —E[(Z;;0)])
< % i(ﬁ(Zi; 0.) — E[£(Zi; 04)])
i=1
_ = Z (Zi;0.) —E[¢(Z;;0.))
z;ﬁk
_ %(g(z,;; 0.) — E[(Z1;0.)))
= %(z(zk;e*) —U(Z};0%))
i .

Remark 1.2. This doesn’t say anything about
E [sup R,(0) — R(G)] .
0

1.5 Freedman’s inequality

Our “Azuma-Bernstein” inequality says that if E[e*Pr | Fp_y] < eX*¥/2, then

2 n 2 2

4 . 2 2 " 1 S

< max \/"Zk_lyk log <5> , w with probability 1 — §.
n n

1 n
n 2D
2

However, sometimes v; is not deterministic and instead is Fj_; measurable.

Theorem 1.2 (Freedman’s inequality). Let {(Dg, Fi)} be a martingale difference sequence
such that



1. E[Dg | Fi=1] =0.
2. Dk < b a.s.
Then for all A € (0,1/b) and ¢ € (0,1),

d 4 log(1/4)
P < 2| Faosi]+ =2 >1-0.
<2Xt_)‘Z]E[Dk’Fk 1+ =5 )_1 §
=1 t=1
This is useful in bandit and reinforcement learning research.?

1.6 Maximal Azuma-Hoeffding inequality

Recall Doob’s maximal inequality for sub-martingales.
Lemma 1.1 (Doob’s maximal inequality). If {Xs}s>0 is a sub-martingale, i.e.
Xs <E[X; | Fs] Vs < t,

then for all u > 0,

P(sup X;>u
U

> < E[max{ Xz, 0}]
0<t<T

This gives rise to a maximal version of the Azuma-Hoeffding inequality:

Theorem 1.3 (Maximal Azuma-Hoeffding inequality). Let {(Dy, Fi)} be a martingale
difference sequence, and suppose there exists {(a,bi)}p_, such that Dy € (a,by) a.s.

Then
b 22
P| sup D>t §exp<— )
<O<kz<n ; ) > ke (b — ag)?

3For example, see Theorem 1 in Beygelzimer, Langford, et. al. 2010.
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