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1 Introduction to High-Dimensional Statistics

1.1 Overview of the course

The first half of this course will cover theoretical tools used to establish theorems in high-
dimensional statistics:

• Concentration inequalities

• Empirical process theory

• Gaussian process theory and random matrix theory

The second half of this course will cover statistical problems:

• Covariance estimation

• Sparse estimation problem

• Principal component analysis (PCA) in hihg dimension

• Non-parametric regression

• Minimax lower bounds

1.2 A motivating example: sparse estimation

Here is a motivating example:

Example 1.1 (High dimensional sparse estimation). Here is the assumption of our statis-
tical model. We observe

Y =

Y1

...
Yn

 ∈ Rn, X =

X
>
1
...
X>n

 ∈ Rn×d, Xi ∈ Rd.

We assume that the relationship Y = Xθ∗ + ω holds, where θ∗ ∈ Rd with θ∗ =

θ
∗
1
...
θ∗d

 and

ω ∈ Rn is noise. In the high dimensional case, we have n� d, so standard linear regression
will not be useful.

To deal with the problem in the high-dimensional case, we make the further assumption
that θ∗ is supported on S ⊆ {1, 2, . . . d}, with |S| denoted by s; that is, θ∗i can be nonzero
only on the indices in S. This is called an s-sparse assumption. Our task is that given
(Y,X), we want to estimate θ∗.

We present results without proof, although we will develop these results later in the
course.
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(a) The naive estimator (assuming ωi
iid∼ N(0, σ2)) is

θ̂LS := arg min
θ∈Rd

1

2n
‖Y −Xθ‖22.

Classical theory tells us that

E[‖θ̂LS − θ∗‖22] =
tr(X>X)−1

n
σ2

= Θ

(
d

n
σ2

)
If n � d, then E[‖θ̂LS − θ∗‖22] � 1. This estimator, however does not use the
assumption that θ∗ ∈ Rd is s-sparse.

(b) The LASSO estimator1 is

θ̂LASSO := arg min
θ∈Rd

1

2n
‖Y −Xθ‖22 + λn‖θ‖1,

which has an L1 penalty. Our goal is to show that

‖θ̂LASSO − θ∗‖2 . c

√
s log d

n
.

We need the following condition:

Definition 1.1. The matrix X satisfies the restricted eigenvalue (RE)2 condition
over S with parameter (κ, α) if

1

n
‖X∆‖22︸ ︷︷ ︸

= 1
n
〈∆,X>X∆〉

≥ κ‖∆‖22 ∀∆ ∈ Cα(S) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ α‖∆S‖1}.

This is a geometric assumption on L(θ) = 1
2n‖Y −X(θ∗ + ∆)‖22. If X is (κ, α)-RE,

then L(∆) is strongly convex in the cone Cα(S).

Theorem 1.1. Suppose θ∗ is supported on S, with |S| = s, and X satisfies the RE

condition over S with parameter (κ, 3). Further assume that λn ≥ 2‖X>ωn ‖∞. Then

‖θ̂LASSO − θ∗‖2 ≤
3

κ

√
sλn.

1LASSO comes from Tbshrani in 1994 and Chen, Donoho, and Saunders in 1994, as well.
2This condition was introduced by Bickel, Ritov, and Tsybakov in 2009.
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What does this mean? The sparsity assumption is more natural; for example, if we
are dealing with gene data in biology, we may assume that only a few genes will
determine a trait. Let’s now tackle a few questions about our assumptions:

1. When does RE hold?

2. How large is 2‖X>ω‖∞/n?

3. How can we compare the bound with the least squares estimator?

Make the assumption that XI
iid∼ N(0, Id) (which can be generalized) and ωi

iid∼
N(0, σ2). Here are the answers to our questions:

1.

Proposition 1.1. Suppose (Xi)i∈[n]
iid∼ N(0, Id). Fix S ⊆ [d] with |S| = s. Then

there exist universal constants 0 < c1 < 1 < c2 such that when n ≥ c2s log d, we
have

P( 1
2n‖X∆‖22 ≥ c1‖∆2‖2 ∀∆ ∈ C3(s)) ≥ 1− e−n/32

1− e−n/32
.

This tells us that the (c1, 3)–RE condition is satisfied with high probability
(w.h.p.) as long as n ≥ s log d. To establish this proposition, we need to use
empirical process theory and concentration inequalities.

2.

Lemma 1.1. Suppose that maxi∈[n] ‖xi‖2/
√
n ≤ Bn and ωi

iid∼ N(0, σ2). Then
there is a universal constant c such that for all t > 0,

P

(
‖X>ω‖∞

n
≤ cBnσ

(√
2 log d

n
+ t

))
≥ 1− 2e−nt

2/2

Moreover, when Xi ∼ N(0, Id), then for all t ∈ (0, 1),

P
(

max
i∈[n]

‖Xi‖22
n
≤ 1 + t

)
≥ 1− ne−nt2/8.

This lemma tells us that

2‖X>ω‖∞
n

≤ C̃σ
√

log(d/δ)

n︸ ︷︷ ︸
λn

with probability at least 1−2δ. To establish this lemma, we need concentration
inequalities and empirical process theory.
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3. Plug in λ = C̃σ

√
log(d/δ)

n to get

‖θ̂LASSO − θ∗‖2 ≤
3

κ

√
sλn =

3

κ
C̃σ

√
s log(d/δ)

n

with probability at least 1− 3δ. This means that as long as n & s log(d/δ),

‖θ̂LASSO − θ∗‖22 � 1.

In comparison, E[‖θ̂LS − θ∗‖22] = Θ( dnσ
2), which needs n ≥ d to be small.

1.3 Relationships with other statistical topics

Here are the relationships between this course and other courses:

• Stat 210A Theoretical Statistics: In statistical decision theory, we have a statistical
model P = {Pθ : θ ∈ Θ} with a statistical procedure δ : D → Θ and a loss function
|ell : Θ × Θ → R. We can then calculate the risk function R(θ; δ) = Eθ[`(θ; δ(Z))].
We can compare risk functions for different procedures by looking at summarized
statistics of the risk function:

– Bayes risk: We assume θ ∼ π, so RB(π; δ) = Eθ∼π[R(θ; δ)].

– Minimax: We can look at RM (Θ; δ) = supθ∈ΘR(θ; δ).

In our example, LASSO is approximately minimax optimal

• CS 281A/Stat 241A Statistical learning theory: This focuses on a different (but
related) collection of models (empriical risk minimization). We study them using a
similar set of tools (concentration inequalities, empirical process theory).

• Stat 260 Mean field asymptotics in statistical learning: Here, we focus on the same
collections of statistical models but study them in another regime (n, d → ∞ with
n/d→ constant asymptotics). We use different collection of tools (statistical physics,
AMP, Gaussian comparison). This needs stronger assumptions but gives more refined
results.

Other useful courses are convex optimization and information theory. These courses
are important in order to learn deep learning theory and reinforcement learning theory. In
the next lecture, we will start learning about concentration inequalities.
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2 Basic Concentration Inequalities

2.1 Concentration inequalities for sample averages

Suppose we have a random variable X ∼ PX , sampled from the distribution PX . Let
µ = EX∼PX [X] be its expectation. In general, |x − µ| could be very large. However, in
many scenarios (especially when X takes a special form), |x − µ| is very small with high
probability.

Example 2.1. Let X = 1
n

∑n
i=1 Zi, where Zi

iid∼ PZ with PZ ∈ P([0, 1]) (supported in
[0, 1]). Then E[X] = E[Zi] =: µ. We will show in this lecture that

1. For all t > 0,

P(|x− µ| ≥ t) = P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−nt

2

2

)
︸ ︷︷ ︸

n→∞−−−→0

.

2. Equivalently, for any 0 < δ < 1,

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥
√

2 log(2/δ)

n

)
≤ δ.

3. Equivalently, ∣∣∣∣∣ 1n
n∑
i=1

Zi − µ <
√

2 log(2/δ)

n

∣∣∣∣∣
with probability at least 1− δ, or with high probability.

2.2 Markov’s inequality

Lemma 2.1 (Markov’s inequality). Let X be a nonnegative random variable. Then for all
t > 0,

P(X ≥ t) ≤ E[X]

t
.

Proof. Define f(x) = x and g(x) = t1{x≥t}. Then f(x) ≥ g(x).
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Then
E[X] ≥ E[t1{X≥t}] = tP(X ≥ t).

Markov’s inequality is important because other concentration inequalities are conse-
quences of Markov’s inequality. For our example, we can apply Markov’s inequality to
|X − µ| with X = 1

n

∑n
i=1 Zi to get

P(|X − µ| ≥ t) ≤ E[|X − µ|]
t

=
E[| 1n

∑n
i=1 Zi − µ|]
t

Using Jensen’s inequality, we can upper bound this by

=
E[| 1n

∑n
i=1 Zi − µ|2]1/2

t

Observe that E[( 1
n

∑n
i=1 Zi − µ)2] ≤ nE[(Zi − µ)2]/n2 ≤ 1/n. So we get

≤ (1/n)1/2

t

=
1√
nt
.

To rearrange this in terms of a tail probability δ, solve 1√
nt

= δ:

P
(
|X − µ| ≥ 1√

nδ

)
≤ δ.

That is,

|X − µ| < 1√
nδ

with probability at least 1− δ. Here, we have gotten the correct 1/
√
n scaling, but the 1/δ

dependence is not optimal yet.

Remark 2.1. Letting n → ∞ gives us a weak law of large numbers. However, if we sum
these probabilities in n, we get a divergent sum, so we would need to be more careful if we
wanted to use the Borel-Cantelli lemma to prove a strong law of large numbers.

2.3 Chebyshev’s inequality

Lemma 2.2. If Var(X) exists, then or all t > 0,

P(X − E[X]| ≥ t) ≤ Var(X)

t2
.
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Proof. Apply Markov’s inequality:

P(|X − E[X]| ≥ t) ≤ P(|X − E[X]|2 ≥ t2)

≤ E[|X − E[X]|2]t2

.

For our example, apply Chebyshev’s inequality to X = 1
n

∑n
i=1 Zi to get

P
(∣∣∣∣ 1∑n

i=1 Zi − µ

∣∣∣∣ ≥ t) ≤ Var( 1
n

∑n
i=1 Zi)

t2

=
Var(Zi)

nt2

≤ 1

nt2
.

Solving δ = 1
nt2

, we get

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥ 1
√
n
√
δ

)
≤ δ.

That is, ∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥ 1
√
n
√
δ

with probability at least 1 − δ. In comparison to our application of Markov’s inequality,
this gives a 1/

√
δ dependence instead of a 1/δ dependence, which is significant when δ is

small.
In general, we have

Lemma 2.3. For all t > 0,

P(|X − µ| ≥ t) ≤ E[|X − µ|k

tk
,

provided this k-th moment exists.

As an exercise, apply this to our example and carefully bound E[| 1n
∑n

i=1 Zi − µ|k] to
show that there is a constant Ck <∞ such that∣∣∣∣∣ 1n

n∑
i=1

Zi − µ

∣∣∣∣∣ ≤ Ck√
nδ1/k

with probability at least 1− δ.
As another exercise, derive Cantelli’s inequality using the same principle:

12



Lemma 2.4 (Cantelli’s inequality).

P(X − E[X] ≥ t) ≤ Var(X)

Var(X) + t2
.

Proof. The events {X −µ ≥ t} = {f(x−µ) ≥ f(t) are teh same, where f(t) = (t+ u)2 for
some special choice of u.

2.4 Chernoff’s inequality

Lemma 2.5 (Chernoff’s inequality). For all t > 0, we have

P(X ≥ µ+ t) ≤ inf
λ

E[eλ(X−µ)]

e

−λt

= e−h(t),

where
h(t) = sup

λ
λt− logE[eλ(X−µ)].

Proof. We will prove the inequality. We can upper bound the tail probability by rewriting
this event:

P(X − µ ≥ t) = P(eλ(X−µ) ≥ eλt)

This holds for all λ, so it holds for the inf over all λ. We get

P(X − µ ≥ t) = inf
λ

P(eλ(X−µ) ≥ eλt)

≤ inf
λ

E[eλ(X−µ)]

eλt
,

where we have used Markov’s inequality.

Remark 2.2. To interpret the quantities in the bound, define the moment generating
function of a random variable Z as

MZ(λ) := E[eλZ ].

This is called the moment generating function because

d

dλ
MZ(λ)|λ=0 = EZ [ZeλZ ]|λ=0 = E[Z].

In general,
dk

dλk
MZ(λ)|λ=0 = EZ [ZkeλZ ]|λ=0 = E[Zk],

13



the k-th moment.
Define the cumulant generating function of Z as

KZ(λ) := logE[eλZ ] = logMZ(λ).

This is called the cumulant generating function because it generates the cumulants

κk =
dk

dλk
KZ(λ)|λ=0.

For example, κ2 = Var(Z) ≥ 0. In fact, K ′′Z(λ) ≥ 0, so the cumulant generating function
is always convex.

Define the Legendre transform f∗ of f : R→ R as

f∗(t) = sup
λ∈R

λt− f(λ).

Then h(t) is the Legendre transform of KX−µ(λ). The Legendre transform can be thought
of as a dual3 in the sense that f∗∗(λ) = (f∗)∗(λ) = f(λ) if f is convex.

For our example, apply Chernoff’s inequality to X = 1
n

∑n
i=1 Zi. Here is a claim we

will prove next lecture: If Z ∼ PZ ∈ P([0, 1]), then

E[eλ(Z−E[Z])] ≤ eλ2/2, ∀λ ∈ R.

Using this claim, we bound

P

(
1

n

n∑
i=1

Zi − µ ≥ t

)
≤ inf

λ

E[eλ( 1
n

∑n
i=1 Zi−µ)]

eλt

= inf
λ

E[
∏n
i=1 e

λ 1
n

(Zi−µ)]

eλt

Using independence of the Zi,

= inf
λ

∏n
i=1 E[eλ

1
n

(Zi−µ)]

eλt

= inf
λ

E[eλ
1
n

(Zi−µ)]n

eλt

≤ inf
λ

(e(λ/n)2/2)n

eλt

= inf
λ
eλ

2/(2n)−λt

3The Legendre transform is sometimes known as the Fenchel dual.
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This exponent is quadratic in λ, so we can calculate that it is minimized at λ∗ = nt.

= e−(nt)2/(2n)−nt·t

= e−nt
2/2.

We will apply this line of reasoning again and again in this course.
Similarly, we have the lower bound

P

(
1

n

n∑
i=1

Zi − µ ≤ −t

)
≤ e−nt2/2.

Combining these two tail inequalities, we get

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥ t
)
≤ 2e−nt

2/2.

This is the inequality we presented at the beginning of the lecture. If we solve δ = 2e−nt
2/2,

we get

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥
√

2 log(2/δ)

n

)
≤ δ.

That is, ∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ <
√

2 log(2/δ)

n

with probability at least 1− δ.

2.5 Comparison of inequalities

Here is a table comparing the different inequalities we have seen.

Markov Chebyshev k-th moment Chernoff

require First moment Second moment k-th moment Moment generating function

bound 1√
nδ

1√
n
√
δ

1√
nδ1/k

√
2 log(2/δ)√

n

Using more moments, we get better bounds; using the MGF is like using all the moments
of a random variable. These have the same dependence in n but different dependence in
δ. What is the benefit of better dependence in δ? This is useful for the union bound!

15



2.6 Applying union bounds

Lemma 2.6 (Union bound). Suppose we have a collection of events {Es}s∈[d]. If P(Ecs) ≤ δ
d

for all s, then

P

 ⋃
s∈[d]

Es

 ≥ 1− δ.

So if we divide delta by the number of events d, we can use a good δ dependence to get
a good union bound.

Remark 2.3. Here is a common mistake that happens in homework, exams, and even

ICML and NeurIPS papers. Let (Z
(s)
i )i∈[n],s∈[d]

iid∼ PZ ∈ P([0, 1]). Suppose someone proves
that for all s ∈ [d],

P

(∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤
√

log(1/δ)

n

)
≥ 1− δ.

The common mistake is to claim that

P

(
∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤
√

log(1/δ)

n

)
≥ 1− δ.

This is not true because it ignores the dependence on the dummy variable s. Instead, the
correct thing to do is to say

P

(
∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤
√

log(d/δ)

n

)
≥ 1− δ.

This d is usually very large, such as exponential or doubly exponential in n.
So please avoid the following statement:

∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤ εn, with probability at least 1− δ.

This is ambiguous if the probability applies to each individual s or all s at once. Instead,
use this statement instead:

For individual bounds, write

(a) ∀s ∈ [d], P(· · · ) ≥ 1− δ.

(b) ∀s ∈ [d], with probability at least 1− δ, the following event happens:∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤ εn.
16



For union bounds use these:

(a) P(∀s, · · · ) ≥ 1− δ.

(b) With probability at least 1− δ, the following event happens:

∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤ εn.
(c)

sup
s∈[d]

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤ εn with probability at least 1− δ.

Here are some exercises to do for using union bounds:

Suppose (Z
(s)
i )i∈[n],s∈[d]

iid∼ PZ ∈ P([0, 1]).

• Markov’s inequality implies that with probability 1− δ, the following happens:

∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤ d√
nδ
.

• Chebyshev’s inequality implies that with probability 1− δ, the following happens:

∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤
√
d

√
n
√
δ
.

• Markov’s inequality implies that with probability 1− δ, the following happens:

∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤
√

2 log(2d/δ)√
n

.
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3 Sub-Gaussian and Sub-Exponential Random Variables

3.1 Sub-Gaussian random variables

Last time, we used Chernoff’s inequality to get an upper bound on the tail probability
of 1

n

∑n
i=1 Zi − µ, where Zi are iid and supported in [0, 1]. We made a claim about the

moment generating function of such random variables:

E[eλ(Z−E[Z])] ≤ eλ2/2.

We can abstract this into a definition:

Definition 3.1. A random variable with µ = E[X] is σ-sub-Gaussian4 if there is a
positive number σ0 such that

E[eλ(X−µ)] ≤ eλ2σ2/2 ∀λ ∈ R.

Combining with Chernoff’s inequality, we have that if X is σ-sub-Gaussian, then

P(X − µ ≥ t) ≤ inf
λ

E[eλ(X−µ)]

eλt

≤ inf eλσ
2/2−λt

This quadratic function in the exponent is minimized at λ = t/σ2:

= e(t/σ2)2·σ2/2−t2/σ2

= e−t
2/(2σ2).

Why is this called “sub-Gaussian”?

(a) If G ∼ N(µ, σ2), then

E[eλ(G−µ)] =

∫ ∞
−∞

eλ(x−µ) 1√
2πσ

exp

(
−(x− µ)2

2σ2

)
dx

We can combine the exponentials and complete the square in the exponent to solve
this integral.

= eλ
2σ2/2.

(b) If G ∼ N(0, 1), then

lim
t→∞

P(G ≥ t)
1
t

1√
2π

exp(−t2/2)︸ ︷︷ ︸
φ(t)

= 1.

4Some textbooks call this σ2-sub-Gaussian, and you should think of σ as a surrogate for variance.
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In addition, if φ is the standard Gaussian probability density function, then

1

t
φ(t) ≤ P(G ≥ t) ≤

(
1

t
− 1

t3
+

3

t5

)
φ(t).

This is exercise 2.2 in Wainwright’s textbook. To prove this, first show that φ(z) =

−φ′(z)
z . Next, calculate

∫∞
t φ(z) dz =

∫∞
t −

φ′(z)
z dz by using integration by parts.

3.2 Hoeffding’s inequality

Proposition 3.1 (Hoeffding’s inequality). Suppose Xi, i = 1, . . . , n are independent, where
Xi has mean µ and is σi-sub-Gaussian. Then

1.
∑n

i=1Xi has mean
∑n

i=1 µi and is sub-Gaussian with parameter
√∑n

i=1 σ
2
i .

2.

P

(
n∑
i=1

(Xi − µi) ≥ t

)
≤ exp

(
− t2

2
∑n

i=1 σ
2
i

)
.

Proof.

1.

E[eλ
∑n
i=1(Xi−µi)] = E

[
n∏
i=1

eλ(Xi−µi)

]

=
n∏
i=1

E[eλ(Xi−µi)]

≤
n∏
i=1

eλσ
2
i /2

= eλ
2(
∑n
i=1 σ

2
i )/2.

2. The second statement is by Chernoff’s inequality, as above.

Let (Xi)i∈[n]
oniid∼ X be σ-sub-Gaussian. Then

P

(
1

n

n∑
i=1

Xi − µ ≥ t

)
= P

(
n∑
i=1

(Xi − µ) ≥ nt

)

≤ exp

(
−(nt)2

2nσ2

)
= exp

(
− nt

2

2σ2

)
.
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(a) How do we extract the order of 1
n

∑n
i=1XI − µ? Let δ = exp(− nt2

2σ2 and solve for t to

get t = σ

√
2 log(1/δ)

n . Thus,

1

n

n∑
i=1

Xi ≤ µ+ σ

√
2 log(1/δ)

n
with probability at least 1− δ.

To check for mistakes, look at the units: Xi, µ, and σ have the same units, while δ
and n are unitless. Here, we can see that the units match up.

(b) How many samples are needed to that 1
n

∑n
i=1Xi−µ ≤ t with probability 1− δ? Let

δ = exp(− nt2

2σ2 ), and solve for n to get n = 2σ2

t2
log(1/δ).

3.3 Examples of sub-Gaussian random variables

Example 3.1 (Rademacher random variables). Consider a Rademacher random vari-
able ε ∼ Unif({±1}). ε is 1-sub-Gaussian.

Proof.

E[eλε] =
1

2
eλ +

1

2
e−λ

We want to upper bound this by eλ
2/2. One way is to use the Taylor expansion:

=
1

2

∞∑
k=1

λk

k!
+

(−λ)k

k!

=
∞∑
k=0

λ2k

(2k!)
.

If we take the Taylor expansion of eλ
2/2, we get 1 +

∑∞
k=1 λ

2k2kk!. To compare the Taylor
expansions, we only need to show that (2k)! ≥ 2kk!.

Example 3.2 (Bounded random variable). Let X ∈ P([a, b]). We claim that X is (b− a)-
sub-Gaussian.5

Proof. Instead of a direct calculation, we use a series of tricks.

Trick 1: Let X ′
d
= X with X,X ′ independent. Then

EX [eλ(X−µ)] = EX [eλX−EX [X′]]

Trick 2: Use Jensen’s inequality to get e−λE[X′] ≤ E[e−λX
′
]. This gives

≤ EX,X′ E[eλ(X−X′)]

5It is actually possible to show this with parameter (b − a)/2, but we will not show this fact in this
lecture.
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Trick 3: Introduce ε ∼ Unif({±1}) with ε independent of (X,X ′). Then ε(X − X ′) d
=

X −X ′.
= Eε,X,X′ E[eλε(X−X

′)]

Using the tower property of conditional expectation,

= EX,X′ [Eε[eλε(X−X
′) | X,X ′]]

By the 1-sub-Gaussianity of ε,

≤ EX,X′ [eλ
2(X−X′)2/2]

Since (X −X ′) ≤ (b− a)2 by the boundedness of X,X ′,

≤ eλ2(b−a)2/2.

Remark 3.1. These tricks will be useful in later lectures and in statistics research. This
technique is known as symmetrization.

3.4 Equivalent characterizations of sub-Gaussianity

Here are some

Theorem 3.1 (HDP 2.6 or RV 2.5.1). Let X be a random variable. Then the following
are equivalent:

(i) The tails of X satisfy

P(|X| ≥ t) ≤ 2 exp

(
− t

2

κ2
1

)
∀t ≥ 0.

(ii) The moments of X satisfy

‖X‖Lp = (E[|Xp|])1/p ≤ κ2
√
p, ∀p ≥ 1.

(iii) The moment generating function of X2 satisfies

E[exp(λ2X2)] ≤ exp(κ2
3λ

2) ∀λ such that |λ ≤ 1

κ3
.

(iv) The moment generating function of X2 is bounded at some point:

E[exp(X2/κ2
4)] ≤ 2.

Moreover, if E[X] = 0, then properties (i)-(iv) are also equivalent to

5. The moment generating function of X satisfies

E[exp(λX)] ≤ exp(κ2
5λ

2/2) ∀λ ∈ R.
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Here, κ1, . . . , κ5 are universal constants.

Proof. Proof is an exercise.

Remark 3.2. Some people define sub-Gaussian through property (i) instead of (v). It can
also be defined in terms of Orlicz norms, which are covered in an exercise in Wainwright’s
book. We use the moment generating function definition because a tensorization property
will be important to us later.

Proposition 3.2. There is a universal constant κ such that if X is σ-sub-Gaussian and
Z is a random variable bounded by 1, then ZX is κσ-sub-Gaussian.

Remark 3.3. Z and X can be dependent!

Proof. We can use any of the characterizations (i), (ii), (ii), (iv) to prove this. (v) doesn’t
work as easily.

3.5 Sub-exponential random variables

Let G ∼ N(0, 1). Then G2 is not sub-Gaussian. This is because E[G2] = 1, and

E[eλ(G2−1)] =
1√
2π

∫ ∞
−∞

eλ(z2−1)e−z
2/2 dz

=

{
e−λ√
1−2λ

λ < 1/2

∞ λ ≥ 1/2.

We can still derive a good but weaker tail bound for this kind of random variable.

Definition 3.2. A random variable X is (ν, α)-sub-exponential if

E[eλ(X−µ)] ≤ eλ2ν2/2 ∀|λ| ≤ 1

α
.

We can see from this definition that sub-Gaussian variables are sub-exponential with
any α > 0.

Example 3.3. If G ∼ N(0, 1), then G2 is (2, 4)-sub-exponential.

Proof. We want to show that

E[eλ(G2−1)] =
e−λ√
1− 2λ

≤ e2λ2 ∀|λ| ≤ 1

4
.

we can do this by comparing Taylor series.
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Combining this definition with Chernoff’s inequalitiy, we have that if X is (ν, α)-sub-
exponential, then

P(X − µ ≥ t) ≤ inf
λ

E[eλ(X−µ)

eλt

≤ inf
|λ|≤1/α

eν
2λ2/2

eλt

= exp

(
inf

λ≤1/α
ν2λ2/2− λt

)
If this interval contains λ = t/ν2, then this is the minimum. Otherwise, the minimum will
be on the boundary.

=

{
exp(− t2

2ν2
) if t

ν2
≤ 1

α

exp( ν2

2α2 − t
α) if t

ν2
> 1

α

The second expression is ≤ exp(− t
ν2

ν2

2α −
t
α) = exp(− t

2α). So we can write this as

≤ exp

(
−min

{
t2

2ν2
,
t

2α

})
.

Why is this called “sub-exponential?

(a) If Z ∼ Exp(1/α), then

P(Z ≥ t) = exp

(
− t
α

)
.

(b) Exp(1) is (
√

2, 2)-sub-exponential: If Z ∼ Exp(1), then

Z
d
=

1

2
(G2

1 +G2
2), G1, G2

iid∼ N(0, 1).

Then

E[eλ(Z−1)] = E[e
λ
2

(G2
1+G2

2−2)]

23



= E[e
λ
2

(G2
1−1)]E[e

λ
2

(G2
2−1)]

for |λ| ≤ 1/2,

≤ e−λ

1− λ
≤ eλ2 .
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4 Bernstein’s Inequality, the Johnson-Lindenstass Lemma,
and More Concentration Inequalities

4.1 Bernstein condition for sub-exponentiality

A bounded random variable is sub-Gaussian and hence is sub-expoenntial, but we can get
a tighter quantitative sub-exponential bound.

Proposition 4.1. Suppose X has a mean µ and variance σ2. Suppose that E[(X −µ)k] ≤
1
2k!σ2bk−2 for all k ≥ 2. Then X is (

√
2σ, 2b)-sub-exponential.

Note that the units in this inequality condition make sense. This condition is called
the Bernstein condition.

Proof. We just need to show that the moment generating function is bounded: Do a Taylor
expansion:

E[eλ(X−µ)] = 1 +
λ2σ2

2
+

∞∑
k=3

λk
E[(X − µ)k]

k!

≤ 1 +
λ2σ2

2
+
λ2σ2

2

∑
k=3

(|λ|b)k−2

This is a geometric series, so we can simplify it.

≤ 1 +
λσ2/2

1− b|λ|
≤ e(λ2σ2/2)/(1−b|λ|)

When |λ| ≤ 1
2b ,

≤ eλ2(
√

2σ)2/2.

Now let X be a random variable with Var(X) = σ2 and 0 ≤ X ≤ b. Then

E[|X − µ|k] ≤ E[|X − µ|2 · bk−2]

= σ2bk−2

≤ k!

2
σ2bk−2,

so X is (
√

2σ, 2b)-sub-exponential. Last time, we had that X is b-sub-Gaussian. So the
sub-exponential tail bound here is stronger in the region where the sub-exponential and
sub-Gaussian tail behaviors are similar.
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4.2 Bernstein’s inequality

Lemma 4.1 (Bernstein’s inequality). Let {Xi}i∈[n] be independent with E[Xi] = µi and
Xi (νi, αi)-sub-exponential. Then

∑n
i=1(Xi − µi) is sub exponential with parameters ν∗ =√∑n

i=1 ν
2
i and α∗ = maxi αi. Moreover,

P

(
1

n

n∑
i=1

(Xi − µi) ≥ t)

)
≤

{
e−nt

2/(2ν2∗) t ≤ ν2
∗/α∗

e−nt/(2α∗) t > ν2
∗/α∗

Proof.

E[eλ
∑n
i=1(Xi−µi)] =

n∏
i=1

E[eλ(Xi−µi)]

≤ eλ2
∑n
i=1 ν

2
i /2.

for all λ ≤ 1/maxi∈[n] αi.

Let (Xi)i∈[n]
iid∼ X be (ν, b)-sub-sexponential. Then

P

(
1

n

n∑
i=1

(Xi − µi) ≥ t)

)
≤ e
−nmin{ t2

2ν2, t
2b
} .

(a) How do we extract the order of 1
n

∑
)i = 1nXi − µ? Set δ = exp(−nmin{ t2

2ν2
, t2b}),

and solve for t to get

t = max

{
ν

√
2 log(1/δ)

n
, b

2 log(1/δ)

n

}
.

This tells us that

1

n

n∑
i=1

Xi−µ ≤ max

{
ν

√
2 log(1/δ))

n
, b

2 log(1/δ)

m

}
with probability at least 1− δ.

For small δ, the first term is the dominant term while the second is a burn-in term.

(b) How many samples do we need to have 1
n

∑n
i=1Xi − µ ≤ t with probability 1 − δ?

Set δ = exp(−nmin{ t2
2ν2

, t2b}) and solve for n to get

n = max

{
2ν2

t2
log(1/δ),

2b

t
log(1/δ)

}
.

When t is small, the first term is dominant, while the second is of smaller order.
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Example 4.1. Let Xi be iid with support in [0, b] and Var(Xi) ≤ ν2. We know that
Xi is b-sub-Gaussian and (ν, b)-sub-exponential. In order for | 1n

∑n
i=1Xi − µ| ≤ ε with

probability 1− δ,

sG(1) =⇒ n ≥ b2

ε2
log

(
1

δ

)
,

sE(ν, 1) =⇒ n ≥ max

{
ν2

ε2
log

(
1

δ

)
,
b

ε
log

(
1

δ

)}
.

When ε ≤ b, b
ε log(1

δ ) ≤ b2

ε2
log(1

δ ). So the sub-exponential bound is a stronger bound.

4.3 An application: the Johnson-Lindenstrass Lemma

Let Y =
∑n

i=1 Zi with Zi ∼ N(0, 1). Then Y ∼ χ2(n). Last time, we showed that Z2
i is

sE(2, 4), so Y ∼ sE(2
√
n, 4). By Bernstein’s inequality,

P

(∣∣∣∣∣ 1n
n∑
i=1

Z2
i − 1

∣∣∣∣∣ ≥ t
)
≤ 2e−nt

2/8 ∀t ≤ 1.

Here is a problem: Suppose we have {u1, u2, . . . , uN} ⊆ Rd with a high dimension d.
Can we find a F : Rd → Rm with some small m such that the distances are preserved?
That is, we want

1− δ ≤ ‖F (ui)− F (uj)‖22
‖ui − uj‖22

≤ 1 + δ, ∀i, j ∈ [N ].

How small can we make m? The Johnson-Lindenstrass says that we can achieve this by
random projection.

Lemma 4.2 (Johnson-Lindenstrass). Let X ∈ Rm×d have entries Xi,j
iid∼ N(0, 1), and let

F : Rd → Rm be defined as R(u) = 1√
m
X · u. Then for any fixed {u1, . . . , uN} ⊆ Rd, as

long as m & 1
ε2

log(Nδ ), then with probability 1− δ, we have

1− ε ≤ ‖F (ui)− F (uj)‖22
‖ui − uj‖22

≤ 1− ε, ∀i, j ∈ [N ].

Remark 4.1. The dimension that we can reduce to is of order logN , where N is the
number of points. So no matter the dimension d, we can always reduce the dimension to
order logN .
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Proof. Denote Yi,j =
‖F (ui)−F (uj)‖22
‖ui−uj‖22

. We claim that Yi,j ∼ χ2(m)/m. Then Bernstein’s

inequality will give
P(|Yi,j − 1| ≥ t) ≤ 2e−mt

2/δ ∀t ≤ 1.

Using a union bound on all N(N − 1) ≤ N2 pairs i 6= j, we get

P (∃i, j ∈ [N ] s.t.|Yi,j − 1| ≥ t) ≤ 2N2e−mt
2/8 ∀t ≤ 1.

Setting the right hand side equal to δ, we can solve for m to get

m ≥ 8

t2
log

(
2N2

δ

)
=
C

t2
log

(
N

δ

)
.

Now let’s verify the claim that Yi,j =
‖F (ui)−F (uj)‖22
‖ui−uj‖22

∼ χ2(m)/m. Note that

1√
m
X(ui − uj) ∼ N

(
0,
‖ui − uj‖22

m
Im

)
,

which implies that
‖X(ui − uj)‖22

m
∼ ‖ui − uj‖22χ2(m)/m.

This proves the claim.

Remark 4.2. If we use Markov’s inequality instead of Bernstein’s inequality, we get a
worse bound.

4.4 Equivalent characterizations of sub-exponentiality

Theorem 4.1 (2.13 in HDS, 2.7.1 in HDP6). The following statements are equivalent:

(a)
P(|X| ≥ t) ≤ 2 exp(−t/κ1), ∀t ≥ 0.

(b)
‖X‖Lp = (E[|X|p])1/p ≤ κ2p, ∀p ≥ 1.

(c)

E[exp(λ|X|)] ≤ exp(κ3λ) ∀λ s.t. 0 ≤ λ ≤ 1

κ3
.

(d)
E[exp(|X|/κ4)] ≤ 2.

6These two theorems actually say something slightly different.
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Moreover, if E[X] = 0, (a)-(d) are equivalent to

5.

E[exp(λX)] ≤ exp(λ2κ2
5/2) ∀|λ| ≤ 1

κ5
.

Here, κ1, . . . , κ5 are universal constants.

We will not give the proof here, but you can check either textbook. Here is an example:

Example 4.2. Let X1 ∼ sG(σ1) and X2 ∼ sG(σ2) be not necessarily independent with
E[X1] = E[X2] = 0. We claim that X1X2 ∼ sE(Kσ1σ2,Kσ1σ2) for some universal K. For
this, we can use property (b) above: First rescale X1 and X2 for simplicity. Using the
Cauchy-Schwarz inequality,

E
[(∣∣∣∣X1

σ1

∣∣∣∣ ∣∣∣∣X2

σ2

∣∣∣∣)p] ≤ E

[∣∣∣∣X1

σ1

∣∣∣∣2p
]1/2

E

[∣∣∣∣X2

σ2

∣∣∣∣2p
]1/2

=

∥∥∥∥X1

σ1

∥∥∥∥p
L2p

∥∥∥∥X2

σ2

∥∥∥∥p
L2p

By the rescaling, Xi/σi ∼ sG(1) for i = 1, 2. The sub-Gaussian condition says that
‖G‖L2p ≤ K(2p))p for all p.

≤ Kp(
√

2p)p ·Kp(
√

2p)p

= K2p(2p)p.

This tells us that ‖X1
σ1

X2
σ2
‖Lp ≤ K22p for all p.

4.5 Bennett’s inequality

Here is a stronger bound for bounded random variables. Here, we don’t require bounded-
ness from below.

Lemma 4.3 (Bennett’s inequality). Let (Xi)i∈[n] be independent, where Xi − E[Xi] ≤ b
a.s., and ν2

i := Var(Xi) for all i ∈ [n]. Then

P

(
n∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ exp

(
−
∑n

i=1 ν
2
i

b2
h

(
bt∑n
i=1 ν

2
i

))
,

where h(u) = (1 + u) log(1 + u)− u.

Remark 4.3. This has a stronger assumption than Bernstein’s inequality and provides
a stronger bound than Bernstein’s inequality for bounded random variables. However, it
doesn’t often improve much over Bernstein’s inequality.
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4.6 Maximal inequality

Lemma 4.4. Let (Xi)i∈[n] be a sequence of random variables. For any convex, strictly
increasing ψ : R→ R≥0, we have

E
[
max
i∈[n]

Xi

]
≤ ψ−1

(
n∑
i=1

E[ψ(Xi)]

)
,

P
(

max
i∈[n]

Xi ≥ t
)
≤

n∑
i=1

E[ψ(Xi)

ψ(t)
.

Proof.

E
[
max
i∈[n]

Xi

]
= E

[
ψ−1

(
max
i∈[n]

ψ(Xi)

)]
Using Jensen’s inequality,

≤ ψ−1

(
E
[
max
i∈[n]

ψ(Xi)

])
Upper bounding the maximum by the sum,

= ψ−1

(
n∑
i=1

E[ψ(Xi)]

)
.

Example 4.3. For Xi ∼ sG(σ), take ψ(u) = eλu. Optimizing over λ, we get

E
[
max
i∈[n]

Xi

]
≤ σ

√
2 log(n).

This gives an important intuition:: n sub-Gausian random variables have maximum of
order

√
log(n).

4.7 Truncation argument

Here is a very useful technique in research for getting concentration inequalities for random
variables which are not sub-Gaussian nor sub-exponential.

Example 4.4. Let Xi = G4
i , where (Gi)i∈[n]

iid∼ N(0, 1). Then E[Xi] = E[G4
i ] = 3, but

E[eλXi ] doesn’t exist. However, we still want to upper bound 1
n

∑n
i=1Xi − 3.

Here is the technique:

Step 1: Find bn such that

P
(

max
i∈[n]

Xi ≥ bn
)
≤ δ

2

and εn such that
E[Xi1{Xi≥bn}] ≤ εn.
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Step 2: Apply Hoeffding/Bernstein and get

P

(
1

n

n∑
i=1

(Xi1{Xi≤bn} − E[Xi1{Xi≤bn}]) ≤ tn

)
≥ 1− δ

2
.

Step 3: Combining Steps 1 and 2 implies that

P

(
1

n

n∑
i=1

(Xi − E[Xi] ≤ tn + εn

)
≥ 1− δ.

As an exercise, figure out bn, tn, εn as a function of n and δ. The requirement is that
tn + ε ∼ Õ( 1√

n
).
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5 Martingale Concentration Inequalities

5.1 Motivation and overview

Our goal is to get a tail bound for X1 + · · ·+Xn, where the Xi are independent. Here is
our solution so far:

(a) Chernoff inequality bounded by MGF.

(b) Bound MGF using sub-Gaussian and sub-exponential properties.

(c) Many commonly used random variables are sub-Gaussian or sub-exponential.

What about more complicated structure?

1. Sometimes, we want to show concentration of Sn = f(X1, . . . , Xn) =: f(X1:n).

2. Sometimes, we want to show concentration of Sn =
∑T

t=1Xt, where {Xt}t≥1 is cor-
related. We can deal with this if it is a Martingale difference sequence.

This lecture, we will take the approach of a Martingale concentration inequaltiy. We
will use Markov’s inequality on eλSn along with a conditional MGF bound and optimizing
over λ. We will see

(a) Doob’s Martingale representation

(b) Azuma-Hoeffding, Azuma- Bernstein, and bounded difference inequalities

(c) Applications

(d) Variants: Freedman’s inequality and Doob’s maximal inequality

Example 5.1. SupposeX1, . . . , Xn
iid∼ PX ∈ P([a, b]). We want to estimate θ = E

X,X′
iid∼PX

[g(X,X ′)],

where we assume that g : R2 → R is symmetric (such as g(x, x′) = |x − x′| or g(x, x′) =
1
2(x− x′)2. In the latter case, θ = Var(X).

Hoeffding introduced U-statistics for estimating these parameters θ:

U(X1:n) =
1(
n
2

) ∑
1≤i<j≤n

g(Xi, Xj).

If we let

P̂X,X′ =
1(
n
2

) ∑
1≤i<j≤n

δ(Xi,Xj)

be the empirical distribution, then U(X1:n) = Ê(X,X′)[g(X,X ′)]. The U statistic is an
unbiased estimator of θ because

E[U(X1:n)] = E[g(Xi, Xj)] = θ.
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This has the smallest variance among all unbiased estimators.
Today, we will show the concentration bound

P(|U − θ| ≥ t) ≤ 2 exp

(
− nt2

2‖g‖∞

)
.

This is significant because U is not a sum of independent random variables, so our previous
technology does not work here.

5.2 Doob’s martingale representation of f(X1, . . . , Xn)

Now return to the setting where we are dealing with f(X1, . . . , Xn), where the Xi are
independent. Define

Yk = E[f(X1:n) | X1:k] k ≥ 0.

We can think of conditioning on X1:k as conditioning on the σ-algebra Fk = σ(X1:k)

Example 5.2. Here is the example to keep in mind: Let f(X1:n) = X1 + · · · + Xn with
independent Xi. Then

Yk = X1 + · · ·+Xk + E[Xk+1] + · · ·+ E[Xn].

Further define the difference
Dk = Yk − Yk−1.

In the previous example, Dk = Xk − E[Xk]. We can in general write

f(X)− E[f(X)] = Yn − Y0 =
n∑
k=1

(Yk − Yk−1) =
n∑
k=1

Dk.

We call {Yk} a martingale sequence and {Dk} a martingale difference sequence.
Let us recall what a martingale is.

Definition 5.1. A filtration is an increasing nested sequence of σ-algebras

F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · .

Often, we take Fk = σ(X1:k). If the filtration is not defined properly, the result you
get may not be true.

Definition 5.2. If we have {Yk}∞k=1, where Yk is Fk-measurable, then we way that {Yk}
is {Fk}-adapted.

Definition 5.3. {(Yk,Fk)}k≥1 is a martingale sequence if

1. {Yk} is adapted to {Fk}.
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2. E[|Yk|] <∞,

3. E[Yk | Fk−1] = Yk−1.

Martingales are often used to model gambling problems where your strategy can depend
on the outcomes of the past. If you don’t have a martingale, you can sometimes subtract
the mean to get one.

Definition 5.4. {Dk}k≥1 is a martingale difference sequence if {
∑n

k=1Dk}n≥1 is a
martingale with respect to {Fk}k≥1.

Example 5.3. Let {Xi}i≥1
iid∼ PX , where E[|X|] < ∞. Denote µ = EX [X] and Sk =∑k

s=1Xs. Then {(Xk − kµ, σ(X1:k))}k≥1 is a martingale.

Proof. We only need to check the third property:

E[Sk − kµ | X1:k−1] = Sk−1 − (k − 1)µ

= Yk−1.

Example 5.4 (Doob’s martingale). Let {Xi}i≥1 be independent7 and E[|f(X1, . . . , Xn)|] <
∞. Then {(Yk = E[f(X1:n) | X1:k], σ(X1:k))}k≥1 is a martingale sequence.

Proof. Again, we only check the third property:

E[Yk+1 | σ(X1:k)] = E[E[f(X1:n) | X1:n+1]X1:k]

= E[f(X1:n) | X1:k]

= Yk

The second equality is by the tower property of conditional expectation.

5.3 Martingale concentration

Most inequalities for an iid sum have a martingale version. Here is a martingale version of
Bernstein’s inequality.8

Theorem 5.1. Let {(Dk,Fk)} be a martingale difference sequence. If

E[eλDk | Fk−1] ≤ eλ2ν2k/2 a.s. ∀λ ≤ 1

αk
,

then

1.
∑n

k=1Dk is sE(
√∑n

k=1 ν+k2,maxk≤n αk).

7In class, we had this assumption, but I don’t think it is actually needed.
8This inequality does not have a formal name, but you may call it an Azuma-Bernstein inequality.
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2.

P

(∣∣∣∣∣
n∑
k=1

Dk

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−min

{
t2

2
∑n

k=1 ν
2
k

,
t

2α∗

})
This condition is that a random variable given by the MGF is bounded. We will see

later how to check this condition.

Proof. We can start with the Chernoff bound

P

(
n∑
k=1

Dk

)
≥ t ≤ inf

λ

E[eλ
∑n
k=1Dk ]

eλt
.

Then we can bound the moment generating function by using the tower property of con-
ditional expectation

E[eλ
∑n
k=1Dk ] = E[eλ

∑n−1
k=1 Dk E[eλDn | Fn−1]

Using λ ≤ 1
αn

,

≤ E[eλ
∑n−1
k=1 Dkeλ

2ν2k/2]

= E[eλ
∑n−1
k=1 Dk ]eλ

2ν2k/2

Iterating this argument, we get

≤ eλ2(
∑n
k=1 ν

2
k)/2

for all λ ≤ 1
maxk≤n αk

.

Remark 5.1. In this theorem, the νk are deterministic. In the case where the νk are
Fk−1-measurable, we will get a related but different bound.

Here is a corollary which is sometimes easier to use than the previous theorem.

Corollary 5.1 (Azuma-Hoeffding inequality). Let {(Dk,Fk)} be a martingale difference
sequence. Suppose there exists {(ak, bk)}nk=1 such that Dk ∈ (ak, bk) a.s., where bk, ak are
Fk−1-measurable and |bk − ak| ≤ Lk. Then

1.
∑n

k=1Dk is sG(
√∑n

k=1 L
2
k/2).

2.

P

(∣∣∣∣∣
n∑
k=1

Dk

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− 2t2∑n

k=1(bk − ak)2

)
.

Proof. We have E[eλDk | Fk−1] ≤ eλ2(bk−ak)2/8. Use the same proof as before.
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Now specialize to Doob’s martingale

Dk = E[f(X1:n) | X1:k]− E[f(X1:n) | X1:k−1].

Definition 5.5. f(x1, . . . , xn) is a bounded difference function if for all k ∈ [n], x1:n, x
′
k,

|f(x1:k−1, xk, xk+1:n)− f(x1:k−1, x
′
k, xk+1:n)| ≤ Lk.

This is a condition on how much the function changes if we change 1 coordinate. Here
is a corollary of the Azuma-Hoeffding inequality

Corollary 5.2. Suppose that f : Rn → R is L1:n bounded and X1:n has independent
components. Then for all t ≥ 0,

P(|f(X1:n)− E[f(X1:n)]| ≥ t) ≤ 2 exp

(
− 2t2∑n

k=1 L
2
k

)
.

Proof. This is Azuma-Hoeffding with
∑n

k=1Dk = f(X1:n) − E[f(X1:n)]. Here, there exist
Ak ≤ Dk ≤ Bk, where |Bk −Ak| ≤ Lk because we can let

Bk = sup
x

E[f(X1:n) | X1:k−1, Xk = x]− E[f(X1:n) | X1:k−1],

Ak = inf
x
E[f(X1:n) | X1:k−1, Xk = x]− E[f(X1:n) | X1:k−1].

5.4 Applications

Example 5.5 (U -statistics). Here is how we can get a cncentration inequality for U -
statistics: Recall that

U(X1:n) =
1(
n
2

) ∑
1≤i<j≤n

|Xi −Xj |, Xi ∼ PX ∈ P([−b, b]).

Then

|U(X1:k−1, Xk, Xk+1:n)− U(X1:k−1, X
′
k, Xk+1:n) =

1(
n
2

)
∣∣∣∣∣∣
∑
s 6=k
|Xs −Xk| − |Xs −X ′k|

∣∣∣∣∣∣
≤ 1(

n
2

)∑
s 6=k
|Xk −X ′k|

≤ 2

n(n− 1)
· (n− 1) · 2b

≤ 4b

n
.
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So U is (4b
n ,

4b
n , . . . ,

4b
n )-bounded difference. This gives the tail bound

P(|U(X1:n)− θ| ≥ t) ≤ 2 exp

(
2t2

n 16
n2

)
= 2 exp

(
−nt

2

16

)
.

That is,

|U(X1:n − θ| . b

√
log(2/δ)

n
with probability 1− δ.

Example 5.6 (Supremum of empirical process). Suppose we have samples (Zi)i∈[n]
iid∼ PZ ,

where Zi = (Xi, Yi). We can define the loss function ` : Z×Θ→ [0, 1] and the empirical
risk

R̂n(θ) =
1

n

n∑
k=1

`(Zi; θ).

Correspondingly, we have the population risk

R(θ) = E[R̂n | θ] = E[`(Z; θ)]

In statistical learning theory, we are often concerned with the excess risk

E [Z1:n] := sup
θ∈Θ

R(θ − R̂n(θ).

We can use an empirical risk minimizer θ̂n, and we want to upper bound R(θ̂n) ≤
R̂n(θ̂n) + E(Z1:n).

We claim that E(Z1:n) is (1/n, . . . , 1/n)-bounded difference. Then

|E(Z1:n)− E[E(Z1:n)]| ≤
√

log(2/δ)

2n
with probability 1− δ.

Proof. Fix Z1:n, and let θ∗ = arg maxθ∈Θ(R(θ)− R̂n(θ)). Then E(Z1:n) = R(θ∗)− R̂n(θ∗).
We want to look at

|E(Z1:n)− E(Z1:k−1, Z
′
k, Zk+1:n)| = 1

n

n∑
i=1

(`(Zi; θ∗)− E[`(Zi; θ∗)])
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− sup
θ∈Θ

1

n

∑
i 6=k

(`(Zi; θ)− E[`(Zi; θ))

− 1

n
(`(Z ′k; θ)− E[`(Z ′k; θ)])

≤ 1

n

n∑
i=1

(`(Zi; θ∗)− E[`(Zi; θ∗)])

− 1

n

∑
i 6=k

(`(Zi; θ∗)− E[`(Zi; θ∗))

− 1

n
(`(Z ′k; θ∗)− E[`(Z ′k; θ∗)])

=
1

n
(`(Zk; θ∗)− `(Z ′k; θ∗))

≤ 1

n
.

Remark 5.2. This doesn’t say anything about

E
[
sup
θ
R̂n(θ)−R(θ)

]
.

5.5 Freedman’s inequality

Our “Azuma-Bernstein” inequality says that if E[eλDk | Fk−1] ≤ eλ2ν2k/2, then∣∣∣∣∣ 1n
n∑
k=1

Dk

∣∣∣∣∣ ≤ max


√

2
n

∑n
k=1 ν

2
k

n
log

(
2

δ

)
,
2α∗ log

(
2
δ

)
n

 with probability 1− δ.

However, sometimes ν2
k is not deterministic and instead is Fk−1 measurable.

Theorem 5.2 (Freedman’s inequality). Let {(Dk,Fk)} be a martingale difference sequence
such that

1. E[Dk | Fk=1] = 0.

2. Dk ≤ b a.s.

Then for all λ ∈ (0, 1/b) and δ ∈ (0, 1),

P

(
T∑
t=1

Xt ≤ λ
T∑
t=1

E[D2
k | Fk−1] +

log(1/δ)

λ

)
≥ 1− δ.

This is useful in bandit and reinforcement learning research.9

9For example, see Theorem 1 in Beygelzimer, Langford, et. al. 2010.
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5.6 Maximal Azuma-Hoeffding inequality

Recall Doob’s maximal inequality for sub-martingales.

Lemma 5.1 (Doob’s maximal inequality). If {Xs}s≥0 is a sub-martingale, i.e.

Xs ≤ E[Xt | Fs] ∀s < t,

then for all u > 0,

P

(
sup

0≤t≤T
Xt ≥ u

)
≤ E[max{XT , 0}]

u
.

This gives rise to a maximal version of the Azuma-Hoeffding inequality:

Theorem 5.3 (Maximal Azuma-Hoeffding inequality). Let {(Dk,Fk)} be a martingale
difference sequence, and suppose there exists {(ak, bk)}nk=1 such that Dk ∈ (ak, bk) a.s.
Then

P

(
sup

0≤k≤n

k∑
s=1

Dk ≥ t

)
≤ exp

(
− 2t2∑n

k=1(bk − ak)2

)
.
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6 Gaussian Concentration

6.1 Freedman’s inequality

Last time, we generalized the Hoeffding and Bernstein inequalities for independent random
variables to Azuma-Hoeffding and “Azuma Bernstein inequalities for martingales.”

Our “Azuma-Bernstein” inequality says that if E[eλDk | Fk−1] ≤ eλ2ν2k/2, then∣∣∣∣∣ 1n
n∑
k=1

Dk

∣∣∣∣∣ ≤ max


√

2
n

∑n
k=1 ν

2
k

n
log

(
2

δ

)
,
2α∗ log

(
2
δ

)
n

 with probability 1− δ.

However, sometimes ν2
k is not deterministic and ν2

k = E[D2
k | Fk−1] instead is Fk−1 mea-

surable.

Theorem 6.1 (Freedman’s inequality). Let {(Dk,Fk)} be a martingale difference sequence
such that

1. E[Dk | Fk=1] = 0.

2. Dk ≤ b a.s.

Then for all λ ∈ (0, 1/b) and δ ∈ (0, 1),

P

(
T∑
t=1

Xt ≤ λ
T∑
t=1

E[D2
k | Fk−1] +

log(1/δ)

λ

)
≥ 1− δ.

This is useful in bandit and reinforcement learning research.10

6.2 Maximal Azuma-Hoeffding inequality

Recall Doob’s maximal inequality for sub-martingales.

Lemma 6.1 (Doob’s maximal inequality). If {Xs}s≥0 is a sub-martingale, i.e.

Xs ≤ E[Xt | Fs] ∀s < t,

then for all u > 0,

P

(
sup

0≤t≤T
Xt ≥ u

)
≤ E[max{XT , 0}]

u
.

This gives rise to a maximal version of the Azuma-Hoeffding inequality:

10For example, see Theorem 1 in Beygelzimer, Langford, et. al. 2010.
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Theorem 6.2 (Maximal Azuma-Hoeffding inequality). Let {(Dk,Fk)} be a martingale
difference sequence, and suppose there exists {(ak, bk)}nk=1 such that Dk ∈ (ak, bk) a.s.
Then

P

(
sup

0≤k≤n

k∑
s=1

Dk ≥ t

)
≤ exp

(
− 2t2∑n

k=1(bk − ak)2

)
.

If we used the usual Azuma-Hoeffding inequality instead, we would need to use a union
bound, which would give a factor of n in the bound. We can write this conclusion as

sup
0≤k≤n

k∑
s=1

Dk ≤
√
C log(1/δ)

n
.

If we have the extra factor of n, we get an n/δ instead, which can sometimes be not a big
deal for our bound since we are taking a log.

6.3 Gaussian concentration

Lemma 6.2. Let X1, X2, . . . , Xn
iid∼ N(0, 1) and f : Rn → R such that f is L-Lipschitz

in ‖ · ‖2, i.e.
|f(x)− f(y)| ≤ L‖x− y‖2 ∀x, y ∈ Rn.

Then

1. f(X1:n)− E[f(X1:n)] is sG(L).

2.

P(|f(X1:n)− E[f(X1:n)]| ≥ t) ≤ 2 exp

(
− t2

2L2

)
.

Remark 6.1. We need f to be Lipschitz as a whole function! It’s not just sufficient for
the function to be coordinate-wise Lipschitz.

Remark 6.2. If the Xis are non-Gaussian, this doesn’t always hold with only Lipschitz-
ness.

There are many different proofs of this lemma, but none are very simple.

Proof 1: Gaussian interpolation method

Proof 2: Gaussian isoperimetric inequality

Proof 3: Gaussian log-Sobolev inequality + Herbst argument

Today, we will present a proof using the Gaussian interpolation method, which is useful
in research. However, this is a technique where you need to develop some intuition to
understand it.

41



6.4 Examples of Gaussian concentration

Example 6.1 (Order statistics). Let (Xi)i∈[n]
iid∼ N(0, 1). The order statistics are the

random variables arranged in increasing order: X(1) ≤ X(2) ≤ · · · ≤ X(n). Let fk(X1:n) =
X(k). This is Lipschitz:

|fk(X1:n)− fk(Y1:n)| = |X(k) − Y(k)|

≤

√√√√ n∑
k=1

|X(k) − Y(k)|2

The rearrangement inequality says that if you sort the terms, the distance is greater
than the distance of with unsorted terms.

≤

√√√√ n∑
k=1

|Xk − Yk|2

= ‖X − Y ‖2.

This means that L = 1, so X(k) − E[X(k)] is sG(1). Therefore,

|X(k) − E[X(k)]| ≤
√

log(2/δ) with probability 1− δ.

If we apply this to k = n, we get∣∣∣∣∣∣∣∣∣max
i∈[n]

Xi − E
[
max
i∈[n]

Xi

]
︸ ︷︷ ︸√

2 logn

∣∣∣∣∣∣∣∣∣ = Op(1).

Example 6.2 (Singular value of Gaussian random matrices). Let

X =

X1,1 · · · X1,d

...
...

Xn,1 · · · Xn,d

 ∈ Rn×d, Xi,j
iid∼ N(0, 1).

Let fk(X) = σk(X) be the k-th largest singular value of X. For example, f1(X) = ‖X‖op.
It can be shown that E[‖X‖op] ≈

√
n +
√
d. We can show that fk is Lipschitz; what is

the norm we want to be using for a matrix? Define the vectorized version of the matrix as
vec(X) := (X1,1, X1,2, . . . , X1,d, X2,1, . . . , X2,d, . . . , Xn,d). Then

‖ vec(X)− vec(Y )‖2 = ‖X − Y ‖F =

√∑
i,j

(Xi,j − Yi,j)2,
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where ‖ · ‖F is the Frobenius norm. Now we have

|fk(X)− fk(Y )| ≤ |σk(X)− σk(Y )|
Weyl’s inequality, a deterministic linear algebra result, says that

≤ ‖X − Y ‖op

≤ ‖X − Y ‖F ,

so L = 1. Weyl’s inequality can be proven by using the variational representation of
singular values.

This calculation tells us that fk(X)− E[fk(X)] is sG(1), so

fk(X)− E[fk(X)] ≤
√

log(2/δ) with probability 1− δ.

Applying this to k = 1 gives

|‖X‖op − E[‖X‖op]︸ ︷︷ ︸
√
n+
√
d

| = O(1).

6.5 Gaussian complexity

Gaussian complexity is a very important notion in compressed sensing. Suppose we have
a set A ⊆ Rn. How do we measure its “size”? A reasonable size function S should at least
satisfy S(A) ≤ S(B) if A ⊆ B. Here are some reasonable size functions:

1. Euclidean width: D(A) = maxa∈A ‖a‖2.

2. Dimension: A line has dimension 1, and a plane has dimension 2.

Definition 6.1. Given a set A, let W = (W1, . . . ,Wn)> ∈ Rn with Wi
iid∼ N(0, 1). The

Gaussian complexity or ”statistical dimension” of A is

G(A) := EW∼N(0,In)

[
sup
a∈A
〈a,W 〉

]
.

Note that if we don’t take the supreumum in the expectation, the quantity would be
0. This quantity is always nonnegative.

Example 6.3. Let Bp(r) = {x ∈ |Rn : ‖x‖p ≤ r}. Then

G(Bp(r)) = E

[
sup
‖x‖p≤r

〈x,W 〉

]
If q is the conjugate exponent of p, so 1

p + 1
q = 1, this is the variational representation of

the ‖ · ‖q norm:

rE[‖W‖q]
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≈ rn1/q.

Note that if p1 ≤ p2, then q1 ≥ q2, so G(Bp1(r)) ≤ G(Bp2(r)).

We want to show that f(W ) := supa∈A〈a,W 〉 concentrates. Fix w,w′ ∈ Rn. Then

f(w)− f(w′) = sup
a∈A
〈a,w〉 − sup

a∈A
〈a,w′〉

Denote a∗ = arg maxa〈a,w〉
= 〈a∗, w〉 − sup

a∈A
〈a,w′〉

= inf
a∈A
〈a∗, w〉 − 〈a,w′〉

≤ 〈a∗w − w′〉
≤ ‖a∗‖‖w − w′‖2
≤ D(A)‖w − w′‖2.

The other side can be proven similarly, so f is D(A)-Lipschitz. Concentration says that
f(W ) is sG(D(A)).

Example 6.4. If we let A = B2(R), then

E[f(W )] = G(B2(r)) = r
√
n,

since D(A) = r.

6.6 Proof of the Gaussian concentration inequality (interpolation method)

Lemma 6.3. For all convex φ : R→ R and differentiable f : Rn → R,

E[φ(f(X)− E[f(Y )])] ≤ E[φ(π2 〈∇f(X), Y 〉],

where X,Y
iid∼ N(0, In).

First, assume this lemma holds, and prove Gaussian concentration:

Proof. Take φ = exp(λ·). THen

E[exp(λ(f(X)− E[f(Y )]))] ≤ E[exp(λπ2 〈∇f(X), Y 〉)]

Observe that π
2 〈∇f(X), Y 〉 is N(0, π

2

4 ‖∇f(X)‖22 given X.

= EX [exp(λ
2

2

π2

4
‖∇f(X)‖22)]

≤ exp

(
λ2

2

π2

4
L2

)
.

This says that f(X)− E[f(X)] is sG(π2L).
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The above proof gives a worse constant, but the constant can be improved with different
methods. Here is the proof of the lemma:

Proof. First, use conditioning and Jensen’s inequality to say that.

E[φ(f(X)− E[f(Y )])] ≤ EX,Y [φ(f(X)− f(Y ))]

The idea is to use the integral representation of the Taylor expansion to interpolate between

X and Y . Observe that if Z(θ) = X cos θ + Y sin θ, then for every θ, Z(θ)
d
= X

d
= Y and

Z ′(θ)
d
= X

d
= Y . Another important property is that Z(θ) ⊥ Z ′(θ); this is because

Z(θ), Z ′(θ) are Gaussians with 0 covariance. Now

f(X)− f(Y ) =

∫ π/2

0
〈∇f(Z(θ)), Z ′(θ)〉 dθ,

so we can write

E[φ(f(X)− f(Y ))] = E

[
φ

(∫ π/2

0
〈∇f(Z(θ)), Z ′(θ)〉 dθ

)]
Using Jensen’s inequality, φ(

∫
· dθ) ≤

∫
φ(· · · ) dθ when

∫
· · · dθ = 1.

≤ 2

π

∫ π/2

0
E[φ(π2 〈∇f(Z(θ)), Z ′(θ)〉)] dθ

= E[φ(π2 〈∇f(X), Y 〉)].

This proof is very delicate, and the construction looks ad hoc, but it is actually very
useful in a variety of situations.

6.7 Other methods for establishing concentration

1. Matrix concentration: If (Xi)i∈[n] ⊆ Rm×d with Xi
iid∼ X, can we find a bound for∥∥∥∥∥ 1

n

n∑
i=1

Xi − E[Xi]

∥∥∥∥∥
op

?

The answer is yes; there is a matrix Bernstein inequality, Rudelson’s inequality, and
a matrix Freedman inequality. These involve the matrix MGF and Lieb’s inequality.
For more, see An Introduction to Matrix Inequalities, Tropp 2015, and Introduction
to Non-asymptotic analysis of random matrices, Vershynin 2010.

2. Entropy method and the Herbst argument
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Definition 6.2. The Herbst argument is that a sufficient condition for X to be
sG(σ) is to show that

H(eλX) ≤ λ2σ2

2
E[eλX ],

where H is the entropy.

Why do we want to look at H(eλX)? This is because it has a good tensorization
property when Xi are independent:

H(eλf(X1:n)) ≤ E

[
n∑
i=1

H(eλfk(Xk) | X\k)︸ ︷︷ ︸
easy to handle when
fk Lip., Xk bdd.

]

For this, see chapter 3.1 of Wainwright’s textbook or chapter 3 of van Handel’s
textbook.

3. Isoperimetric inequality: This is a geometric property in Rn with Lebesgue measure.
If A ⊆ Rn has fixed volume and we want to minimize the perimeter, then the solution
is when A is a ball. This generalizes to other measures:

X ∼ µ = N(0, In) Sn−1(
√
n) Unif({±1}n)

Half space Spherical cap Hamming ball

The isoperimetric inequality implies that f(X) concentrates when f is Lipschitz. For
this, see chapter 3.2 of Wainwright’s book and also see Chapter 7 of the book by
Lugosi, Massart, and Boucheron.

4. Transportation approach:

Lemma 6.4 (Bobkov-Gotze). Given a measure µ ∈ P(Rn),

X ∼ µ, ∀f 1-Lipschitz, f(X) is sG(σ) ⇐⇒ W1(ν, µ) ≤
√

2σ2 KL(ν || µ)∀ν ∈ P(Rn),

where W1 is the transportation distance and KL is the relative entropy.

This property on the right also tensorizes in some way. For more on this, see chapter
3.3 in Wainwright’s book or chapter 4 in van Handel’s book.
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7 Concentration Inequalities for Convex Functions

7.1 Overview

Let X1, X2, . . . , Xn be independent, and let Z = f(X1:n), were f : Rn → R. We have been
asking the question: “when is there a high probability bound for |Z − E[Z]|.

Earlier, we had a solution in terms of the bounded differences inequality:

Theorem 7.1 (Bounded differences inequality). Suppose that f : Rn → R is L1:n bounded,
i.e.

|f(X1:n)− f(x1:k−1, x
′
k, xk+1:n)| ≤ Lk ∀x1:n, xk,

and X1, . . . , Xn
iid∼ N(0, 1). Then for all t ≥ 0,

P(|f(X1:n)− E[f(X1:n)]| ≥ t) ≤ 2 exp

(
− 2t2∑n

k=1 L
2
k

)
.

This martingale concentration method let us control U-statistics and the supremum of
an empirical process.

Last lecture, we had the Gaussian concentration inequality:

Theorem 7.2 (Gaussian concentration). Let X1, X2, . . . , Xn
iid∼ N(0, 1) and f : Rn → R

such that f is L-Lipschitz in ‖ · ‖2, i.e.

|f(x)− f(y)| ≤ L‖x− y‖2 ∀x, y ∈ Rn.

Then

1. f(X1:n)− E[f(X1:n)] is sG(L).

2.

P(|f(X1:n)− E[f(X1:n)]| ≥ t) ≤ 2 exp

(
− t2

2L2

)
.

This let us discuss the singular values of a Gaussian random matrix and Gaussian
complexity. To generalize this, the intuition is that we need 2 components:

1. We require the function f to not change much under perturbation of x.

2. We require the measure of X to behave sufficiently nicely.
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7.2 Concentration of separately convex, Lipschitz functions

Theorem 7.3 (Concentration of separately convex, Lipschitz functions). Suppose that

1. f is L-Lipschitz and coordinatewise convex:

∂2
kf(x1:n) ≥ 0 if ∂2

kf exists

2. (Xi)i∈[n] independent with Xi ∈ [a, b] a.s.

Then

P(f(X1:n)− E[f(X1:n)] ≥ t) ≤ exp

(
− t2

2L2(b− a)2

)
.

This is a one-sided inequality; we don’t have a lower tail bound here. To derive this
result, we use the entropy method and the Herbst argument. This is covered in chapter
3.1 in Wainwright’s textbook.

Remark 7.1. This has a stronger assumption than the bounded difference inequality, but
it gives a stronger result.

7.3 Concentration of convex Lipschitz functions

Theorem 7.4 (Concentration of convex Lipschitz functions). Suppose that

1. f is L-Lipschitz and convex:

∇2f(x) � 0 if ∇2f exists

2. (Xi)i∈[n] independent with Xi ∈ [a, b] a.s.

Then f(X1:n)− E[f ] is sG(L(b− a)), so

P(f(|X1:n)− E[f(X1:n)]| ≥ t) ≤ 2 exp

(
− t2

2L2(b− a)2

)
.

Remark 7.2. Unlike the previous inequality, this one gives us an upper and lower tail
bound. This has a stronger assumption than separate convexity, but it gives a stronger
result.

To derive this result, Wainwright’s book use a transportation approach. This is in
chapter 3.6.
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7.4 Applications

7.4.1 Rachemacher complexity

If A ⊆ Rn, how do we measure its size? We previously defined the Gaussian complexity

G(A) : −E
W

iid∼N(0,1)

[
sup
a∈A
〈W,a〉

]
.

Definition 7.1. The Rademacher complexity is

R(A) : −E
εi

iid∼Unif({±1})

[
sup
a∈A
〈ε, a〉

]
.

These notions are related, but they are useful in different situations.

Example 7.1. For all 1 < p <∞,

R(Bp(r)) = Eε

[
sup
‖a‖p≤r

〈a, ε〉

]
= rEε[‖ε‖q] = rn1/q,

G(Bp(r)) = rcqn
1/q,

where 1
p + 1

q = 1.
If p = 1, then

R(B1(r)) = rEε[‖ε‖∞] = r,

G(B1(r)) = EW

[
sup
i∈[n]
|Wi|

]
≈ r
√

2 log n+O(1).

Here is an exercise from Wainwright’s book.

Proposition 7.1. There exist universal constants c, C such that for all A ⊆ Rn,

cR(A) ≤ G(A) ≤ C
√

log nR(A).

If we want to talk about concentration of Rachemacher random variables, we can use the
above concentration inequalities. Define f(ε) = supa∈A〈ε, a〉. Then f(ε) is D(A)-Lipschitz,
where D(A) = supa∈A ‖a‖2.

Lemma 7.1. Let g1, g2 be convex functions. Then g(x) = max{g1(x), g2(x)} is convex.
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This implies that f(ε) is convex. So we get that f(ε)−E[f(ε)] is sG(2D(A)). This tells
us that

f(ε) ≈ R(A) +O(D(A)).

7.4.2 Operator norm

Let

X =

X1,1 · · · X1,d

...
...

Xn,1 · · · Xn,d

 ∈ Rn×d,

where Xi,j ∈ [−1, 1] a.s. Then, if we let f(x) = ‖x‖op, then f is 1-Lipschitz and convex.
So f(X) = E[f(X)] is sG(2), which tells us that

‖X‖op ' E[‖X‖op] +O(1).

7.5 Proof techniques: the Herbst argument and transportation

Here is how we can prove the above concentration inequalities.

1. Entropy method and the Herbst argument

Definition 7.2. The Herbst argument is that a sufficient condition for X to be
sG(σ) is to show that

H(eλX) ≤ λ2σ2

2
E[eλX ],

where H is the entropy.

Why do we want to look at H(eλX)? This is because it has a good tensorization
property when Xi are independent:

H(eλf(X1:n)) ≤ E

[
n∑
i=1

H(eλfk(Xk) | X\k)︸ ︷︷ ︸
easy to handle when
fk Lip., Xk bdd.

]

For this, see chapter 3.1 of Wainwright’s textbook or chapter 3 of van Handel’s
textbook.

2. Transportation approach:

Lemma 7.2 (Bobkov-Gotze). Given a measure µ ∈ P(Rn),

X ∼ µ, ∀f 1-Lipschitz, f(X) is sG(σ) ⇐⇒ W1(ν, µ) ≤
√

2σ2 KL(ν || µ)∀ν ∈ P(Rn),

where W1 is the transportation distance and KL is the relative entropy.

This property on the right also tensorizes in some way. For more on this, see chapter
3.3 in Wainwright’s book or chapter 4 in van Handel’s book.
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7.6 Concentration of Lipschitz functions of log-concave random variables

Definition 7.3. A function ψ : Rn → R is r-strongly convex if ∇2ψ(x) � rIn, if this
exists.

Definition 7.4. If µ ∈ P(Rn), we say that µ is r-strongly log-concave if µ(x) =
exp(−ψ(x)), where ψ is r-strongly convex.

Example 7.2. Let pθ(x) = 1
Z(θ)

exp(〈θ, T (x)〉) be an exponential family. Suppose we have

the prior
π(θ) ∼ N(0, In)

and the posterior

p(θ | x) ∝ pθ(x)π(θ) =
1

Z̃(x)
exp(〈θ, T (x)〉 − logZ(θ)− 1

2‖θ‖
2
2)

So we may let

ψ(θ) = −〈θ, T (x)〉+ logZ(θ) +
1

2
‖θ2

2 + log Z̃(x).

Note that
(logZ(θ))′′ = Covθ(T (X), T (X)) ≥ 0.

Theorem 7.5 (Concentration of Lipschitz functions of log-concave random variables).
Suppose that

1. f is L-Lipschitz,

2. X ∼ µ ∈ P(Rn), where µ is r-log-concave.

Then f(X1:n)− E[f(X1:n)] is sG(L/
√
r).

7.7 Proof technique: the isoperimetric inequality

The isoperimetric inequality is a geometric property in Rn with Lebesgue measure. If
A ⊆ Rn has fixed volume and we want to minimize the perimeter, then the solution is
when A is a ball. This generalizes to other measures:

X ∼ µ = N(0, In) Sn−1(
√
n) Unif({±1}n)

Half space Spherical cap Hamming ball

The isoperimetric inequality implies that f(X) concentrates when f is Lipschitz. Suppose
that P(A) = 1/2, and take µ to be, for example, the Gaussian measure. Then define
Aε = {a : ∃b ∈ A s.t. ‖a− b‖ ≤ ε}. In this sitaution, perimeter is defined as

lim
ε→0

f(Aε)− f(A)

ε
.
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Then, using the fact that P({x ∈ Rn : x1 ≤ 0}) = 1/2. the isoperimetric inequality tells us
that for all small enough ε,

P(Aε) ≥ P({x ∈ Rn : x1 ≤ ε}) = 1− Φ(ε) ≥ 1− exp

(
− t

2

2

)
.

For more on this, see chapter 3.2 of Wainwright’s book and also see Chapter 7 of the
book by Lugosi, Massart, and Boucheron.
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8 Introduction to Empirical Process Theory

8.1 Convergence of CDFs and the Glivenko-Cantelli theorem

Let (Xi)i∈[n]
iid∼ X. X has CDF F (t), i.e.

F (t) = P(X ≤ t).

We can also define the empirical CDF

F̂n(t) =
1

n

n∑
i=1

1{Xi≤t}.

This is the CDF of the empirical distribution of the Xi.
For any fixed t, the strong law of large numbers tells us that

lim
n→∞

F̂n(t) = F (t) a.s.

If we are more ambitious, we may want convergence of functions. In this case, we look at
the maximum difference,

‖Fn − F‖∞ := sup
t∈[0,1]

|F̂n(t)− F (t)|.

Here is a picture from Wainwright’s book illustrating convergence of the empirical CDF to
the uniform distribution on [0, 1].

Why is convergence of the supremum norm stronger than pointwise convergence? In gen-
eral,

lim
n→∞

Gn(t) = G(t) ∀t���=⇒ lim
n→∞

sup
t
|Gn(t)−G(t)| = 0.
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Example 8.1. Take Gn(t) = 1{t≤1/n}.

Then for any t > 0,Gn(t)→ 0, but limn→∞ supt |Gn(t)−G(t)| =∞.

A classical result guarantees uniform convergence of the empirical CDF.

Theorem 8.1 (Glivenko-Cantelli, 1933). Let Xi
iid∼ X, where F (t) is the CDF of X. Then

lim
n→∞

‖F̂n − F‖∞ = 0 a.s.

We will not prove this result. Instead, we will use empirical process theory, combined
with concentration results to show something stronger:

P

(
‖F̂n − F‖∞ ≥ 8

√
log(n+ 1)

n
+ t

)
≤ exp

(
−nt

2

2

)
.

In other words,

‖F̂n − F‖∞ ≤ 8

√
log(n+ 1)

n
+

√
log(1/δ)

2n
with probability 1− δ.

Why is this result stronger? If we let n → ∞, we get convergence in probability. We can
get a.s. convergence using the Borel-Cantelli lemma.

8.2 Uniform laws for more general function classes

Suppose (Xi)i∈[n]
iid∼ X ∼ P, and suppose we have a function class F ⊆ {f : X → R :

E[|f(X)|] <∞}.

Definition 8.1. The empirical process indexed by F is{
√
n

(
1

n

n∑
i=1

f(Xi)− E[f(X)]

)
: f ∈ F

}
.
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Define

‖Pn − P‖F := sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ .
Here, Pn = 1

n

∑n
i=1 δXi is the empirical measure. This is the object we will study for

the next portion of the course. If there is only 1 function f , we can deal with this using
the law of large numbers and concentration inequalities. We will learn how to deal with
this object using empirical process theory.

Why do we care about the maximum of empirical process in statistics and machine
learning? Recall the following setup:

Data distribution (Xi)i∈[n]
iid∼ P

Loss function L : X ×Θ→ R
Empirical risk R̂(θ) = 1

n

∑n
i=1 `(Xi; θ)

Population risk R(θ) = EX∼P[`(X; θ)]

Empirical risk minimizer θ̂ = arg minθ R̂(θ)

Population risk minimizer θ∗ = arg minθ R(θ)

Excess risk E = R(θ̂)−R(θ∗)

We train θ̂ on the empirical risk, so we want the empirical risk to be close to the population
risk. So to make sure training on our training data is accurate, we want to make the excess
risk small. The excess risk has the following decomposition:

E = (R(θ̂)− R̂n(θ̂))︸ ︷︷ ︸
Gap

+ (R̂n(θ̂)− R̂n(θ∗))︸ ︷︷ ︸
≤0

+ (R̂n(θ∗)−R(θ∗))︸ ︷︷ ︸
bound using Hoeffding

The Gap is

Gap =
1

n

n∑
i=1

E[`(X; θ̂)− `(Xi; θ̂)].
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We cannot use the strong law of large numbers to examine this because the `(Xi; θ̂) are
not independent random variables. We can fix this by replacing θ̂ by the sup over θ:

≤ sup
θ

∣∣∣∣∣ 1n
n∑
i=1

E[`(X; θ)− `(Xi; θ)]

∣∣∣∣∣ .
Here, f(X) = `(X; θ), so we want to look at the function class F = {`(·; θ) : θ ∈ Θ}.

Definition 8.2. We say that F is a Glivenko-Cantelli class for P if

‖Pn − P‖F := sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ p−→ 0.

Example 8.2. The Glivenko-Cantelli theorem says that F1 = {1{x≤t}}t∈R is a Glivenko-
Cantelli class for any P ∈ P(R).

Example 8.3. Consider F2 = {1S : S ⊆ [0, 1] is a finite set}, and assume that P has
density. This function class is not a Glivenko-Cantelli class. First note that F1 ⊆ F2, so
if F2 is GC, then F1 is GC. So large function classes are less likely to be GC. To show
that the function class is not GC, we can find a function in the function class which makes
these two quantites different. Pick S = {Xi : i ∈ [n]}, so

sup
S finite

∣∣∣∣∣ 1n
n∑
i=1

1{Xi∈S} − E[1{Xi∈S}]

∣∣∣∣∣ ≥ |1− 0|.

This lower bound holds for every n, so this difference will never go to 0.

Our next goal is to study some methods for upper/lower bounding ‖Pn−P‖F . We will
see

• Rademacher complexity and VC dimension (chapter 4 of Wainwright’s book),

• Metric entropy method and chaining (chapter 5 of Wainwright’s book).

8.3 Rademacher complexity

Recall that the Rademacher complexity of a set A ⊆ Rn is

R(A) := E
ε
iid∼Unif({±1})

{
sup
a∈A
〈a, ε〉

}
Definition 8.3. Given a function class F and a fixed data set (xi)i∈[n] ⊆ X , let

F(x1:n) := {(f(x1), . . . , f(xn)) : f ∈ F} ⊆ Rn.

The Rademacher complexity of the function class F and the data set (xi)i∈[n] is

R(F(x1:n)/n) := E
ε
iid∼Unif({±1})

{
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
}
.
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If we write A = ±F(x1:n)/n, then we can relate Rademacher complexity of sets and
function classes by

R̃(A) = R(F(x1:n)/n),

where R̃ denotes the Rademacher complexity of a set.

Definition 8.4. Given a function class F and a distribution P ∈ P(X ), let (Xi)i∈[n]
iid∼ P.

The Rademacher complexity of the function class F is

R(F) := E
Xi

iid∼P
[R(F(X1:n)/n)].

First, observe that if F1 ⊆ F2, then Rn(F1) ≤ Rn(F2), so this is a measure of the size
of a function class.

Example 8.4. Consider comparing two function classes:

The notion of Rademacher complexity measures how well functions in the function class
can align with Rademacher noise.

Here is the picture of what the comparison would look like:
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Example 8.5. Let ψ : Rd → Rp be a fixed feature map, and consider the function class

F = {f(x) = 〈ψ(x), θ〉 : ‖θ‖2 ≤ B}.

Then the Rachemacher complexity of this function class is

Rn(F) = EXi,εi

[
sup
‖θ‖2≤B

∣∣∣∣∣ 1n
n∑
i=1

εi〈ψ(Xi), θ〉

∣∣∣∣∣
]

= EXi,εi

[
sup
‖θ‖2≤B

∣∣∣∣∣εi〈 1n
n∑
i=1

ψ(Xi), θ〉

∣∣∣∣∣
]

= EXi,εi

[∥∥∥∥∥ 1

n

n∑
i=1

εiψ(Xi)

∥∥∥∥∥
2

]
·B

Using Cauchy-Schwarz,

≤ EXi,εi

∥∥∥∥∥ 1

n

n∑
i=1

εiψ(Xi)

∥∥∥∥∥
2

2

1/2

·B

= EXi,εi

[
1

n2

n∑
i=1

ε2
i ‖ψ(Xi)‖22

]1/2

·B

=
B√
n
E[‖ψ(X)‖22]1/2.

Why introduce Rademacher complexity?

1. We will show that
‖Pn − P‖F ≈ Rn(F).

2. The Rademacher complexity is easier to upper bound. We will have tools to upper
bound it, such as

• contraction inequality,

• VC dimension,

• fat-shattering dimension.

8.4 An upper bound of ‖Pn − P‖F via Rn(F)

Proposition 8.1. For any function class F and distribution P,

E[‖Pn − P‖F ] ≤ 2Rn(F).
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Proof. Let Yi
iid∼ Xi be independent of Xi. Then

E[‖Pn − P‖F ] = E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(Xi)]

∣∣∣∣∣
]

= EX1:n

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− EY1:n [f(Yi)]

∣∣∣∣∣
]

≤ EX1:n,Y1:n

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− f(Yi))

∣∣∣∣∣
]

We can introduce a Rademacher random variable without changing the distribution.

= EX1:n,Y1:n,ε1:n

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi(f(Xi)− f(Yi))

∣∣∣∣∣
]

≤ EX1:n,Y1:n,ε1:n

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣−
∣∣∣∣∣ 1n

n∑
i=1

εif(Yi))

∣∣∣∣∣
]

≤ 2Rn(F).

Next lecture, we will use a similar argument to show that if F = {f − E[f ] : f ∈ F},
then

Rn(F) ≤ 2E[‖Pn − P‖F ].
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9 Bounds on Rademacher Complexity of Function Classes

9.1 Bounding E[‖Pn − P‖]F in terms of Rademacher complexity

Last time, we were studying empirical processes defined by Xi
iid∼ P ∈ P(X ) and a function

class F ⊆ {f : X → R : E[|f(X)|] <∞}. We want to bound the maximum of the empirical
process,

‖Pn − P‖F := sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ .
We introduced the notion of Rademacher complexity for function classes: Given F and
{xi}i∈[n], we let

R(F(x1:n)/n) = Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
]
.

Then, given F and P,

Rn(F) = Eε,X

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
]
.

What is the relationship of Rademacher complexity and ‖Pn − P‖F? Define

‖Sn‖F = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣ .
Here is an upgraded version of what we showed last time.

Proposition 9.1. For every convex, nondecreasing function Φ : R→ R,

EX,ε[Φ(1
2‖Sn‖F )]

(a)

≤ EX [Φ(‖Pn − P‖F )]

(b)

≤ EX,ε[Φ(2‖Sn‖F )],

where F = {f − E[f ] : f ∈ F}.

Remark 9.1. Making Φ(t) = t retrieves the bound on ‖Pn−P‖F in terms of Rademacher
complexity. We can also take the upper bound to also be F because E[‖Pn − P‖F ] =
E[‖Pn − P‖F .

Proof. For (b),

EX [Φ(‖Pn − P‖F )] = EX

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− E[f(Yi)])

∣∣∣∣∣
)]
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Using Jensen’s inequality,

≤ EX,Y

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− f(Yi))

∣∣∣∣∣
)]

Since f(Xi)− f(Yi) has a symmetric distribution,

= EX,Y,ε

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi(f(Xi)− f(Yi))

∣∣∣∣∣
)]

≤ EX,Y,ε

[
Φ

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣+ sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Yi)

∣∣∣∣∣
)]

Using Jensen’s inequality again,

≤ 1

2
EX,ε

[
Φ

(
2 sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
)]

+
1

2
EY,ε

[
Φ

(
2 sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Yi)

∣∣∣∣∣
)]

= EX,ε[Φ(2‖Sn‖F )].

For (a),

EX,ε[Φ(1
2‖Sn‖F )] = EX,ε

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi(f(Xi)− E[f(Yi)])

∣∣∣∣∣
)]

Using Jensen’s inequality,

≤ EX,Y,ε

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi(f(Xi)− f(Yi))

∣∣∣∣∣
)]

Since f(Xi)− f(Yi) has a symmetric distribution,

= EX,Y

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− f(Yi))

∣∣∣∣∣
)]

= EX,Y

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− E[f(Xi)])− (f(Yi)− E[f(Yi)])

∣∣∣∣∣
)]

≤ EX,Y

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(Xi)])

∣∣∣∣∣
+

1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Yi)− E[f(Yi)])

∣∣∣∣∣
)]
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Using Jensen’s inequality again,

=
1

2
EX

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(Xi)])

∣∣∣∣∣
)]

+
1

2
EY

[
Φ

(
1

2
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Yi)− E[f(Yi)])

∣∣∣∣∣
)]

= EX [Φ(‖Pn − P‖F ].

Suppose that for all f ∈ F , ‖f‖∞ ≤ b. Then ‖Pn − P‖F is (2b/n, . . . , 2b/n)-bounded
difference. The bounded difference inequality then gives that ‖Pn − P‖F is sG(b/

√
n). In

other words,

|‖Pn − P‖F − E[‖Pn − P‖F | ≤ b
√

log(2/δ)

n
with probability 1− δ.

This upper bound is typically smaller than Fn(F). This tells us that

‖Pn − P‖F

≤ 2Rn(F) + b

√
log(2/δ
n

≥ 1
2Rn(F)− b

√
log(2/δ
n .

Note that
‖Pn − P‖F = ‖Pn − P‖F . 2Rn(F).

9.2 Aside: the maximal inequality

How do we upper bound the Rademacher complexity? Let’s take a higher level picture and
try to bound E[supθ∈ΘXθ]. In many cases, Xθ is sub-Gaussian for each fixed θ.

The simplest case is when Θ is finite. In this case, we have a maximal inequality: If
for all θ ∈ Θ, Xθ ∈ sG(σ), then

E
[
max
θ∈Θ

Xθ

]
≤ σ

√
2 log |Θ|.

However, typically, this set Θ is infinite, so the maximal inequality cannot handle this case.
In the next lecture, we will discuss the metric entropy method, in which we approximate

Θ by Θε, where |Θε| <∞ and

sup
θ∈Θε

Xθ
ε→0−−−→ sup

θ∈Θ
Xθ.

We will make this statement quantitative and precise. We will also introduce a different
reduction, based on the concept of VC dimension.
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9.3 Bounding Rademacher complexity using the maximal inequality

Use the special structure

Rn(F) = EX,ε

[
sup
f∈F

∣∣∣∣∣12
n∑
i=1

εif(Xi)

∣∣∣∣∣
]

= EX

[
Eε

[
sup
f∈F

∣∣∣∣∣12
n∑
i=1

εif(Xi)

∣∣∣∣∣ | X1:n

]]

= EX

[
Eε

[
sup

ν∈F(X1:n)

∣∣∣∣ 1n〈ε, ν〉
∣∣∣∣ | X1:n

]]
Bound the expectation by the supremum.

≤ sup
X1:n

Eε

[
sup

ν∈F(X1:n)

∣∣∣∣ 1n〈ε, ν〉
∣∣∣∣ | X1:n

]

If, for example, F ⊆ {f : X → {±1}}, then

F(X1:n) = {(f(X1), . . . , f(Xn)) : f ∈ F} ⊆ {±1}n.

Sometimes |F| =∞, but |F(X1:n)| <∞.

Example 9.1. Suppose F = {1{X≤t} : t ∈ R}, so

F(X1:n) = {(1{X1≤t},1{X2≤t}, . . . ,1{Xn≤t}) : t ∈ R}.

Then if X1 < X2 < · · · < Xn,

F(X1:n) = {(0, 0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, . . . , 1)},

so
sup
X1:n

|F(X1:n)| = n+ 1.

Let’s return to bounding

Eε

[
sup

ν∈F(X1:n)

∣∣∣∣ 1n〈ε, ν〉
∣∣∣∣ | X1:n

]
.

We have that 1
n〈ε, ν〉 = 1

n

∑n
i=1 εiνi is sG(σn), where

σn = sup
ν∈F(X1:n)

1

n
‖ν‖2 = sup

f∈F

1

n

√√√√ n∑
i=1

f(Xi)2.
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This tells us that the maximum of |F(X1:n)| is the number of mean 0 sG(σn) random
variables. So the maximum inequality tells us that

Eε

[
sup

ν∈F(X1:n)

∣∣∣∣ 1n〈ε, ν〉
∣∣∣∣ | X1:n

]
≤ σn

√
2 log(2|F(X1:n)|)

≈ sup
f∈F

√∑n
i=1 f(Xi)2

n︸ ︷︷ ︸
DF (X1:n)

√
2 log(2|F(X1:n)|)

n

Example 9.2. Let F = {1{X≤t} : t ∈ R} be the function class in the Glivenko-Cantelli
theorem. Then

sup
X1:n

|F(X1:n)| = n+ 1,

sup
X1:n

DF (X1:n) = sup
f∈F

√∑n
i=1 12

n
= 1.

So we get

Rn(F) ≤
√

2 log(2(n+ 1))

n
,

which bounds

‖Pn − P‖F . 2

√
2 log(2(n+ 1))

n
+

√
log(2/δ)

n
with probability 1− δ.

Remark 9.2. The above example gives a proof of the Glivenko-Cantelli theorem.

Remark 9.3. This log n factor is not sharp. Using other arguments, we will be able
to show that the bound is actually of order

√
1/n. The issue here is that the maximal

inequality is only sharp when the terms are independent. If Xi are sG(1), then

sup
i∈[n]

Xi =

{
O(
√

log n) if the Xi are independent

X1 = O(1) if X1 = X2 = · · · = Xn.

Look at the bound

∆ = DF (X1:n)︸ ︷︷ ︸
typically O(1)

√
2 log(2|F(X1:n)|)

n︸ ︷︷ ︸
want to vanish as n→∞

.

Let’s restricut our attention to F ⊆ {f : X → {±1}}. Here are two frequent behaviors of
|F(X1:n)|:
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(a) If |F(X1:n)| . O(nν), then ∆ = O(
√

ν logn
n ). This will go to 0 as n → ∞, so this

situation is good.

(b) If |F(X1:n)| . O(νn), then ∆ = O(
√

n log ν
n ) = O(

√
log ν). This will not go to 0 as

n→∞, so this situation is not good.

We want to be able to discriminate between these two cases. Since F(X1:n) ⊆ {±1}n,
|F(X1:n)| ≤ 2n. But when can we give a sharper upper bound?

Definition 9.1. F has polynomial discrimination of order ν ≥ 1 if for all n and X1:n,

|F(X1:n)| . (n+ 1)ν .

Lemma 9.1. Suppose F has PD(ν). Then

Rn(F) ≤ 4

(
sup
X1:n

DF (X1:n)

)√
ν log(n+ 1)

n
.

Example 9.3. The function class {1{X≤t} : t ∈ R} has PD(1), which implies the Glivenko-
Cantelli theorem.

What kind of function classes have polynomial discrimination? Let ψ : X → Rd.

Example 9.4. If F = {〈ψ(x), θ〉 + b : θ ∈ Rd, b ∈ R}, then |F(X1:n)| = ∞. So this does
not have polynomial discrimination.

Example 9.5. If F = {1{〈ψ(x),θ〉≥b} : θ ∈ Rd, b ∈ R}, then F has PD(d+ 1).
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10 VC Dimension, Covering, and Packing

10.1 VC dimension

Last time we were discussing function classes with polynomial discrimination. Recall that
a function class F has PD(ν) if for all n and X1:n, |F(X1:n)| ≤ (n+ 1)ν . If F has PD(ν),

then Rn(F) ≤ D
√

ν log(n+1)
n . This gives the bound ‖Pn − P‖F . D

√
ν log(n+1)

n .
What function classes have polynomial discrimination? This question is answered by

VC theory, named for Vapnik and Chervonenkis. If a function class has “VC dimenion ν,”

then F has PD(ν), which means that Rn(F) ≤ D
√

ν log(n+1)
n .

Definition 10.1. Suppose F ⊆ {F : X → {0, 1}} is binary valued. We say that x1:n is
shattered by F if |F(x1:n)| = 2n. The VC dimension, ν(F), is the largest n such that
there exists x1:n shattered by F .

Note that |F(X1:n)| ≤ 2n always. So we want F to be able to distinguish between
points in a maximal sense.

Example 10.1. Let F = {1{x≤t} : t ∈ R}. We claim that ν(F) = 1. Recall that

Rn(F) ≤ 4

√
log(n+1)

n ; this will also be implied by the VC-dimension. We have to show
that there is some x1 that is shattered by F , and we have to show that no x1, x2 can be
shattered by F .

For n = 1, F({x1}) = {0, 1}, so {x1} is shattered by F . For n = 2, we want to show
thta F({x1, x2}) ≤ 22 − 1. If we assume, without loss of generality, that x2 > x1, this
is because F({x1, x2}) = {(0, 0), (1, 1), (1, 0)}. Why does this not contain (0, 1)? This is
because if one of these indicators gives 1 to x2, then it must give 1 to x1.

Example 10.2. Let F = {1{s≤x≤t} : s < t ∈ R}. We claim that ν(F) = 2. When n = 2,
we want to find x1, x2 such that |F((x1, x2))| = 22. Here is how we can construct intervals
to shatter a two point set:
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Now suppose x1 < x2 < x3. Then we cannot have (1, 0, 1), since if an interval contains
x1, x3 then it must contain x2

Here is an example we will not prove.

Example 10.3. Let φ1, . . . , φp : X → R be linear (which you can think of as feature
maps), and consider F = {1{∑p

i=1 aiφi(x)≤b} : ai, b ∈ R}. Then ν(F) ≤ p+ 1.

By definition, for all n > ν(F),

sup
x1:n
|F(x1:n)| ≤ 2n − 1.

Proposition 10.1 (Vapnik-Chervonenkis, Sauer-Shelah11). For F with VC dimension ν,

sup
x1:n
|F(x1:n)| ≤

ν∑
i=1

(
n

i

)
≤ min

{
(n+ 1)ν ,

(ne
ν

)ν}
.

By this proposition, we immediately have

Rn(F) ≤ D
√
ν log(n+ 1)

n
.

Her is an end-to-end result: If F = {1{∑p
i=1 aiφi(x)≤b} : ai, b ∈ R} and (Xi)i∈[n]

iid∼ P, then

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ .
√

(p+ 1) log n

n
.

This log n factor can be eliminated later by the chaining method.
The proof of this proposition is a combinatorial argument; since the argument will not

show up again, we will omit the proof, but you can look at the proof in the textbook.

11This proposition was proven independently by Vapnik and Chervonenkis in 1971, by Sauer in 1972, and
by Shelah by 1972.
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10.2 The metric entropy method

Given a sub-Gaussian Xθ for all θ ∈ T , we hope to upper bound E[supθ∈T Xθ]. How do we
do this when |T | =∞? The idea is to approximate T by a finite set Tε as follows:

This gives

E
[
sup
θ∈T

Xθ

]
≤ E

[
sup
θ̃∈Tε

X
θ̃

]
+ E

[
sup

θ∈T,θ̃∈Tε
(Xθ −Xθ̃

)

]
.

We hope that

1. |Tε| is small.

2. E[sup
θ∈T,θ̃∈Tε(Xθ −Xθ̃

)] is small.

Given T and ρ, how can we find Tε and bound |Tε|?

10.3 Covering and packing

Definition 10.2. A metric space is a pair (T, ρ), where ρ : T × T → R such that

1. ρ(θ, θ′) ≥ 0 for all θ, θ′ ∈ T , with equality holding iff θ = θ′.

2. ρ(θ, θ′) = ρ(θ′, θ).

3. ρ(θ, θ′) ≤ ρ(θ, θ′′) + ρ(θ′′, θ′).

Example 10.4. If T = Rd, here are a few useful metrics:

ρ(θ, θ′) = ‖θ − θ′‖2, ρ(θ, θ′) =
1

d

d∑
i=1

1{θi−θ′i}

The set T can be a function space, rather than a parameter space.
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Example 10.5. Let T = L2(X , µ). Here are two metrics on T :

ρ(f, g) =

(∫
(f(x)− g(x))2 dµ(x)

)1/2

, ρ(f, g) = ‖f − g‖∞.

Definition 10.3. Tε = {θ1, . . . , θN} is an ε-covering of a set T if for all θ ∈ T , there
exists a θi ∈ Tε such that ρ(θ, θi) ≤ ε. The ε-covering number of T with respect to ρ is
defined as

N(ε, T.ρ) := inf{N : |Tε| = N,Tε is an ε-covering of T .

The maximal inequality gives

E
[
max
θ∈Tε

Xθ

]
.
√

log |Tε| ≈
√

logN(ε;T, ρ).

Definition 10.4. The function ε 7→ logN(ε;T, ρ) for fixed (T, ρ) is caleld the metric
entropy of the set T .

We will see examples that range from parametric families with logN(ε) ≈ d log(1+1/ε)
to nonparametric families with logN(ε ≈ (1/ε)α, where α ≥ 0.

Example 10.6. Let T = [−1, 1] with ρ(θ, θ′) = |θ − θ′|. Then N(ε;T, ρ ≤ 1
ε + 1.

Example 10.7. If T = [−1, 1]d with ρ(θ, θ′) = ‖θ − θ′‖∞, then N(ε;T, ρ) ≤ (1
ε + 1)d.

Up to some constant, this bound is tight.

How about with other metrics? We may not be able to figure out a cover/packing. We
can take a volume approach: We should expect

logN(ε;T, ρ) ≈ log

(
Vol(T )

Vol(Bρ(ε))

)
.

To make this statement precise, we can introduce the idea of packing:
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Definition 10.5. A set T̃ε = {θ1, . . . , θM} ⊆ T is an ε-packing if for all θi, θj ∈ T̃ε with
i 6= j, ρ(θi, θj) > ε. The ε-packing number is

M(ε;T, ρ) = sup{M : |T̃ε| = M, T̃ε is an ε-packing of T}.

This means that Bρ(θ
i, ε/2) ∩ Bρ(θj , ε/2) = ∅. Here is a picture from Wainwright’s

textbook comparing packings and coverings:

Lemma 10.1. For all ε > 0, we have

M(2ε;T, ρ) ≤ N(ε;T, ρ) ≤Mε;T, ρ).

Proof. A maximal ε-packing gives an ε-covering. Suppose we have a maximal packing;
then we cannot put another point into the packing, so the entire set T must be covered by
the balls determined by the packing.

For a 2ε-packing with size M , all ε-coverings should have size at least M .

Otherwise, we would have a contradiction.

70



11 Volume Bounds for Metric Entropy and the Chaining
Method

11.1 Recap: one-step discretization bound

Last time, we began discussing the metric entropy method for obtaining bounds on empir-
ical processes. We have a metric space (T, ρ), and we want to control

E
[
sup
θ∈T

Xθ

]
or E

[
sup
θ∈T
|Xθ|

]
,

where Xθ is usually mean 0 and sub-Gaussian. We introduced the metric entropy is
logN(ε;T, ρ), where N(ε;T, ρ) = inf{N : |Tε| = N,Tε is an ε-cover} is the ε-covering
number.

Here is the one-step discretization bound that the maximal inequality gives us:

Lemma 11.1. If Xθ ∼ sG(σ) for all θ ∈ T , then

E
[
sup
θ∈T
|Xθ|

]
. inf

ε
inf

ε-cover Tε
E
[

sup
θ∈Tε
|Xθ|

]
+ E

[
sup

ρ(θ,θ̃)≤ε
|Xθ −Xθ̃

|

]

. inf
ε
σ
√

log(N(ε;T, ρ) + E

[
sup

ρ(θ,θ̃)≤ε
|Xθ −Xθ̃

|

]

Today, we will mostly discuss the case where T ⊆ Rd is Euclidean space, and Xθ is some
canonical random variable, such as Xθ = 〈ε, θ〉 or Xθ = 〈W, θ〉, which give the Radamacher
and Gaussian complexities. We will give a volume-based method for bounding the covering
number, give some examples, and then introduce the chaining method, which will give us
a sharper bound.

In the next few lecture, we will extend this discussion to T = F ⊆ Lp(P) for 1 ≤ p ≤ ∞,
with Xθ = 1

n

∑n
i=1 εif(Zi) or Xθ = 1

n

∑n
i=1(f(Zi) − E[f(Zi)]. We will also relate this to

and extend our VC theory.

11.2 Volume bounds for metric entropy

We want to understand the ε-covering number for T ⊆ Rd. The intuition is that

logN(ε;T, ρ) � log
Vol(T )

Vol(Bρ(ε))
,

so we can understand the covering number by understanding the volume. Here, we use the
notation

Bρ(θ, ε) := {θ̃ ∈ Rd : ρ(θ, θ̃) ≤ ε}, Bρ(ε) := Bρ(0, ε),
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Vol(T ) =

∫
1{x∈T} dx,

where dx is Lebesgue measure.
Last time, we introduced the notion of the ε-packing number

M(ε;T, ρ) = sup{M : |T̃ε| = M,M is an ε-packing of T}.

This was related to the covering number by the following lemma.

Lemma 11.2. For all ε > 0, we have

M(2ε;T, ρ) ≤ N(ε;T, ρ) ≤M(ε;T, ρ).

Lemma 11.3.

Vol(T )

Vol(Bρ(ε))
≤ N(ε;T, ρ) ≤M(ε;T, ρ) ≤ Vol(T +Bρ(ε/2))

Vol(Bρ(ε/2))
,

where T +Bρ(ε/2) = {a+ b : a ∈ T, b ∈ Bρ(ε/2)}.

Proof. For the first inequality, let Tε be an ε-covering, so T ⊆
⋃
θ∈Tε Bρ(θ, ε). This tells us

that

Vol(T ) ≤ Vol

 ⋃
θ∈Tε

Bρ(θ, ε)


≤
∑
θ∈Tε

Vol(Bρ(θ, ε))

≤ |Tε|Vol(Bρ(ε)).

For the second inequality, let T̃ε be a ε-packing, so the union of all the balls in the
packing is contained in the set augmented by ε/2. That is,

⋃
θ∈T̃ε B(θ, ε/2) ⊆ T +Bρ(ε/2).

This tells us that

Vol(T +Bρ(ε/2)) ≥ Vol

 ⋃
θ∈T̃ε

B(θ, ε/2)


= |T̃ε|Vol(Bρ(ε)).

Now take the sup over all packings.

Example 11.1. Let ρ = ‖ · ‖p and T = Bp(1) = {x ∈ Rd : ‖x‖p ≤ 1}. Then

N(ε;T, ρ) ≤ Vol(T +B(ε/2))

Vol(B(ε/2))
=

Vol(Bp(1 + ε/2))

Vol(Bp(ε/2))
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Note that Vol(Bρ(r)) = cd,pr
d for some constant cd,p. We do not need to know the value

of cd,p because we are looking at ratios of volumes. This gives

N(ε;T, ρ) ≤ (1 + ε/2)d

(ε/2)d
=

(
2

ε
+ 1

)d
.

We also get the lower bound

N(ε;T, ρ) ≥ Vol(Bp(1))

Vol(Bp(ε))
=

1d

εd
=

(
1

ε

)d
.

So we get bounds on the metric entropy

d log

(
1

ε

)
≤ logN(ε;T, ρ) ≤ d log

(
2

ε
+ 1

)
.

These bounds are of the same order. Note that the bounds do not depend on p because
we are looking at the p-ball in the p-norm.

Example 11.2. Consider Wi
iid∼ N(0, 1), so 〈W, θ〉 ∼ sG(‖θ‖2). Then we know that

G(B2(1) = E

[
sup

θ∈B2(1)
〈W, θ〉

]
= E[‖W‖2‖ '

√
d.

Here is another way to get this computation:

G(B2(1)) ≤ C

 sup
θ∈B2(1)

‖θ‖2︸︷︷︸
=1

√
logN(ε;B2(1), ‖ · ‖2)︸ ︷︷ ︸
≤
√
d log(1+2/ε)

+EW

[
sup

‖θ−θ′‖2≤ε
|Wθ −Wθ′ |

]
≤ C

[√
d log(1 + 2/ε) + EW

[
sup

‖θ−θ̃‖2≤ε
〈W, θ − θ′〉

]]

= C

[√
d log(1 + 2/ε) + EW

[
sup
‖r‖2≤ε

〈W, r〉

]]

= C


√
d log(1 + 2/ε) + εEW

[
sup
‖r̃‖2≤1

〈W, r̃〉

]
︸ ︷︷ ︸

G(B2(1))

 .
This tells us that

G(B2(1)) ≤ C
√
d log(1 + 2/ε) + CεG(B2(1)).

If we take ε ≤ 1
2C , then we get

G(B2(1)) ≤ 2C
√
d log(1 + 4C) �

√
d,

which is the same order as before.
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11.3 The chaining method

We have been using the bound

E
[
sup
θ∈T
|Xθ|

]
. inf

ε
inf

ε-cover Tε
E
[

sup
θ∈Tε
|Xθ|

]
︸ ︷︷ ︸

bdd by covering number

+E

[
sup

ρ(θ,θ̃)≤ε
|Xθ −Xθ̃

|

]
︸ ︷︷ ︸
how to give tight control?

Controlling the right term can require ad-hoc arguments. The chaining method gives a
way to bound this effectively.

Definition 11.1. {Xθ}θ∈T is a sub-Gaussian process with respect to ρ on T if

E[eλ(Xθ−Xθ′ )] ≤ eλ2ρ(θ,θ′)2/2,

or, equivalently, Xθ −Xθ′ is sG(ρ(θ, θ′)).

Example 11.3. Let T ⊆ Rd with ρ = ‖ · ‖2. Look at Xθ = 〈W, θ〉, where W ∼ N(0, Id).
To bound, the Gaussian complexity, we want to bound E[supθ∈T Xθ]. Then Xθ − X ′θ =
〈W, θ − θ′〉 ∼ N(0, ‖θ − θ′‖22) ∼ sG(‖θ − θ′‖2).

Proposition 11.1. Let {Xθ, θ ∈ T} be a mean 0 sub-Gaussian process with metric ρ.
Then if D = sup

θ,θ̃∈T ,

E

[
sup
θ,θ̃

(Xθ −Xθ̃
)

]
≤ inf

ε≤D
2

[
sup

ρ(r,r′)≤ε
(Xr −Xr′)

]
+ 32

∫ D

ε

√
logN(u;T, ρ) du︸ ︷︷ ︸
=:J(ε;D;T,ρ)

.

Here, J(ε;D;T, ρ) is known as Dudley’s entropy integral.

Remark 11.1. This gives an upper bound for E[supθ∈T Xθ] because by the 0 mean con-
dition and Jensen’s inequality,

E
[
sup
θ∈T

Xθ

]
= E

[
sup
θ,θ′∈T

(Xθ − Eθ′ [Xθ′ ])

]

≤ E

[
sup
θ,θ̃

(Xθ −Xθ̃
)

]
.

Remark 11.2. Compare this to the bound

E

[
sup
θ,θ̃

(Xθ −Xθ̃
)

]
≤ inf

ε≤D
2

[
sup

ρ(r,r′)≤ε
(Xr −Xr′)

]
+ 32D

√
logN(ε;T, ρ).
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The integration gives a better bound because
√

logN(ε) is decreasing in ε.

Proof. Take a sequence of ε-coverings corresponding to εm = D/2m for m = 0, 1, 2, 3, . . . , L.
Let Um be the minimal εm-covering of T , so |Um| ≤ N(εm;Tρ). Then define the projection
operation πm(θ) = arg minβ∈Um ρ(θ, β).

This allows us to bound

|Xθ −Xθ̃
| ≤ |Xθ −Xπ2(θ)|+ |Xπ2(θ) −Xπ1(θ)|+ |Xπ1(θ) −Xπ1(θ̃)

|

+ |X
π1(θ̃)

−X
π2(θ̃)
|+ |X

π2(θ̃)
−X

θ̃
|.

Then we can take the expectation of sup
θ,θ̃

on both sides. What is the purpose of having
all these interpolation points? The first and the last terms have infinitely many choices, so
these are the discretization terms, while the middle terms have only finitely many choices,
so we can apply the maximal inequality.

E

[
sup
θ,θ̃∈T

|Xθ −Xθ̃
|

]
≤ E

[
sup
θ,θ̃∈T

|Xπ1(θ) −Xπ1(θ̃)
|

]
+ 2E

[
sup
θ∈T
|Xπ2(θ) −Xπ1(θ)|

]
+ · · ·+ 2E

[
sup
θ∈T
|XπL(θ) −XπL−1(θ)|

]
+ 2E

[
sup
θ∈T
|XθXπL(θ)|

]
These terms on the right correspond to ε0, ε1, . . . , εL−1, ε∗, respectively. This process will
define a Riemann sum. For the remaining details, see the textbook.
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Example 11.4. We want to bound the Gaussian complexity G(B2(1)) = E[supθ∈B2(1)〈W, θ〉]
using chaining. We get the bound

G(B2(1)) ≤ C
∫ 2

0

√
logN(u;B2(1), ‖ · ‖2)︸ ︷︷ ︸

≤d log(2/u+1)

du

≤ C
∫ 2

0

√
d log(2/u+ 1) du

= C
√
d

∫ 2

0

√
log(2/u+ 1) du︸ ︷︷ ︸

C′

�
√
d.

76



12 The Metric Entropy Method for Function Spaces

12.1 Recap: controlling complexity via chaining

Last time, we were discussing the metric entropy method for obtaining bounds on empirical
processes. We have a metric space (T, ρ), and we want to control

E
[
sup
θ∈T

Xθ

]
or E

[
sup
θ∈T
|Xθ|

]
,

where Xθ is usually mean 0 and sub-Gaussian. We introduced the metric entropy is
logN(ε;T, ρ), where N(ε;T, ρ) = inf{N : |Tε| = N,Tε is an ε-cover} is the ε-covering
number.

We had the one step discretization bound given by the maximal inequality

E
[
sup
θ∈T
|Xθ|

]
. inf

ε
σ
√

log(N(ε;T, ρ) + E

[
sup

ρ(θ,θ̃)≤ε
|Xθ −Xθ̃

|

]
We introduced the condition of a process to be sG(ρ):

E[eλ(Xθ−Xθ̃)] ≤ exp

(
λ2

2
ρ(θ, θ̃)2σ2

)
.

This condition allowed us to use the chaining bound

E
[
sup
θ∈T
|Xθ|

]
. inf

ε
σ

∫ D

ε

√
logN(u;T, ρ) du+ E

[
sup

ρ(θ,,θ̃≤ε
|Xθ −Xθ̃

|

]
.

Last time, we discussed examples where T ⊆ Rd. We let Xθ = 〈ε, θ〉 or Xθ = 〈W, θ〉
to get bounds on the Rademacher/Gaussian complexity of Euclidean sets. Today, we will
discuss examples where T = F ⊆ Lp for 1 ≤ p ≤ ∞ is a function space. If we let

Xθ =
1

n

n∑
i=1

εf(Zi) or , Xθ =
1

n

n∑
i=1

(f(Zi)− E[f(Zi)]),

then this gives us information about the Rademacher/Gaussian complexity of function
spaces.

12.2 One step discretization and chaining bounds for Rademacher com-
plexity of function classes

Recall that if |mcF ⊆ L1(P) and εi
iid∼ Unif({±1}), then we defined the Rademacher

complexity of function class as

Rn(F) := Eε,X

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
]
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= EX [R(F(X1:n)/n)],

where we can think of this as the expectation of the empirical Rademacher complexity,

R(F(X1:n)/n) = Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣ | X1:n

]
,

where
F(x1:n) = (f(x1), . . . , f(xn)) : f ∈ F} ⊆ Rn.

Recall that VC theory tells us that when the value of f is binary, F(x1:n) is a finite set.
Then we can use the maximal inequality.

This lecture, we will control this using the metric entropy method. Rewrite

R(F(x1:n)/n) =
1√
n
E

[
sup
f∈F
|Xf |

]
,

where

Xf :=
1√
n

n∑
i=1

εif(xi).

Hoeffding’s inequality tells us that Xf ∼ sG(
√

1
n

∑n
i=1 f(xi)2).

To apply Dudley’s entropy intergral bound on E[supθ∈T |Xθ|], we need

1. A metric ρ on F ,

2. Xf to be a sub-Gaussian process with respect to ρ,

3. An upper bound for N(u;F , ρ),

4. (Optional) An upper bound for the discretization error.

12.3 Useful metrics on F ⊆ L1(P)

Here are four useful metrics

(a) L2(P) metric:

‖f − g‖2L2(P) =

∫
X

(f(x)− g(x))2 dP(x).

(b) L∞ metric: If suppP = X , then

‖f − g‖L∞ = sup
x∈X
|f(x)− g(x)|.
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(c) L2(Pn) metric (given x1:n):

‖f − g‖2L2(Pn) =

∫
(f(x)− g(x))2 dPn(x) =

1

n

n∑
i=1

(f(xi)− g(xi))
2.

We can make this a random metric by using X1:n.

This is equivalent to ‖ · ‖2 on F(x1:n)/
√
n ⊆ Rn. Recall that

F(x1:n/
√
n) = { 1√

n
(f(x1), . . . , f(xn)) ∈ Rn : f ∈ F}.

Then if f(x1:n)/
√
n, g(x1:n)/

√
n ∈ F(x1:n)/

√
n,

‖f(x1:n)/
√
n− g(x1:n)/

√
n‖22 =

1

n

n∑
i=1

(f(xi)− g(xi))
2.

(d) Parametric metric: If F = {fθ : θ ∈ T ⊆ Rd}, a metric ρ on T induces a metric ρ on
F by

ρ(fθ, fθ̃) := ρ(θ, θ̃).

Here are the relationships between these metrics:

• For any measure P, ‖f − g‖P ≤ ‖f − g‖∞. In particular, this says that ‖f − g‖Pn ≤
‖f − g‖∞ for all x1:n.

• When F = fθ : θ ∈ T ⊆ Rd}, suppose that |fθ1 − fθ2(x)| ≤ Γ(x)ρ(θ1, θ2). Then

‖fθ1 − fθ2‖L2(P) ≤ ‖Γ‖L2(P)ρ(θ1, θ2),

‖fθ1 − fθ2‖L∞ ≤ ‖Γ‖L∞ρ(θ1, θ2).

Example 12.1. Let F = {fθ(x) = 1 − e−θx, x ∈ [0, 1] : θ ∈ [0, 1]}. Then, using Taylor
expansion and the intermediate value theorem,

|fθ1(x)− fθ2(x)| =
∣∣∣xe−ξx|θ1 − θ2|

∣∣∣ ≤ |x| · |θ1 − θ2|.

This tells us that
‖fθ1 − fθ2‖L2(P) ≤ ‖x‖L2(P)|θ1 − θ2|.

‖fθ1 − fθ2‖L∞ ≤ |θ1 − θ2|.

When x is not restricted to a bounded domain, we will not get a bound for the L∞ norm

We care about inequalities between metrics because they introduce inequalities between
covering numbers.
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Lemma 12.1. If ρ1, ρ2 are two metrics on T and ρ1(θ1, θ2) ≤ ρ2(θ1, θ2) for all θ1, θ2 ∈ T ,
then

N(ε;T, ρ1) ≤ N(ε;T, ρ2).

As a consequence,

N(ε;F , L2(Pn)) ≤ N(ε;F , L∞), N(ε;F , L2(P)) ≤ N(ε;F , L∞).

If |fθ1(x)− fθ2(x)| ≤ Γ(x)ρ(θ1, θ2), then

N(ε;F , L∞) ≤ N(ε;T, ‖Γ‖∞ρ), N(ε;F , L∞) ≤ N(ε;T, ‖Γ‖L2(P)ρ).

Note that we can express this rescaling either in the metric or as a scaling factor in front
of ε.

12.4 The uniform entropy bound for empirical processes

In what metrics might Xf = 1√
n

∑n
i=1 εif(Xi) be a sub-Gaussian process?

E[eλ(Xf−Xg) | X1:n] = E[e(λ/
√
n)|X1:n

∑n
i=1 εi(f(Xi)−g(Xi)) | X1:n]

=

n∏
i=1

E[e(λ/
√
n)|X1:nεi(f(Xi)−g(Xi)) | Xi]

≤
n∏
i=1

e(λ2/n)(f(Xi)−g(Xi)2/2

= e(λ2/2) 1
n

∑n
i=1(f(Xi)−g(Xi)2/2

Since 1
n

∑n
i=1(f(Xi)− g(Xi)

2/2− ‖f − g‖Pn ≤ ‖f − g‖∞,

≤ e(λ2/2)‖f−g‖∞ .

This tells us that (Xf )f∈F is a sub-Gaussian process with respect to the metric ‖·‖L2(Pn).
The inequalities between metrics tell us that this is also then sub-Gaussian with respect
to ‖ · ‖L∞ .

Now, if D = supf,g∈F ‖f − g‖L2(Pn) =: ‖F‖Pn is the diameter,

E

[
sup
f∈F
|Xf |

]
≤
∫ D

0

√
logN(u;F , L2(Pn) du.

Then the empirical Rademacher complexity is bounded above by

R(F(X1:n)/n) =
1√
n
E

[
sup
f∈F
|Xf |

]
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Using the change of variables u = ‖F‖Pn ũ,

.
1√
n

∫ ‖F‖Pn
0

√
logN(‖F‖Pn ũ;F , L2(Pn)) d‖F‖Pn ũ

=
‖F‖Pn√

n

∫ 1

0

√
logN(‖F‖Pnu;F , L2(Pn)) du

≤ ‖F‖Pn√
n

∫ 1

0
sup
Q

√
logN(‖F‖Qu;F , L2(Q)) du.

When we take the expectation of the empirical Rademacher complexity and use Cauchy-
Schwarz, we get

E[F(F(X1:n)/
√
n)] ≤ ‖F‖P√

n

∫ 1

0
sup
X

√
logN(‖F‖Qu;F , L2(Q)) du.

We can summarize this in the following proposition:

Proposition 12.1 (Uniform entropy bound).

E[‖Pn − P‖F ] . Rn(F) .
‖F‖P√

n

∫ 1

0
sup
Q

√
logN(‖F‖Qu;F , L2(Q)) du.

This is not in Wainwright’s textbook, but you can find it as Theorem 4.7 in A Gentle
Introduction to Empirical Process Theory and Applications by Bodhisattva Sen.

12.5 Examples of bounding Rademacher complexity for different cover-
ing numbers

Example 12.2. Suppose we have logN(u) � d log(1 + 1/u). Then

Rn(F) ≤ 1√
n

∫ 1

0

√
d log(1 + 1/u) du .

√
d

n
.

Example 12.3. If logN(u) � 1/u, then

Rn(F) .
1√
n

∫ 1

0

√
1

u
du .

1√
n
.

Example 12.4. If logN(u) � 1
ud

, where d ≥ 2, then

Rn(F) .
1√
n

∫ 1

0

√
1

ud
du =∞.

However, we can get a better bound in the last example by using the following propo-
sition.
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Proposition 12.2.

sup
P

E[‖Pn − P‖F . Rn(F) . ‖F‖∞ inf
ε
ε+

1√
n

∫ 1

ε

√
logN(‖F‖∞u;F , L∞) du.

How can we upper bound Eεi [sup‖f−g‖Pn≤ε |
∑n

i=1 εi(f(Xi) − g(Xi))|]? We know that
we can bound

Eεi

[
sup

‖f−g‖L∞≤ε

n∑
i=1

εi(f(Xi)− g(Xi))|

]
≤
√
nε.

If we use this bound, then when logN(u) . 1
ud

with d ≥ 2, we get

Rn(F) . inf
ε
ε+

1√
n

∫ 1

ε

1

ud/2
du.
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13 Examples of Rademacher Complexity Bounds for Func-
tion Classes

13.1 Recap: chaining bounds for Rademacher complexity of function
classes

Last time, we were using the metric entropy method to bound the Rademacher complexity
of a function class. We considered 4 metrics on F :

‖ · ‖L2(P), ‖ · ‖L∞ , ‖ · ‖L2(Pn), ρ on parameter space.

Relationships of these metrics gave us relationships between the covering numbers:

N(ε;F , ‖ · ‖L2(Pn) ≤ sup
P
N(ε;F , ‖ · ‖L2(P))

≤ N(ε;F , ‖ · ‖L∞)

And if the function class F is a Lipschitz parametrization,

≤ N(ε;T, ρ)

If we let Xf = 1√
n

∑n
i=1 εif(xi), then we can show that

E[eλ(Xf−Xg)] ≤ e(λ2/2)‖f−g‖2Pn ≤ e(λ2/2)‖f−g‖2∞ ,

which tells us that {Xf}f∈F is a sub-Gaussian process with respect to the L2(Pn) or L∞

metric.
We showed two results:

Proposition 13.1. Let Rn(F) := Eεi,Xi
[
supf∈F

∣∣ 1
n

∑n
i=1 εif(Xi)

∣∣]. Then

1.

Rn(F) .
DP√
n

∫ 1

0
sup
Q

√
logN(DQu;F , L2(Q)) du,

2.

Rn(F) .
D∞√
n

inf
ε
ε+

1√
n

∫ 1

ε
sup
Q

√
logN(D∞u;F , L∞) du,

where DP = supf∈F ‖f‖L2(P) and D∞ = supf∈F ‖f‖∞.
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13.2 Examples of upper bounds for parametric and nonparametric func-
tion classes

Here are some examples for upper bounds of Rademacher complexity for function classes.

Example 13.1. Let F = {fθ(x) = 1−e−θx, x ∈ [0, 1] : θ ∈ [0, 1]} be a parametric function
class. Then taking the derivative gives us

|fθ1(x)− fθ2(x)| ≤ sup
θ∈[theta1,θ2]

|xe−θx︸ ︷︷ ︸
≤x

|θ1 − θ2| ≤ |θ1 − θ2|

The covering number for the unit interval with | · | is bounded as

N(ε; [0, 1], | · |) ≤ 1

2ε
+ 1,

so we get a covering number bound for the parametric function class

N(ε;F , L∞) ≤ N(ε; [0, 1], | · |) ≤ 1

2ε
+ 1.

Using the chaining bound with D∞ = supf∈F ‖f‖∞ = supf∈F supx∈[0,1] |1− e−θx| ≤ 1,

Rn(F) ≤ D∞√
n

∫ 1

0

√
logN(uD∞;F , L∞) du =

1√
n

∫ 1

0

√
logN(u;F , L∞) du

=
1√
n

∫ 1

0

√
log( 1

2u + 1) du

.
C√
n
.

Example 13.2 (Lipschitz parameterization). Consider a function class F = {fθ : X →
R : θ ∈ Bd

2(1) with ‖f0(x)‖∞ = c0 = 0. If |fθ1(x)− fθ2(x)| ≤ L‖θ1 − θ2‖2, then we can use
the bound

logN(ε;F , L∞) ≤ logN(ε;Bd
2(1), ‖ · ‖2 . d log . d log

(
1

ε
+ 1

)
to get

Rn(F) . L
D∞√
n

∫ 1

0

√
logN(ε;F , L∞) dε,

where D∞ = supθ ‖fθ‖∞ ≤ c0 + L = L

.
L√
n

∫ 1

0

1√
n

∫ 1

0

√
d log(1/n) du

. L

√
d

n
.
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If we have a nonparametric function class, it may have infinite Rademacher complexity.
So in general, we will want some sort of smoothness condition to make the complexity
finite.

Example 13.3 (Nonparametric class with smoothness/convexity). Consider the non-
parametric function class FL = {g : [0, 1]→ R | g(0) = 0, g is L-Lip}. Then

logN(ε;FL, L∞) � L

ε
,

which we can see from the following figure in Wainwright’s book that shows how to bound
the packing number:

In particular, if f 6= g, then
M(Lε;F , L∞) ≥ 21/ε.

Taking log and rescaling ε, we get

logM(Lε;F , L∞) ≥ 21/ε ≥ 2L

ε
log 2.

On the other hand, we can get an upper bound by seeing that these functions cover the
function class.

Here, we have ‖F‖∞ = supf∈F |f | = L, so the one-step discretization bound gives

Rn(FL) . inf
ε
ε+

1√
n

√
logN(ε;F , ‖ · ‖∞)

= inf
ε
ε+

1√
nε
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� 1

n1/3

The chaining bound gives

Rn(FL) . inf
ε
ε+

1√
n

∫ 1

ε

√
1

u
du

� 1√
n
.

So in this case, the one-step discretization bound gives a sharper bound than the chaining
method.

Example 13.4 (Nonparametric class, general d). Consider a nonparametric function class
with general d:

FdL = {g : [0, 1]d → R : g(0) = 0, g is L-Lip in ‖ · ‖∞}.

We can show that

logN(ε;FdL.L∞) �
(
L

ε

)d
.

The calculation of the resulting bounds on the Rademacher complexity is left for homework.

13.3 Boolean function classes

Consider a Boolean function class F ⊆ {f : X → {0, 1}}, VC theory tells us that F has
PD(ν), where ν = VC(F). Usng the maximal inequality, we have the bound

Rn(F) .

√
ν log(n+ 1)

n
.

We have mentioned that the log factor in this bound makes the bound not tight.

Proposition 13.2. For a boolean function class with ν = VC(F),

sup
P

log(N(ε;F , L2(P))) . ν log
(e
ε

)
for ε < 1.

For a sharp but difficult proof of this bound, see theorem 2.6.4 from [Van der Vaart
and Wellner, 1996]. A weaker but easier version of this bound can be found in the notes
[Sen, Theorem 7.9].

If we use the chaining argument, we get the bound

Fn(F) .
1√
n

∫ 1

0

√
ν log(e/ε) dε ∝

√
ν

n
.
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Example 13.5. Specialize to the function class F = {1x≤t : t ∈ R, which we first examined
when looking at empirical processes. This has VC-dimension 1, so

Rn(F) .

√
1

n
.

This tells us that

P
(

sup
t∈R
|Fn(t)− F (t)| ≥ c√

n
+

ε√
n

)
≤ 2e−ε

2/2.

Remark 13.1. This is not the tightest version of this bound. The tighest bound, given
by Dvoretzky, Kiefer, Wolfowitz, and Massart, is

P
(

sup
t∈R
|Fn(t)− F (t)| ≥ ε√

n

)
≤ 2e−ε

2/2.

13.4 Contraction inequalities

Consider d functions φj : R → R which are L-Lipschitz with φj(0) = 0. We can think off
φj(θ) as a loss function L(y; θ).

Proposition 13.3 (Talagrand-Ledoux concentration). Let T ⊆ Rd, and let {φj} be cen-
tered Lipschitz. Then

E

sup
θ∈T

d∑
j=1

εjφj(θj)

 ≤ LE

sup
θ∈T

d∑
j=1

εjθj

 ,

E

sup
θ∈T

∣∣∣∣∣∣
d∑
j=1

εjφj(θj)

∣∣∣∣∣∣
 ≤ 2LE

sup
θ∈T

∣∣∣∣∣∣
d∑
j=1

εjθj

∣∣∣∣∣∣
 .

The interpretation is that the right hand side is R(T ). The left hand side is R(φ(T )).
This says that if we apply a contraction map to a space, the Rachemacher complexity will
not increase.

The textbook has a proof for when εi are iid Gaussian random variables. This is given
by the Gaussian comparison inequality.

Example 13.6. Let Zi = (Xi, Yi)
iid∼ P ∈ P(B2(M) × {±1}) for i ∈ [n]. For logistic

regression, we want a logistic loss function:

Mθ(Z) := log(1 + exp(−yθ>x)).
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Taking the expectation gives
M(θ) = EZ [mθ(Z)].

We also let Θ = B2(r). Compare the empirical and population risk:

E := E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

mθ(Zi)−M(θ)

∣∣∣∣∣
]

≤ 2E

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εimθ(Zi)

∣∣∣∣∣
]

We are looking at the function class F = {mθ(zi) : θ ∈ Θ}. If we wanto replace mθ(zi) by
θ>xi, then we can use the contraction inequality. This is because log(1 + ex) is 1-Lipschitz
(by d

dx log(1 + ex) = ex

1+ex ≤ 1. So we can write φi(θ̃i) = log(1 + exp(−yiθ̃i))− log 2. This

depends on Yi, and θ̃i = θ>Xi depends on Xi, to use the contraction inequality, we first
condition on Y and X:

= 2EY,X

[
Eε

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εimθ(Zi)

∣∣∣∣∣ | Y,X
]]

= 2EY,X

[
Eε

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εi(φ(θ̃i) + log 2)

∣∣∣∣∣ | Y,X
]]

First, use the triangle inequality to get rid of the log 2:

≤ 2EY,X

[
Eε

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εi(φ(θ̃i) + log 2)

∣∣∣∣∣ | Y,X
]]

+ (· · · )

Now apply the contraction inequality with Θ̃ = {(〈θ, xi, . . . , , 〈θ, xn〉) : θ ∈ Θ} ⊆ Rn.

≤ 4EY,X

[
Eε

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εiθ̃i

∣∣∣∣∣ | Y,X
]]

+ (· · · )

= 4EY,X

[
Eε

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εi〈Xi, θ〉

∣∣∣∣∣ | Y,X
]]

+ (· · · )

= 4Eε,X

[
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

εi〈Xi, θ〉

∣∣∣∣∣
]

+ (· · · )

= 4Eε,X

[
sup
θ∈Θ

∣∣∣∣∣
〈

1

n

n∑
i=1

εiXi, θ

〉∣∣∣∣∣
]

+ (· · · )

= 4rEε,X

[∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
2

]
+ (· · · )
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≤ 4rEε,X

∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
2

2

1/2

+ (· · · )

= 4r

(
E[‖X‖22]

n

)1/2

+ (· · · )

≤ 4
rM√
n

+ (· · · ).

13.5 Further topics: Orlicz processes and bracketing numbers

There is a generalization of sub-Gaussian using the Orlicz norm.

Definition 13.1. Let ψq(t) := exp(tq)− 1 for q ∈ [1, 2]. The q-Orlicz norm is

‖X‖ψq := inf{λ > 0 : E[ψq(|X|/λ)] ≤ 1}.

We can prove concentration inequalities, the maximal inequality, the one-step dis-
cretization bound, and the chaining bounding in terms of Orlicz norms.

In empirical process theory, there is another notion of covering called the bracketing
number. This is discussed in the notes by Sen and in Chapter 2 of Van der Waart and
Wellner.

Definition 13.2. Given two functions `(·) and u(·), the bracket

[L, u] = {f ∈ F : `(x) ≤ f(x) ≤ u(x) ∀x ∈ X}.

An ε-bracket is a bracket [L, u] with ‖`− u‖ ≤ ε.

Definition 13.3. The bracketing number N[](ε;F , ‖ · ‖) is the minimum number of
ε-brackets needed to cover F , i.e.

N[](ε;F , ‖ · ‖) = min{N : {[`i, ui]i∈[N ] covers F and ‖`i − ui‖ ≤ ε}.

Proposition 13.4. Let Rn(F) := Eεi,Xi
[
supf∈F

∣∣ 1
n

∑n
i=1 εif(Xi)

∣∣]. Then

Rn(F) .
DP√
n

∫ 1

0

√
logN[](DPu;F , L2(P)).

Notice that here, unlike the our bound in terms of covering numbers, does not require
us to take the sup over distributions Q. Regardless, usually, if you can prove a bound using
the bracketing number, you can prove it using the covering number.
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14 Concentration of Sample Covariance of Gaussian Ran-
dom Vectors

14.1 Eigenvalues of sample covariance of Gaussian random vectors

Last time, we started to talk about the eigenvalues of sample covariance matrices of Gaus-
sian random vectors. We had (xi)iid∼

N(0,Σ), where Σ ∈ Sd×d is a positive definite d × d
matrix. We have

X =

x
>
1
...
x>n

 ∈ Rn×d, Σ̂ =
1

n

n∑
i=1

xix
>
i =

1

n
X>X ∈ §d×d.

We had the following theorem about the singular values of the random matrix.

Theorem 14.1.

1. P(σmax(X)/
√
n ≥ γmax(

√
Σ)(1 + τ) +

√
tr(Σ)/n) ≤ e−nt2/2.

2. P(σmin(X)/
√
n ≤ γmin(

√
Σ)(1 + τ)−

√
tr(Σ)/n) ≤ e−nt2/2.

The proof strategy was the following:

Proof. For simplicity, take Σ = 1. We had three main steps:

(a) Concentration: P(|σk(X)− E[σk(X)] ≥ t) ≤ 2e−t
2/2.

(b) E[σmax(X)] ≤
√
n+
√
d.

(c) E[σmin(X)] ≥
√
n−
√
d.

Now we will give the details.
To prove (a), we need to show that the singular values are Lipschitz. By Weyl’s in-

equality,
|σk(x1)− σk(x2)| ≤ ‖X1 −X2‖op ≤ ‖X1 −X2‖F .

This impies that σk(X) is 1-Lipschitz in ‖ · ‖F , the Frobenius norm. Therefore, we get
Gaussian concentration, i.e. σk(X)− E[σk(X)] is sG(1).

To prove (b), we wanted an upper bound of σmax(X), using the variational formulation

σmax = sup
(u,v)∈Sn−1×Sd−1

〈u,Xv〉︸ ︷︷ ︸
Zu,v

.

We introduced the following ineqaality
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Lemma 14.1 (Sudakov-Fernique inequality). Let {Zθ}θ∈T , {Yθ}θ∈T be two continuous
Gaussian processes on a separable space T with E[Zθ] = E[Yθ]. If E[(Zθ − Zθ′)

2] ≤
E[(Yθ − Yθ′)2] for all θ, θ′ ∈ T , then

E
[
max
θ∈T

Zθ

]
≤ E squamax

θ∈T
Yθ.

We will prove this later, but first, let’s see how this helps us. Define Zu,v = 〈u,Xv〉,
where Xi,j

iid∼ N(0, 1), and define

Yu,v =

n∑
i=1

uig1 +

d∑
j=1

νjgi = 〈u, g〉+ 〈v, h〉, iid∼ N(0, 1), hj
iid∼ N(0, 1).

We check the second moment conditions:

E[Zu,vZu′,v′ ] = E[〈X,uv>〉〈X,u′(v′)>〉]
In the summations, all but the diagonal terms will vanish.

= 〈u, v>, u′(v′)>〉
= 〈u, u′〉〈v, v′〉.

This tells us that

E[(Zu,v − Zu′,v′)2] = E[Z2
u,v]︸ ︷︷ ︸

=1

−2E[Zu,vZu,v′ ] + E[Z2
u′,v′ ]︸ ︷︷ ︸

=1

= 2− 2〈u, u′〉〈v, v′〉.

For Y , we have

E[(Yu,v − Yu′,v′)2] = E[Y 2
u,v]︸ ︷︷ ︸

=1

− 2E[Yu,vYu′v′ ]︸ ︷︷ ︸
=2(〈u,u′〉+〈v,v′〉)

+E[Y 2
u′,v′ ]︸ ︷︷ ︸

=1

= 4− 2(〈u, u′〉+ 〈v, v′〉).

Then

E[(Yu,v − Yu′,v′)2]− E[(Zu,v − Zu′,v′)2] = 2(1− 〈u, u′〉)(1− 〈v, v′〉) ≥ 0

Now, applying the Sudakov-Fernique inequality gives

E
[

max
(u,v)∈Sn−1×Sd−1

〈u,Xv〉
]
≤ E

[
max

(u,v)∈Sn−1×Sd−1
(〈u, g〉+ 〈v, h〉

]
= E

[
max

(u,v)∈Sn−1×Sd−1
〈u, g〉

]
+ E

[
max

(u,v)∈Sn−1×Sd−1
〈v, h〉

]
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= E[‖g‖2] + E[‖h‖2]

≤ E[‖g‖22]1/2 + E[‖h2‖2]1/2

=
√
n+
√
d.

For (c), we want to show a lower bound for σmin(X). We want to show that σmin ≥√
n−
√
d (with n ≥ d). We use the variational representation

σmin(X) = min
v∈Sd−1

max
u∈Sn−1

〈u,Xv〉︸ ︷︷ ︸
Zu,v

Here is another Gaussian process inequality which is a sort of generalization of Sudakov-
Fernique.

Theorem 14.2 (Gordon’s inequality). Let (Zs,,t)s∈S,t∈T , (Ys,,t)s∈S,t∈T be two Gaussian
processes with E[Zs,t] = E[Ys,t], and suppose that{

E[(Zs,t1 − Zs,t2)2] ≥ E[(Ys,t1 − Ts,t2)2] ∀t1, t2 ∈ T, s ∈ S,
E[(Zs1,t1 − Zs2,t2)2] ≤ E[(Ys1,t1 − Ts2,t2)2] ∀s1 6= s2 ∈ S, t1, t2 ∈ T.

Then

E
[
max
s∈S

min
t∈T

Zs,t

]
≤ E

[
max
s∈S

min
t∈T

Ys,t

]
.

Take Yu,v = 〈g, u〉 + 〈h, v〉. Check that Zu,v and Yu,v satisfy the conditions in the
theorem. Then

−E[σmin(X)] = E
[

max
v∈Sd−1

−‖Xv‖2
]

= E
[

max
v∈Sd−1

min
u∈Sn−1

〈u,−Xv〉
]

≤ E
[

max
v∈Sd−1

min
u∈Sn−1

〈g, u〉+ 〈h, v〉
]

where g, h are iid Gaussian random vectors.

= E
[

max
v∈Sd−1

〈h, v〉
]

+ E
[

min
u∈Sn−1

〈g, u〉
]

= E[‖h‖2]︸ ︷︷ ︸
≈
√
d

−E[‖g‖2]︸ ︷︷ ︸
≈
√
n

.

So we get that
E[σmin(X)] ≥

√
n−
√
d.
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14.2 Proof of the Sudakov-Fernique inequality

Now we will prove the Sudakov-Fernique inequality using the Gaussian interpolation method.
Here is a simpler version of the inequality for when the index set is finite.

Lemma 14.2 (Sudakov-Fernique inequality). Let X,Y ∈ Rn be two continuous Gaussian
random vectors with E[X] = E[Y ]. If E[(Xi −X2

j ] ≤ E[(Yi − Y 2
j ] for all i, j, then

E
[
max
i∈[n]

Xi

]
≤ E

[
max
i∈[n]

Yi

]
.

Proof. Without loss of generality, we may take X,Y to be independent. Let µ = E[X] =
E[Y ], and define

X̃ = X − µ, =̃T − µ,∈ Rn Z(θ) = cos θX̃ + sin θ+̃µ.

Fix β > 0, and define the soft max function Fβ : Rn → R by Fβ(x) = β−1 log(
∑n

i=1 e
βxi).

The parameter β determines how soft this“soft max” function is; when β → ∞, this
will be the max function. For θ ∈ [0, π/2], let ϕ(θ) = E[Fβ(Z(θ))]. The idea is that
ϕ(0) ≈ E[maxi∈[n]Xi] and ϕ(π/2) ≈ E[maxi∈[n] Yi], and these will be exact as we let
β →∞.

Using Fubini’s theorem and the cain rule, we can calculate the derivative

ϕ′(θ) = E

[
n∑
i=1

∂xiFβ(Z(θ))(− sin θX̃i + cos θỸ )

]
Using integration by parts or Stein’s lemma,

cos θ sin θE

 n∑
i,j=1

∂2
xi,xjFβ(Z(θ))

 (E[Ỹ ; Ỹj ]− E[X̃i; Ỹj ])

Define pi(x) = ∂xiFβ(x) = eβxi/
∑n

j=1 e
βxj , which is a probability distribution on Rn.

Using some algebra with pi, we can show that ϕ′(θ) ≥ 0. This means that ϕ is increasing,
so ϕ(0) ≤ ϕ(π/2). Then we let β →∞ to get the inequality.

The details of the algebra in the proof are contained in chapter 5 of Wainwright’s book.

14.3 More on Gaussian comparison inequalities

Here are some comments on these Gaussian comparison inequalities, which are very useful
in many cases. There is a more general statement of Gordon’s inequality, which contains
both an expectation version and a probabilistic version:
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Theorem 14.3 (Gordon’s inequality). Let S, T be finite sets (or separable sets with con-
tinuous processes). Let (Xs,t)s∈S,t∈T , (Ys,t)s∈S,t∈T be two Gaussian processes with E[Xs,t] =
E[Ys,t] = 0, and suppose that{

E[(Xs,t1 −Xs,t2)2] ≥ E[(Ys,t1 − Ts,t2)2] ∀t1, t2 ∈ T, s ∈ S,
E[(Xs1,t1 −Xs2,t2)2] ≤ E[(Ys1,t1 − Ts2,t2)2] ∀s1 6= s2 ∈ S, t1, t2 ∈ T.

Then

1. For any deterministic function Q(s, t),

E
[
max
s∈S

min
t∈T

Xs,t +Q(s, t)

]
≤ E

[
max
s∈S

min
t∈T

Ys,t +Q(s, t)

]
.

2. If we further have E[X2
s,t] = E[Y 2

s,t], then for all τ ∈ R and functions Q(s, t), we have

P
(

min
s∈S

max
t∈T

(Xs,t +Q(s, t)) ≥ τ
)
≤ P

(
min
s∈S

max
t∈T

(Ys,t +Q(s, t)) ≥ τ
)
.

For the probabilistic version of the inequality, it is better to assume the mean is zero,
but we do not need this for the expectation version.

This inequality can be used to derive the Gaussian contraction inequality: G(φ(T )) ≤
G(T ) if φ is 1-Lipshitz. We can also use it to prove the following.

Theorem 14.4 (Sudakov minorization). Let {Xθ}θ∈T be mean 0 Gaussian process on T .
Then

E
[
sup
θ∈T

Xθ

]
≥ sup

ε>0

ε

2

√
logM(ε;T, ρX),

where M(ε;T, ρX) is the packing number of T with metric ρX(θ, θ′) =
√

Var(Xθ −Xθ′).

These applications are shown in chapter 5 of Wainwright’s book.

14.4 Concentration of sub-Gaussian sample covariance

Now, we generalize our analysis to the case where xi are sub-Gaussian random vectors,
E[xix

>
i ] = Σ ∈ Sd×d is a positive definite d× d matrix. Here,we still have

X =

x
>
1
...
x>n

 ∈ Rn×d, Σ̂ =
1

n

n∑
i=1

xix
>
i =

1

n
X>X ∈ Sd×d.

In this context, similar concentration results will hold.
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Definition 14.1. We say a mean 0 random variable x ∈ Rd is sub-Gaussian(σ) if

E[eλ〈v,x〉] ≤ eλ2‖v‖22σ2/2 ∀λ ∈ R, v ∈ Rd.

Remark 14.1. This is not the same as saying that each entry of the vector is sub-Gaussian.
But if we suppose x ∈ Rd with xi independent sG(σ), then x is sG(σ):

E
[
eλ

∑n
i=1 vixi

]
=

n∏
i=1

E[eλvixi ]

≤
n∏
i=1

eλ
2v2i σ

2/2

= eλ
2‖v‖22σ2/2.

Theorem 14.5. Let (xi)i∈[n] be independent mean zero sG(σ). Then with probability at
least 1− δ, we have

‖Σ̂− Σ‖op ≤ Cσ2

(√
d+ log(1/δ)

n
+
d+ log(1/δ)

n

)
.

The upper bound is of the same order as the Gaussian case. The only difference is that
we lose a universal constant C.
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15 Concentration of Sample Covariance of Sub-Gaussian and
Bounded Random Vectors

15.1 Concentration of sample covariance of sub-Gaussian vectors

Last time, we were talking about concentration of sub-Gaussian sample covariance. If we

have Xi
iid∼ P ∈ P(Rd) and covariance matrix E[XiX

>
i ] = Σ ∈ Sd×d+ . Then we can estimate

Σ by the sample covariance matrix Σ̂ = 1
n

∑n
i=1XiX

>
i = 1

nX
>X ∈ Sd×d+ .

Definition 15.1. We say a mean 0 random variable x ∈ Rd is sub-Gaussian(σ) if

E[eλ〈v,x〉] ≤ eλ2‖v‖22σ2/2 ∀λ ∈ R, v ∈ Rd.

A sufficient condition for X ∈ Rd to be sG(σ) is that Xi are independent with Xi ∼
sG(σ).

Theorem 15.1. Let (Xi)i∈[n] be independent, mean 0 sG(σ). Then wth probability at least
1− δ, we have

‖Σ̂− Σ‖op ≤ Cσ2

(√
d+ log(1/δ)

n
+
d+ log(1/δ)

n

)
.

Proof. Here is the high level intuition of the proof:
We can represent

‖Σ̂− Σ‖op = sup
v∈Sd−1

|〈v, (Σ̂− Σ)v〉|

= sup
v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(〈Xi, v〉2 − E[〈Xi, v〉2])

∣∣∣∣∣ .
(a) Fix v. Then 1

n

∑n
i=1(〈Xi, v〉2 − E[〈Xi, v〉2]) has a sub-exponential tail bond.

(b) If we let |Ωε = N | be the size of an ε-cover of the sphere, then we get the metric
entropy bound (instead of a union bound over all the points on the sphere)

sup
v∈Ωε

∣∣∣∣∣ 1n
n∑
i=1

(〈Xi, v〉2 − E[〈Xi, v〉2])

∣∣∣∣∣ .
√

log(Nε/δ)

n
+

log(Nε/δ)

n
.

(c) Show that Nε � d.

(d) Last, show that the discretization error is multiplicative.
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Now for the actual proof:
Let Ωε = {v1, . . . , vNε be an ε-covering of Sd−1 in the ‖·‖2 norm. Then |Ωε| ≤ (1+2/ε)d.

We claim that for every matrix A ∈ Rd×d,

‖A‖op ≤
1

1− 2ε− ε2
sup
v∈Ωε

|〈, Av〉|.

This claim holds because
‖A‖op = sup

v∈Sd−1

v,Av〉.

Then for all v ∈ Sd−1, there is a vj ∈ Ωε such that ‖v − w‖2 ≤ ε. We can then compare

〈v,Av〉 = 〈w,Aw〉+ 2〈v − w,Aw〉+ 〈v − w,A(v − w)〉.

Using this algebra, we get the bound

sup
v∈Sd−1

|〈v,Av〉| ≤ sup
w∈Ωε

|〈w,Aw〉|+ (2ε+ ε2)‖A‖op.

Rearranging this gives the claim:

‖A‖op ≤
1

1− 2ε− ε2
sup
v∈Ωε

|〈v,Av〉|.

Take ε = 1/8, so we have a covering with |Ωε| ≤ 17d. Then

‖Σ̂− Σ‖op ≤ 2 sup
v∈Ω1/8

|〈v, (Σ̂− Σ)v〉|.

Now look at the tail bound of ‖〈v, (Σ̂− Σ)v〉| for fixed v. Then

|〈v, (Σ̂− Σ)v〉| =

∣∣∣∣∣ 1n
n∑
i=1

(〈v,Xi)
2 − E[〈v,Xi〉2]

∣∣∣∣∣ .
By assumption, 〈v,Xi〉/σ is sG(1), so ((〈v,Xi)

2 − E[〈v,Xi〉2])/σ2 is sE(1, 1). Therefore,
( 1
n

∑n
i=1(〈v,Xi)

2 − E[〈v,Xi〉2])/σ2 is sE(1/
√
n, 1/n).

Thus, we get the sub-exponential tail bound

P(|〈v, (Σ̂− Σ)v〉| ≥ σ2t) ≤ 2 exp(−nmin(t2, t).

Using a union bound, we get

P(|〈v, (Σ̂− Σ)v〉| ≥ σ2t) ≤ 2 exp(−nmin(t2, t) + d log 17).
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Now pick t = C max{
√

d+log(1/δ)
n , d+log(1/δ)

n }, so we get

P

(
sup

v∈Ω1/8

|〈v, (Σ̂− Σ)v〉| ≤ Cσ2 max

{√
d+ log(1/δ)

n
,
d+ log(1/δ)

n

})
≥ 1− δ.

That is, with high probability,

‖Σ̂− Σ‖op ≤ Cσ2 max

{√
d+ log(1/δ)

n
,
d+ log(1/δ)

n

}
.

15.2 Concentration of sample covariance of bounded random vectors

Theorem 15.2. Let Xi
iid∼ X ∈ Rd, and let the covariance matrix E[XX>] = Σ. Suppose

that ‖X‖22 ≤ b almost surely. Then with probability 1− δ,

‖Σ̂− Σ‖op .

√
b‖Σ‖2 log(d/δ)

n
+
b

n
log(d/δ).

Example 15.1. Let X ∼ Unif(Sd−1(
√
d)), and let Σ = E[XX>] = Id. Then we have

b = d, so the theorem gives

‖Σ̂− Σ‖2 .

√
d log d

n
+
d

n
log d.

The proof of this theorem follows from a matrix Bernstein inequality, which we will
now prove.

15.3 Matrix Hoeffding/Bernstein inequality

In general, let X1, X2, . . . , Xn ∈ R be independent sG(σ) random variables. Then the
scalar Hoeffding inequality says

P

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt

2

2σ2

)
.

The matrix Hoeffding inequality says

Theorem 15.3. Let Q1, Q2, . . . , Qn ∈ Sd×d be independent sG(V ), where V ∈ Sd×d+ . Then

P

∥∥∥∥∥ 1

n

n∑
i=1

(Qi − E[Qi])

∥∥∥∥∥
op

≥ t

 ≤ 2d exp

(
− nt2

2‖V ‖2op

)
.

98



We get an extra factor of d in the bound. Notice that when d = 1, notice that this
reduces to the scalar Hoeffding inequality. Let’s review the proof of the scalar Hoeffding
inequality:

Use the scalar Chernoff inequality to get

P

(
1

n

n∑
i=1

(Xi − E[Xi]) ≥ t

)
≤ inf

λ≥0

E[eλ
∑n
i=1(Xi−E[Xi])

eλtn

Using the scalar tensorization of the MGF,

= inf
λ≥0

∏n
i=1 E[eλ(Xi−E[Xi])]

eλtn

Now we use a scalar MGF bound from the sub-Gaussian definition.

≤ inf
λ≥0

n∏
i=1

eλ
2σ2/2e−λt

n

= e−
nt2

2σ2 .

The proof of the scalar Bernstein inequality is similar.

15.3.1 Matrix Chernoff inequality

Here is a Matrix Chernofff inequality:

Lemma 15.1. Let Q ∈ Sd×d be a symmetric matrix. Then

P(λmax(Q) ≥ t) ≤ inf
λ≥0

E[tr(eλQ)]

eλt
.

Let Q ∈ Sd×d be a symmetric matrix with eigendecomposition Q = UΛU>. If
we let f : R → R, we define f(Q) := U diag(f(λ1, . . . , f(λd))U

> ∈ Sd×d, so eQ =

U diag(eλ1 , . . . , eλd)U>. If f is an analytic function with Taylor expansion f(x) =
∑∞

i=1
f (i)(0)
i! xi,

then

f(Q) =
∞∑
i=1

f (i)(0)

i!
Qi.

In particular,

eQ =

∞∑
i=0

1

i!
Qi.

Proof. For λ ≥ 0,

P(λmax(Q) ≥ t) = P(eλλmax(Q) ≥ eλt)
= P(λmax(eλQ) ≥ eλt)
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Use Markov’s inequality.

≤ E[λmax(eλQ)]

eλt

The largest eigenvalue of a positive definite matrix is upper bounded by its trace.

≤ E[tr(eλQ)]

eλt
.

15.3.2 Sub-Gaussian and sub-exponential matrices

Definition 15.2. A matrix Q ∈ Sd×d with E[Q] = 0 is sub-Gaussian(V ) for V ∈ Sd×d+ if

ΦQ(λ) = E[eλQ] � eλ2V/2 ∀λ ∈ R.

This is not equivalent to the definition we have given for vectors.

Example 15.2. Let Q = εB, where B ∈ Sd×d and ε ∼ Unif({±1}). Then

E[eλQ] =

∞∑
k=0

λk

k!
E[Qk]

=

∞∑
i=0

λ2i

(2i)!
E[Q2i]

=

∞∑
i=1

λ2i

(2i)!
B2i

≺
∞∑
i=1

1

i!

(
λ2B2

2

)i
= eλ

2B2/2.

Similarly, we can define sub-exponential matrices.

Definition 15.3. A matrix Q ∈ Sd×d with E[Q] = 0 is sub-exponential(V, α) for V ∈
Sd×d+ and α ∈ R≥0 if

ΦQ(λ) = E[eλQ] � eλ2V/2 ∀|λ| ≤ 1

α
.

Here is a sufficient condition: Define Var(Q) = E[Q2] − (E[Q])2 ∈ Sd×d+ . If E[Q] = 0
and ‖Q‖op ≤ b a.s., then Q ∼ sE(Var(Q), b). This is proved in Wainwright’s textbook.

Example 15.3. Let ‖Xi‖2 ≤
√
b, so E[XiX

>
i ] = Σ. Then if we let Q = XiX

>
i − Σ, then

‖Q‖op ≤ b. This gives
Var(Q) = E[(XiX

>
i − Σ)2] � bΣ,

so Q ∼ sE(bΣ, b).
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15.3.3 Tensorization of the matrix MGF

Now we know how to give an upper bound of the matrix MGF. The last step is to see the
tensorization of the matrix MGF. The scalar MGF tensorizes as

E[eλ
∑n
i=1Xi ] =

n∏
i=1

E[eλXi ].

This is not true for matrices:

E[eλ
∑n
i=1Qi ] 6=

n∏
i=1

E[eλQi ],

since eA+B 6= eAeB. However, this lemma solves the problem:

Lemma 15.2. Let Q1, . . . , Qn be independent. Then

tr(E[eλ
∑n
i=1Qi ]) ≤ tr(e

∑n
i=1 logE[eλQi ]).

To prove this, we use the following general matrix inequality:

Lemma 15.3 (Lieb’s inequality, 1973). Let H ∈ Sd×d. Then the function f : Sd×d+ → R
sending A 7→ tr(eH+logA) is concave.

This inequality was originally proven for the use of quantum information theory. Using
Lieb’s inequality, the lemma is just the repeated application of this concavity and Jensen’s
inequality. Now we we can prove the matrix Hoeffding inequality:

Proof. Let Qi be independent sG(Vi) random matrices with E[Qi] = 0. Use the matrix
Chernoff inequality to get

P

(
λmax

(
1

n

n∑
i=1

Qi

)
≥ t

)
≤ inf

λ≥0
E[tr(eλ

∑n
i=1Qi)]e

−λnt

Using the Matrix tensorization of the MGF,

≤ inf
λ≥0

tr(e
∑n
i=1 logE[eλQi ])e−λnt

Now apply the matrix sub-Gaussian upper bound and the inequality logA � logB if A ≺ B
(which is not true in general for every monotone function) to get

inf
λ≥0

tr(e
∑n
i=1(λ2/2)Vi)e−λnt

≤ d inf
λ≥0

e(λ2/2)n‖V ‖ope−λnt

= de
− nt2

2‖V ‖op .

101



This gives the matrix Hoeffding and matrix Bernstein inequalities:

Theorem 15.4 (Matrix Hoeffding inequality). Let Qi
ind∼ sG(Vi) with E[Qi] = 0. Then

P

∥∥∥∥∥ 1

n

n∑
i=1

Qi

∥∥∥∥∥
op

≥ t

 ≤ 2d exp

(
− nt

2

2σ2

)
,

where σ2 = ‖ 1
n

∑n
i=1 Vi‖op.

Theorem 15.5 (Matrix Bernstein inequality). Let Qi
ind∼ sE(Vi, αi) with E[Qi] = 0. Then

P

∥∥∥∥∥ 1

n

n∑
i=1

Qi

∥∥∥∥∥
op

≥ t

 ≤ 2d exp

(
−nmin

{
t2

2σ2
,
t

2α∗

})
,

where σ2 = ‖ 1
n

∑n
i=1 Vi‖op and α∗ = maxi∈[n] αi.

Remark 15.1. These are symmetric versions of these inequalities. We can prove non-
symmetric versions by taking A ∈ Rn×d and considering

Q =

[
0 A
A> 0

]
∈ R(n+d)×(n+d).

The singular values of A are related to the eigenvalues of Q.

Going back to the sample covariance, we have ‖Xi‖22 ≤ b and E[XiX
>
i ] = Σ. Then

Σ̂− Σ ∼ sE(bΣ, b), which gives us the matrix Bernstein bound

P(‖Σ̂− Σ‖op ≥ t) ≤ 2d exp

(
−nmin

{
t2

2b‖Σ‖op
,
t

2b

})
.

So with high probability,

‖Σ̂− Σ‖op .

√
b‖Σ‖op log(d/δ)

n
+
b

n
log(d/δ).
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16 Introduction to Sparse Linear Regression

16.1 High-dimensional linear regression

Consider the following high-dimensional linear model, with y = Xθ∗ + w ∈ Rn, where

X ∈ Rn×d is the design matrix and y =

y1

...
yn

 is the response. We write the design

matrix as

X =

x
>
1
...
y>n

 , xi ∈ Rd, i = 1, . . . , n

and the parameter as

θ∗ =

θ
∗
1
...
θ∗n

 .
We interpret

w =

w1

...
wn


as noise. We can also write the problem in the scalar form

yi = 〈xi, θ∗〉+ wi i = 1, . . . , n.

Our task is that we observe (X, y), and we want to estimate θ∗ ∈ Rd.
The classical asymptotic regime is that the dimension d is fixed, and the sample size n

is large. We will focus on the high dimensional regime, in which both d and n are large,
and d > n. In high dimensions, least squares will not give a consistent estimate. We need
some further assumptions on θ∗ and X so that consistent estimation is possible in high
dimensions.

We will assume a sparcity assumption.

Definition 16.1. For θ∗ ∈ Rd, define the support as

S(θ∗) = {j ∈ [d] : θ∗j 6= 0}.

We will assume that |S(θ∗)| ≤ s. If S(θ∗) is known, then n ≥ s is enough for consistent
estimation. We can look at the least-squares problem

min
θS
‖y −XSθS‖22, where θS = (θi)i∈S ∈ R|S|,
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XS =

x
>
1,S
...

x>n,S

 ∈ Rn×|S|, where xi,S = (xi,j)j∈S ∈ R|S|.

which will have a unique minimizer.
Because of this, we will focus on when S(θ∗). We will show that n ≥ s log(d/s). The

interesting regime for this problem is when s� n� d.

16.2 Recovery in the noiseless setting

In the noiseless setting, we have

y = Xθ∗ ∈ Rn, θ∗ ∈ Rd,

where θ∗ is s-sparse. Our task is to recover θ∗ given (X, y). If n < d, there will be infinite
solutions θ such that y = Xθ. The null space of X is

Null(X) := {∆ ∈ Rd : X∆ = 0}.

For all ∆ ∈ Null(X), θ = θ ∗ +∆ satisfies y = Xθ. The feasible space of y = Xθ is the
affine space θ∗ + Null(X) = {θ∗ + ∆ : ∆ ∈ Null(X)}. This gives infinitely many solutions.

To find θ∗, we can use `0-norm minimization:

min
θ:y=Xθ

‖θ‖0, ‖θ‖0 =

d∑
i=1

1{θi 6=0}.

However, this is computationally hard because this norm is not convex. To solve this
problem, we need to search over S ⊆ [d], where |S| is from 1, 2, . . . , s, and look at whether
there is a solution of y = XSθS . The complexity of this problem is

Θ

(
s−1∑
k=1

(
d

k

))
≈ ds,

which is exponential in the sparsity. We would prefer polynomial complexity.
Instead, it is more efficient to consider the convex relaxation of `1-norm minimization:

min
y=Xθ

‖θ‖1 =
d∑
i=1

|θ|.

This problem was called basis pursuit in the original 1994 paper by Chen, Donoho, and
Saunders.12 If we consider the convex dual problem, then we get the LASSO problem, as

12This paper was not published until 1998.
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introduced by Tibshirani. This `1-norm minimization problem can be reformulated as a
linear program and solved efficiently.

Our question is as follows: What is the condition such that the solution

θ̂ := arg min
θ
{‖θ‖1 : y = Xθ}

equals the original θ∗?

16.3 A sufficient condition for exact recovery

Fix θ∗ ∈ Rd with S(θ) = s. We want some condition of X ∈ Rn×d such that

arg min
θ
{‖θ‖1 : Xθ∗ = Xθ} = θ∗.

Notice that Xθ∗ = Xθ means that θ ∈ Null(X) + θ∗, so this condition can be reformulated
as

∀θ ∈ θ∗ + Null(X) \ {θ∗}, ‖θ‖1 > ‖θ∗‖1.

When will this property hold?

Example 16.1. To gain some intuition, consider the case with d = 2, n = 1, and with
dim Null(X) = 1. Then θ∗ + Null(X) is an affine space passing through θ∗.

We can define the tangent cone

T (θ∗) := {∆ ∈ Rd : ‖θ∗ + t∆‖1 ≤ ‖θ∗‖1 for some t > 0}.

105



This enters the picture as follows.

We can see from the picture that we will not have exact recovery exactly when θ∗+Null(X)
intersects the tangent cone at more than one point.

We will get exact recovery when

θ∗ + Null(X) ∩ θ∗ + T (θ∗) = {θ∗},

which is equivalent to the condition

Null(X) ∩ T (θ∗) = {0}.

This is a necessary and sufficient condition for exact recovery.of θ∗. This condition involves
the interplay between properties of X and properties of θ∗.

Let’s see how to reformulate this tangent cone. In our example, d = 2, S = {2}, and
θ∗ = (0, 1)>. Then

T (θ∗) = {(∆1,∆2) : ∃t > 0, ‖(0, 1) + (t∆1 + ∆2)‖1 ≤ ‖(0, 1)‖1}
= {(∆1,∆2) : ∃t > 0, t|∆1|+ |1 + t∆2| ≤ 1}
= {(∆1,∆2) : |∆1| ≤ |∆2|,∆2 ≤ 0}.

In general, suppose S(θ∗) = S ⊆ [d]. Then we can express the tangent cone as

T (θ∗) = {∆ ∈ Rd : ‖∆Sc‖1 ≤ ‖∆S‖1,∆i, θ
∗
i ≤ 0∀i ∈ S}, ∆S = (∆i)i∈S ,∆Sc = (∆i)i∈Sc .

Define the cone
C(S) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ ‖∆S‖1}.

Then T (θ∗) ⊆ C(S) for any S(θ∗) = s. A sufficient condition for exact recovery is that

C(S) ∩Null(X) = {0}.
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Definition 16.2. Let X ∈ Rn×d with S ⊆ [d]. We say taht X satisfies the restricted
nullspace property with respect to S (RN(S)) if

C(S) ∩Null(X) = {0}.

Theorem 16.1. The following are equivalent:

(a) For all θ∗ ∈ Rd with S(θ∗) = S,

arg min
θ
{‖θ‖1 : Xθ∗ = Xθ} = θ∗}.

(b) X satisfies the RN(S), i.e.

C(S) ∩Null(X) = {0}.

Earlier, we said that RN(S) was only a sufficient condition for exact recovery. But this
theorem says that it is necessary to have exact recovery for any θ∗ with S(θ∗) = S.

Proof. (b) =⇒ (a): Let θ̂ ∈ arg minθ{‖θ‖1 : Xθ∗ = Xθ}. Then ‖θ̂‖1 ≤ ‖θ̂∗‖1. Now
suppose we define ∆̂ = θ̂ − θ∗ ∈ Null(X); we want to show that ∆̂ ∈ C(S). Then we have

‖θ∗S‖1 = ‖θ∗1‖

≥ ‖θ∗ + ∆̂‖1
= ‖θ∗S + ∆̂S‖1 + ‖ θ∗Sc︸︷︷︸

=0

+∆̂Sc‖1

Using the triangle inequality,

≥ ‖θ∗S‖1 − ‖∆̂S‖1 + ‖∆̂Sc‖1.

Cancelling ‖θ∗S‖1 on both sides, we get ‖∆̂Sc‖1 ≤ ‖∆̂S‖. That is, ∆̂ ∈ C(S)∩Null(X). By

our assumption, this means ∆̂ = 0, so θ̂ = θ∗.
(a) =⇒ (b): Let θ̃ ∈ Null(X) \ {0}. We want to construct a θ∗ so that to recover θ∗,

we need RN(S). We will not prove this direction because it is mostly more algebra.

What are examples of matrices satisfying RN(S)? For a random matrix X ∈ Rn×d with

Xi,j
iid∼ N(0, 1), RN(S) is satisfied with high probability as long as n & s log(d/s). This is

one of the main components of compressed sensing. If you want to estimate a sparse
signal, you can apply a random matrix and solve this `1 minimization problem.
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17 Sufficient Conditions for Exact Recovery in Sparse Lin-
ear Regression and Introduction to Noisy, Sparse Linear
Regression

17.1 Recap: sparse linear regression via the restricted nullspace condi-
tion

Our model is a the high dimensional sparse linear model, y = Xθ∗ ∈ Rn, where X ∈ Rn×d,
θ∗ ∈ Rd and the support of θ∗ has cardinality |S(θ∗)| ≤ s. Given (y,X), we want to recover
θ∗. When d > n, we want

θ̂ := arg min
y=Xθ

‖θ‖1.

When can we have exact recovery? Last time, we had the following condition.

Definition 17.1 (Restricted nullspace). Let S ⊆ [d]. X ∈ Rn×d satisfies RN(S) if C(S)∩
Null(X) = {0}, where

C(S) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ ‖∆S‖1}.

Theorem 17.1. The following are equivalent:

1. For all θ∗ ∈ Rd with S(θ∗) = S,

arg min
θ
{‖θ‖1 : Xθ∗ = Xθ} = θ∗}.

2. X satisfies RN(S), i.e. Null(X) capC(S) = {0}.

However, it is hard to verify the restricted nullspace property for a matrix, since we
need to check all subsets of [d] of cardinality s. How can we find examples of matrices
satisfying this property?

17.2 Two sufficient conditions for the restricted nullspace property

The intuition is that if d < n (which is not the case we want to solve), X is full-rank, so
we can take X>X/n = Id. This implies that Null(X) = {0} because

‖Xv‖22/n = v>(X>X/n)v = v>Idv = ‖v‖22.

Since C(S) is basically {θ : S(θ) = S}, we can restrict to S. So as long as we have
(X>X)s,s/n = IS , if v ∈ {θ : S(θ) = s} ∩Null(X), we can say

v>(X>X/n)v = v>s (X>X/n)s,svs = ‖vs‖22.

This equals 0, so we get vS = 0; i.e. v = 0.
This motivates the following definitions.
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Definition 17.2. Let Γ = X>X/n− Id. The pairwise incorherence13 is

δPW(X) = max
i,j
|Γi,j | = max

i,j
|(X>X/n− Id)i,j |.

The restricted isometry constant14 is

δs(X) = max
|S|≤s

‖ΓS,S‖op = max
|S|≤s

‖X>S XS/n− IS‖op,

where XS ∈ Rn×s is the matrix where we only keep the columns in S.

Note that δd = ‖Γ‖op.

17.2.1 The pairwise incoherence condition

Proposition 17.1 (Incoherence implies RN(S)). If δPW(X) ≤ 1
3s , then X satisfies RN(S)

for any |S| ≤ s.

Proof. Assume that δPW(X) ≤ 1
3s , and take any θ ∈ Null(X) \ {0}; we want to show that

θ /∈ C(S). Let S ⊆ [d] with |S| ≤ s. That is, our goal is to show that ‖θSc‖1 > ‖θS‖1. The
nullspace condition gives

0 = ‖Xθ‖22
We now want to decompose this into θS and θSc so these two quantities appear. Writing
θS ∈ Rd,

= ‖X(θSc + θS)‖22
= θ>SX

>
S XSθS + 2θScX

>
ScXSθS + ‖XScθSc‖22︸ ︷︷ ︸

≥0

.

This implies that

θ>SX
>
S XSθS ≤ 2|θ>ScX>ScXSθS |.

We can normalize by n to get

θ>S (X>S XS/n)θS ≤ 2|θ>Sc(X>ScXS/n)θS |.

The left hand side is

θ>S (X>S XS/n)θS ≥ λmin(X>S XS/n)‖θS‖22
Using the fact that ‖θ‖21 ≤ ‖θ‖0‖θ2

2, we get the lower bound

≥ λmin(X>S XS/n)‖θS‖21/s.
13The pairwise incorherence was introduced in 2001 by Donoho and Huo.
14The restricted isometry constant was introduced by Candès and Tao in 2005
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To upper bound the right hand side, we use the fact that a>Ab ≤ ‖a‖1‖Ab‖∞ ≤ ‖a‖1‖A‖max‖b‖1.
Then

2|θ>Sc(X>ScXS/n)θS | ≤ ‖θS‖1‖θSc‖1‖X>ScXS/n‖max/

Putting these inequalities together gives

‖θSc‖1
‖θS‖1

≥ λmin(X>s Xs/n)

2s‖X>ScXS/n‖max
.

So far, we have not used the pairwise incoherence. We claim that the pairwise inco-
herence condition δPW(X) < 1

3s makes the right hand side > 1. The key is to observe
that ‖X>ScXS/n‖max ≤ δPW(X) and that λmin(X>s Xs/n) ≥ 2/3 if the pairwise incoherence
condition is satisfied.

17.2.2 The restricted isometry property

Here is another condition that implies the restricted nullspace property.

Proposition 17.2 (Restricted isometry property implies RN(S)). If δ2s(X) ≤ 1/3, then
X satisfies RN(S) for any |S| ≤ s.

This is proposition 7.11 in Wainwright’s textbook, and we will not provide the proof
here.

Remark 17.1. In general, we have the algebraic inequality

δPW(X) ≤ δS(X) ≤ sδPW(X).

The pairwise incoherence is computable in polynomial time, while the weaker RIP
condition needs time

∑s
k=1

(
d
k

)
. Here is an exercise which shows that we can satisfy these

conditions randomly.

Proposition 17.3. Let X ∈ Rn×d and Xi,j
iid∼ N(0, 1). Then

(a) If n & s2 log d, then δPW(X) ≤ 1
3s with high probability.

(b) If n & s log( eds ), then δ2s(X) ≤ 1
3 with high probability.

Here is the idea of the proof.

Proof.
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(a) Write

δPW = max
i,j
|(X>X/n− Id)i,j |

= max
i,j

∣∣∣∣∣ 1n
n∑
k=1

xi,kxj,k − δi,j

∣∣∣∣∣
Note that E[ 1

n

∑n
i=kXi,kXj,k] = δi,j , so Ii,j = 1

n

∑n
i=kXi,kXj,k]−δi,j will be sE( 1√

n
1
n)

for fixed i, j. Then Bernstein’s inequality gives

P(|Ii,j | ≥ t) ≤ 2 exp(−cnmin(t, t2)).

Using a union bound, we get

P
(

max
i,j
|Ii,j | ≥ t

)
≤ 2d2 exp(−cnmin(t, t2)).

Now, if we let t = 1
3s , call the right hand side δ, and solve for n, we get the condition

n & s2 log(d.δ).

(b) The proof is similar, using the matrix version of concentration.

Remark 17.2. Certain random matrix distributions will satisfy RN(S) but not the RIP

or coherence. For example, we will show later that if Xi
iid∼ N(0,Σ), where Σ = (1 −

µ)Id + µ11>, then X still satisfies RN(S) with high probability. Here is a figure from
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Wainwright’s textbook:

Here, there is a phase transition threshold which needs to be identified with an asymptotic
analysis that we will not cover.

17.3 Estimation in the noisy setting

Now we will change our model to y = Xθ∗ + w ∈ Rn, where

w =

w1

...
wn

 ∈ Rn, X ∈ Rn×d, X =

x
>
1
...
x>n

 , θ∗ =

θ
∗
1
...
θ∗n

 .
We assume the sparsity condition |S(θ∗)| ≤ s. Given (y,X), we want to estimate θ∗. This
time, we want to minimize ‖θ‖1 subject to the constraint that ‖y −Xθ‖ ≤ b2.

Here are three equivalent formulations of the LASSO problem, which we use for our
estimation:
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1. The λ formulation:

θ̂ = arg min
θ∈Rd

{
1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
,

2. 1-norm constrained formulation:

arg min
θ

{
1

2n
‖y −Xθ‖22

}
s.t. ‖θ‖1 ≤ R

3. The error constrained formulation:

arg min
θ
{‖θ‖1} s.t.

1

2n
‖y −Xθ‖22 ≤ b2.

These are equivalent in the sense that for all λn > 0, there is an R < ∞ such that
the solution fo the 1-norm constrained formulation with parameter R is a solution of the
λ formulation. Similarly, we can go the other way. This equivalence requires a condition
on X and is just convex duality.

How can we bound the estimation error? We will discuss this next time.
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18 Efficient Error Estimation for Noisy, Sparse Linear Re-
gression

18.1 Recap: introduction to noisy, sparse linear regression

We are investigating sparse linear regression, with the model y = Xθ∗ + w ∈ Rn, where

w =

w1

...
wn

 ∈ Rn, X ∈ Rn×d, X =

x
>
1
...
x>n

 , θ∗ =

θ
∗
1
...
θ∗n

 .
We assume the sparsity condition |S(θ∗)| ≤ s. Given (y,X), our task is to estimate θ∗. We
had three formulations of the LASSO problem:

1. The λ formulation:

θ̂ = arg min
θ∈Rd

{
1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
,

2. 1-norm constrained formulation:

arg min
θ

{
1

2n
‖y −Xθ‖22

}
s.t. ‖θ‖1 ≤ R

3. The error constrained formulation:

arg min
θ
{‖θ‖1} s.t.

1

2n
‖y −Xθ‖22 ≤ b2.

Given these three formulations, how can we give a tight upper bound of the estimation
error ‖θ̂−θ∗‖2? Last time, in the noiseless setting, we had the restricted nullspace condition
Null(X) ∩ C(S) = {0}, which was sufficient for exact recovery of θ∗. In this noisy setting,
we will have the restricted eigenvalue condition, which will be sufficient for efficient
estimation.

18.2 The restricted eigenvalue condition

Recall the C cone
C(S) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ ‖∆S‖1}.

We can modify this by adding a parameter:

Cα(S) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ α‖∆S‖1}.
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In this extended definition, C(S) = C1(S). If we let α→ 0, we get

C0(S) = ∆ ∈ Rd : S(∆) = S}.

Later we will focus on the Cα cone for α = 3.

Definition 18.1. X ∈ Rn×d satisfies the restricted eigenvalue condition over S ⊆ [d]
with parameter (κ, α) (denoted RE(S, (κ, α))) if

〈∆, ( 1
nX
>X)∆〉 =

1

n
‖X∆‖22 ≥ κ‖∆‖22 ∀∆ ∈ Cα(S).

This is called the restricted eigenvalue condition because the condition

〈∆, ( 1
nX
>X)∆〉 ≥ κ‖∆‖22 ∀∆ ∈ Rd

is equivalent to λmin( 1
nX
>X) ≥ κ.

Here is some intuition. We can think of the RE condition as a sort of strong convexity
for the objective function. Suppose we define the objective function

Ln(θ) =
1

2n
‖y −Xθ‖22,

which we want to minimize to get a minimizer θ̂. The Hessian is

∇2Ln(θ) =
1

n
X>X ∈ Rd.

When the sample size is large, we know that there is concentration:

sup
θ∈Rd
|Ln(θ)− E[Ln(θ)]| ≤ small,

but we want to bound ‖θ̂− θ∗‖2. If the Hessian is lower bounded by a large number, then
the objective function will grow very fast around the minimizer. On the other hand, a

115



weak bound may mean that the objective function grows too slowly around the minimizer.

18.3 Bounds on `2 error

Our setting is
Y = Xθ∗ + w, X ∈ Rn×d, θ∗ ∈ Rd, w ∈ Rn,

where s� n� d. We make two assumptions:

(A1): S(θ∗) = S ⊆ [d], where |S| = s.

(A2): X satisfies RE(S, (κ, α = 3)).

(A2) is a bit of an abstract condition. Later, we will show that Gaussian random
matrices satisfy (A2) when the sample size n is larger enough than the sparsity level s.

Theorem 18.1. Under assumptions (A1) and (A2),

(a) λ formulation: Take the Lagrangian parameter λn ≥ 2‖X>wn ‖∞. Then

‖θ̂ − θ∗‖2 ≤
3

κ

√
λn

(b) 1-norm constraint formulation: Take R = ‖θ∗‖1. Then

‖θ̂ − θ∗‖2 ≤
4

κ

√
s

∥∥∥∥X>wn
∥∥∥∥
∞
.
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(c) Error constraint formulation: Let b2 ≥ ‖w‖
2
2

2n . Then

‖θ̂ − θ∗‖ ≤ 4

κ

√
s

∥∥∥∥X>wn
∥∥∥∥+

2√
κ

√
b2 − ‖w‖

2
2

2n
.

In all these cases, we have the 1-norm bound

‖θ̂ − θ∗‖1 ≤ 4
√
s‖θ̂ − θ∗‖2.

Remark 18.1. This theorem is fully deterministic. There is no probability happening,
and this theorem is entirely due to algebra.

Remark 18.2. The bound 1
κ is independent of n.

Remark 18.3. People generally think that the λ formulation is best because the bound
is not so sensitive to the choice of the hyperparameter λn. In the second formulation, it is
also difficult to pick R because we do not know what ‖θ̂∗‖1 is.

In all cases, the error bound is
√
s‖X>wn ‖∞, and it is difficult to know what the typical

size of this is. We make a further assumption: Assume X is deterministic with RE(S, (κ, 3))

with maxj∈[d]
‖xj‖2√

n
≤ C, where xj ∈ Rn is the j-th column of X. Let w ∼ sG(σ) with

E[w] = 0.
If these assumptions hold, then we claim that∥∥∥∥X>wn

∥∥∥∥
∞

= max
i∈[d]
|〈Xj , w〉/n| . σ

√
log d

n
.

Here, 〈xj , w〉/n ∼ sG(σ
√

1/n). This tells us that

‖θ̂ − θ∗‖2 .
√
s

∥∥∥∥X>wn
∥∥∥∥
∞

.

√
s log d

n
.

So we will have efficient estimation as long as n� (σ2 ∨ 1)s log d.

18.4 Proof of RE condition bounds

The overall strategy is two steps:

1. Derive a basic inequality (the zero order optimality condition)

2. Algebraic manipulation.
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Proof. (b): let’s prove the 1-norm constraint formulation,

θ̂ = arg min
θ

1

2n
‖y −X|theta‖22 s.t. ‖θ‖1 ≤ ‖θ∗‖1 = R.

By the optimality of θ̂, we know

1

2n
‖y −Xθ̂‖22 ≤

1

2n
‖y −Xθ∗‖22.

This is the zero order optimality condition. (The first order optimality condition for opti-
mizing f(x) subject to g(x) ≤ 0 is ∇f(x̂) = λ∇g(x̂), where λ is a scalar.) Here the right
hand side is 1

2n‖w‖
2
2, and the left hand side is 1

2n‖w +X(θ∗ − θ̂)‖22. So we have

‖w‖22 ≥ ‖w +X(θ∗ − θ̂)‖22
= ‖w‖22 + 2〈w,X(θ∗ − θ̂)〉+ ‖X(θ∗ − θ̂)‖22

Denote ∆̂ = θ̂ − θ∗, which is what we want to bound. We can solve this to get

‖X∆̂‖22 ≤ 2〈w,X∆̂〉.

Thus, our basic inequality is:
1

n
‖X∆̂‖22 ≤

2

n
w>X∆̂.

If ∆̂ ∈ Cα(S), the left hand side can be lower bounded by

1

n
‖X∆̂‖22 ≥ κ‖∆̂‖22,

using the restricted eigenvalue condition. To check why ∆̂ ∈ Cα(S), note that the condition
‖θ̂‖1 ≤ ‖θ∗‖1 tells us that ∆̂ ∈ C(S) ⊆ C3(S).

The right hand side can be upper bounded by viewing the scalar w>X∆̂ as the product
of the vectors w>X and ∆̂:

2

n
w>X∆̂ ≤ 2

n
‖X>w‖∞ · ‖‖̂1.

Since ∆̂ ∈ C(S), we can efficiently bound the 1-norm in terms of the 2-norm:

‖∆̂‖1 = ‖∆̂Sc‖1 + ‖∆̂S‖1 ≤ 2‖∆̂S‖1 ≤ 2
√
s‖∆̂S‖2 ≤ 2

√
s‖∆̂‖2.

Using this in our inequality and dividing by κ on both sides gives

‖∆̂‖2‖ ≤
4
√
s

κ

∥∥∥∥X>wn
∥∥∥∥
∞
.
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Remark 18.4. If instead of bounding by ‖X>w‖∞ ·‖‖̂1, we try to bound by ‖X>w‖2 ·‖‖̂2,

then we get ‖∆̂‖2 ≤ 2
κ‖X

>w/n‖2 ∼
√

d
n . This is worse than the rate

√
log d
n .

The proof of (c) follows the same lines:

Proof. The error-constraint formulation

θ̂ = arg min
θ
{‖θ‖1} s.t.

1

2n
‖y −Xθ‖22 ≤ b2.

gives (using y −Xθ̂ = w −X∆̂).{
‖θ̂‖1 ≤ ‖θ∗‖1,
1

2n‖w +X∆̂‖2 ≤ 1
2n‖w‖

2
@ +

(
b2 − 1

2n‖w‖
2
2

)
The algebra proceeds the same as for (b), but we have to keep track of the additive term

2√
κ

√
b2 − ‖w‖

2
2

n .

The proof of (a) has slightly different reasoning:

Proof. We first show that when λn ≥ 2‖X>wn ‖∞, we have ∆̂ ∈ C3(S). By optimality, we
have

1

2n
‖w +X∆̂‖22 + λn‖θ∗ + ∆̂‖1 ≤

1

2n
‖w‖22 + λn‖θ∗‖1.

This gives us the Lagrangian basic inequality

1

2n
‖X∆̂‖22 ≤

w>X>∆̂

n
+ λn(‖θ∗‖1 − ‖θ∗ + ∆̂‖1)

We can upper bound the right hand side by

≤
∥∥∥∥X>wn

∥∥∥∥
∞
‖∆̂‖1 + λn(‖θ∗S‖1 − ‖θ∗S + ∆̂S‖1 − ‖∆̂Sc‖1)

≤
∥∥∥∥X>wn

∥∥∥∥
∞
‖∆̂‖1 + λn(‖∆̂S‖1 − ‖∆̂Sc‖1)

≤ λn
2

(3‖∆̂S‖1 − ‖∆̂Sc‖1.

This upper bound must be nonnegative, so

‖∆̂Sc‖1 ≤ 3‖∆̂S‖1,

which means that ∆̂ ∈ C3(S). Now, by the RE condition and this bound we have shown,

κ

2
‖∆̂‖22 ≤

λn
2

(3‖∆̂S‖1 − ‖∆̂Sc‖1)
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≤ λn
2

3
√
s‖∆̂‖2.

Canceling a factor of ‖∆̂‖2 on both sides, we get ‖∆̂‖2 ≤ 3λn
κ

√
s.

Next time, we will show that the RE condition is satisfied with high probability for
Gaussian random matrices.
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19 Restricted Eigenvalue Condition for Gaussian Random
Matrices

19.1 Recap: Noisy, sparse linear estimation and the restricted eigenvalue
condition

Let’s continue our analysis of noisy, sparse linear regression. Our model is y = Xθ∗ +w ∈
Rn, where

w ∈ Rn, X =

x
>
1
...
x>n

 ∈ Rn×d, θ∗ ∈ Rd, |S(θ∗)| ≤ s.

We looked at the λ formulation of the LASSO problem, where

θ̂ ∈ arg min
θ∈Rd

1

2n
‖y −Xθ‖22 + λn‖θ‖1.

We also looked at the 1-norm constrained and error-constrained formulations of the prob-
lem. We defined the Cα cone

Cα(S) = {∆ ∈ Rd : ‖∆Sc‖1 ≤ α‖∆S‖1}.

Using this cone, we defined the restricted eigenvalue condition for efficient bounds on
estimation.

Definition 19.1. X ∼ RE(S, (κ, α)) if

1

n
‖X∆‖22 ≥ κ‖∆‖22 ∀∆ ∈ Cα(S).

We proved the following result.

Theorem 19.1. Assume that RE(s, (κ, 3)). With a proper choice of hyperparameter, we
have

‖θ̂ − θ∗‖2 .
1

κ

√
s

∥∥∥∥X>wn
∥∥∥∥
∞

. σ

√
s log d

n
.

Now we would like to answer the question: when does RE hold?

19.2 Restricted eigenvalue condition for Gaussian random matrices

Theorem 19.2. Let Xi
iid∼ N(0,Σ), where Σ ∈ Sd×d+ . There exist universal constants

c1 < 1 < c2 such that

‖X∆‖22
n

≥ c1‖
√

Σ∆‖22 − c2ρ
2(Σ)

log d

n
‖∆‖21 ∀∆ ∈ Rd

with probability at least 1− e−n/32

1−en/32 . Here, ρ2(Σ) = maxi∈[d] Σi,i.
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We think of this as a generalized RE condition. Let’s show that this implies RE(S, (κ, 3))
for every S with cardinality ≤ s. For all ∆ ∈ C3(S), we want to show that ‖∆Sc‖1 ≤
3‖∆S‖1. Given the inequality ‖∆‖21 ≤ 4s‖∆‖22, we can lower bound the right hand side in
the theorem:

c1‖
√

Σ∆‖22 − c2ρ
2(Σ)

log d

n
‖∆‖21 ≥ c1λmin(Σ)‖∆‖22 − c2ρ

2(Σ)
log d

n
4s‖∆‖22

=

(
c1λmin(Σ)− 4c2ρ

2(Σ)
s log d

n

)
︸ ︷︷ ︸ ‖∆‖22

If n ≥ s log d8c2
c1

ρ2(Σ)
λmin(Σ) , we have the inequality 4c2ρ

2(Σ) s log d
n ≤ c1

2 λmin(Σ). We can use it
to lower bound the bracketed part.

≥ 1

2
cλmin(Σ)‖∆‖22.

Proof. Let’s prove the theorem in the case where Σ = Id, so Xi
iid∼ N(0, Id). Our goal is

the inequality
‖X∆‖22
n

+ c′2
log d

n
‖∆‖21 ≥ c′1‖∆‖22 ∀∆ ∈ Rd.

Call ‖X∆‖22 the “X norm of ∆.” We want to relate this to the 1-norm and 2 norm of ∆.
A sufficient condition is to have

‖X∆‖2√
n

+ c2

√
log d

n
‖∆‖1 ≥ c1‖∆‖2 ∀∆ ∈ Rd

because if a, b > 0, then a+ b ≤ c =⇒ a2 + b2 ≤ c2. This inequality is invariant to scaling
∆, so it is sufficient to show that

‖X∆‖2√
n

+ c2

√
log d

n
‖∆‖1 ≥ c1 ∀‖∆‖2 = 1.

So we want to check that

‖X∆‖2√
n
≥ c1 − c2

√
log d

n
‖∆‖1 ∀‖∆‖2 = 1.

It is sufficient to show this for all ∆ with bounded 1-norm:

‖X∆‖2√
n
≥ c1 − c2

√
log d

n
r ∀‖∆‖2 = 1, ‖∆‖1 ≤ r

for all r > 0. This means we can show that

inf
‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n
≥ c1 − c2

√
log d

n
r ∀r > 0.
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The intuition is that we want to apply the Gaussian comparison inequality, for which
we need a ‖X∆‖2 on the left hand side and no ∆ dependence on the right hand side. We
have 3 steps:

Step 1: Expectation bound for fixed r > 0 (Gaussian comparison inequality)

E
[

inf
‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n

]
≥ c1 − c2

√
log d

n
r

Step 2: Concentration for fixed r > 0 (Gaussian concentration)

Gr =

{
inf

‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n
≥ c1 − c2

√
log d

n
r

}
occurs with high probability.

Step 3: Union bound over r > 0 (Peeling argument): Let G =
⋂
r>0Gr, so that

Gc =
⋃
r>0G

c
r. Then we can calculate

P(Gc) ≤
∑
r>0

P(Gcr).

We need to discretize the sum to get a bound that works.

We provide the rest of the proof in lemmas.

Lemma 19.1 (Gaussian comparison). There exist constants c1, c2 such that

E
[

inf
‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n

]
≥ c1 − c2

√
log d

n
r

Proof. By the variational representation of the norm,

E
[

inf
‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n

]
= E

[
inf

∆∈Sd−1(1)∩B1(r)
sup

u∈Sn−1

〈u,X∆〉
n

]
.

By Gordon’s inequality,

E
[

inf
∆∈S

sup
u∈T
〈u,X∆〉

]
≥ E

[
inf

∆∈S
sup
u∈T
〈h,∆〉+ 〈g, u〉

]
,

for any S, T , where Xi,j , gi, hi
iid∼ N(0, 1). So we get

E
[

inf
‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n

]
≥ E

[
inf

∆∈Sd−1(1)∩B1(r)
sup
‖u‖2=1

〈h,∆〉√
n

+
〈g, u〉√
n

]
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= E

[
inf
∆

〈h,∆〉√
n

+ sup
‖u‖2=1

〈g, u〉√
n

]

= E
[

inf
‖∆‖2=1,‖∆‖1≤r

〈h,∆〉√
n

]
+ E

[
sup
‖u‖2=1

〈g, u〉√
n

]
Since E[‖g2‖2/n] = 1, the expectation of the square root will be close to 1. We have
the lower bound E[‖g‖2/

√
n] ≥ 1/4. The first term on the other hand, can be expresed

as −E
[
sup‖∆‖2=1,‖∆‖1≤r

〈−h,∆〉√
n

]
≥ −E

[
sup‖∆‖1≤r

〈−h,∆〉√
n

]
= −E

[
‖−h‖∞√

n

]
r ≥ −2

√
log d
n r.

So we get

≥ 1

4
− 2

√
log d

n
r.

Lemma 19.2 (Concentration). Let Xi,j
iid∼ N(0, 1). The the event

Gr =

{
inf

‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n
≥ c1 − c2

√
log d

n
r

}
occurs with high probability.

Proof. Define the function

f(X) = inf
‖∆‖2=1,∆∈S

‖X∆‖2√
2

.

We want to show that f is Lipschitz for the Frobenius norm, so we can use the Gaussian
concentration lemma. Define ∆∗ = arg min ‖X2∆‖2/

√
n. Then

f(X1)− f(X2) ≤ ‖X1∆∗‖1√
n

− ‖X2∆∗‖2√
n

≤ ‖(X1 −X2)∆∗‖1√
n

≤ ‖X1 −X2‖op‖∆∗‖1√
n

≤ ‖X1 −X2‖F√
n

This means that f is 1√
n

-Lipschitz in ‖X‖F , so f(X) is sG(1/
√
n). Then

P(f(X) ≤ E[f(X)]− t) ≤ e−nt2/2,

so

Gr :=

{
inf

‖∆‖2=1,‖∆‖1≤r

‖X∆‖2√
n
≥ c1 − c2

√
log d

n
r

}
occurs with high probability.

124



Lemma 19.3 (Peeling argument). Let the bad event be

Gc =

{
∃∆, ‖∆‖2 = 1 s.t.

‖X∆‖2√
n
≤ c1 − c2

√
log d

n
‖∆‖1

}
.

then Gc ⊆
⋃mmax
m=mmin

Gc2m+1, so P(Gc) ≤
∑mmax

m=mmin
P(Gc2m+1).

Proof. Note that ‖∆‖2 ≤ ‖∆‖1 ≤
√
d‖∆‖2, so we get 1 ≤ ‖∆‖1 ≤

√
d. We discretize the

interval in the log scale:

[1,
√
d] =

mmax⋃
m=0

[2m, 2m+1), mmax = log2(
√
d) ≈ log d.

The we can write

Gc ⊆
mmax⋃

m=mmin

{
∃∆, ‖∆‖2 = 1, 2m ≤ ‖∆‖1 ≤ 2m+1 s.t.

‖X∆‖2√
n
≤ c1 − c2

√
log d

n
2m

}

⊆

{
inf

‖∆‖2=1,‖∆1≤2m+1

‖X∆‖2√
n
≤ c1 −

c2

2

√
log d

n

}
︸ ︷︷ ︸

Gc
2m+1

.

So we have shown that Gc ⊆
⋃mmax
m=mmin

Gc2m+1 .

19.3 LASSO oracle inequality

We have shown that we can efficiently bound the approximation error of θ∗ if θ∗ is sparse.
But what if θ∗ is not exactly sparse but is instead approximately sparse? That is, what if
θ∗Sc 6= 0 but ‖θ∗Sc‖1 is small?

Definition 19.2. We say that an estimator θ̂ satisfies an oracle inequality with respect
to the risk R, set Θ, and model {Pθ : θ ∈ Θ∗} (Θ ⊆ Θ∗), if there exist constants c and
εn(Pθ∗ ,Θ) such that for any θ∗ ∈ Θ∗, then

R(θ̂; θ∗) ≤ c inf
θ∈Θ

R(θ; θ∗)︸ ︷︷ ︸
approx. error/oracle risk

+ εn(Pθ∗ ,Θ)︸ ︷︷ ︸
statistical error

.

We hope that c is not too large and that εn is small. If θ∗ ∈ Θ, then

inf
θ∈Θ

R(θ; θ∗) = 0.
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Let Θ = {∆Rd : ‖∆‖0 ≤ s} be the set of s-sparse vectors and let R(θ; θ∗) = ‖θ − θ∗‖2.
Then if θ∗ is s-sparse, infθ∈ΘR(θ; θ∗) = 0. If θ∗ is not s-sparse, then

inf
θ∈Θ

R(θ, θ∗) > 0.

We use our generalized RE condition:

‖X∆‖22
n

≥ c1‖
√

Σ∆‖22 − c2ρ
2(Σ)

log d

n
‖∆‖21, ∀∆ ∈ Rd.

Theorem 19.3 (LASSO oracle inequality). Assume the generalized RE condition holds

for X ∈ Rn×d. Let θ̂ be solution to the λ formulation of LASSO with λn ≥ 2‖X>wn ‖∞.
Then for any S with |S| ≤ c1

64c2
κ

ρ2(Σ)
n

log d (where κ = λmin(Σ),

‖θ̂ − θ∗‖22 ≤
144

c2
1

λ2
n

κ2 |S|︸ ︷︷ ︸
statistical error .σ2 s log d

n

+
16

c1

λn
κ
‖θ∗Sc‖1 +

32c2

c1

ρ2(Σ)

κ

log d

n
‖θ∗Sc‖21︸ ︷︷ ︸

approx. error/oracle risk .εn+ε2n

,

where εn =
√

log d
n ‖θ

∗
Sc‖1.

Proof. This this a deterministic inequality, so the proof is to derive a basic inequality and
then use some algebra. The proof is in the textbook.
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20 LASSO Prediction Error Bound and High-Dimensional
Principal Component Analysis

20.1 Recap: overview of results for noisy, sparse linear regression

Let’s finish up our analysis of noisy, sparse linear regression. Our model is y = Xθ∗ +w ∈
Rn, where

w ∈ Rn, X =

x
>
1
...
x>n

 ∈ Rn×d, θ∗ ∈ Rd, |S(θ∗)| ≤ s.

We looked at the λ formulation of the LASSO problem, where

θ̂ ∈ arg min
θ∈Rd

1

2n
‖y −Xθ‖22 + λn‖θ‖1.

We also looked at the 1-norm constrained and error-constrained formulations of the prob-
lem. We defined the Cα cone

Cα(S) = {∆ ∈ Rd : ‖∆Sc‖1 ≤ α‖∆S‖1}.

Using this cone, we defined the restricted eigenvalue condition for efficient bounds on
estimation.

Definition 20.1. X ∼ RE(S, (κ, α)) if

1

n
‖X∆‖22 ≥ κ‖∆‖22 ∀∆ ∈ Cα(S).

We proved the following result, upper bounding the estimation error.

Theorem 20.1. Assume that RE(s, (κ, 3)). With a proper choice of hyperparameter, we
have

‖θ̂ − θ∗‖2 .
1

κ

√
s

∥∥∥∥X>wn
∥∥∥∥
∞

. σ

√
s log d

n
.

We also showed that Gaussian random matrices satisfy this condition with high prob-
ability.

Theorem 20.2. Let X ∈ Rn×d have iid N(0, 1) entries. If n & s log d, then with high
probability, X ∼ RE(S, (κ, 3)) for all |S| ≤ s.
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20.2 LASSO prediction error bound

Instead of bounding ‖θ̂− θ∗‖2, we would like to bound the prediction errror (with fixed
design):

1

n
Ew̃[‖ỹ −Xθ̂‖22] =

1

n
‖X(θ̂ − θ∗)‖22 + σ2,

where ỹ = Xθ∗ + w̃ and ∼̃N(0, σ2Id). We can upper bound 1
n‖X(θ̂ − θ∗‖22 ≤ ‖θ̂ −

θ∗‖22‖X>X/n‖op; however, this is not always a good bound because ‖X>X/n‖op, which
has order d/n (which blows up for n� d). Instead, we want to bound the prediction error
directly

Theorem 20.3 (Prediction error bound). Let θ∗ be s-sparse. Assume that the hyperpa-

rameter in the λ-formulation of the LASSO problem is λn ≥ 2‖X>wn ‖∞. Then

1. Any optimal solution θ̂ satisfies the bound

1

n
‖X(θ̂ − θ∗)‖22 ≤ 12‖θ∗‖1λn.

2. If X satisfies RE(S, (κ, 3)), then

1

n
‖X(θ̂ − θ∗)‖22 ≤

9

κ
sλ2

n.

Proof. As before, the proof is a basic inequality, plus some algebra.

Remark 20.1. The first bound is . ‖θ∗‖1
√

log d
n , so we get decay O(1/

√
n). This is called

the slow rate bound. The second bound is . s(
√

log d
n )2, so we get decay O(1/n). This

is called the fast rate bound. Usually, without imposing any geometric assumptions, we
get a slower rate bound than we get with such assumptions.

This phenomenon occurs in many settings such as in the empirical risk minimization
problem.
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The setting is that we have data (zi)i∈[n]
iid∼ Pz and a loss function ` : Θ × Z → R. The

empirical risk is

R̂n(θ) =
1

n

n∑
i=1

`(θ;Xi),

and the population risk is
R(θ) = E[`(θ;Zi)].

If we take θ̂ = arg minθ R̂n(θ), the minimizer of the empirical risk, then our generalization
error is

R(θ̂)−R(θ∗).

Without geometric assumptions, we can show a uniform convergence bound

R(θ̂)−R(θ∗) ≤ 2 sup
θ∈Θ
|R̂n(θ)−R(θ)|.

Suppose Θ = B(0, 10‖θ∗‖). The upper bound of such an empirical process usually scales
linearly in ‖θ∗‖, which does not give a very sharp prediction error bound.

Here is what we get with a geometric assumption. Assume that κ‖θ̂ − θ∗‖22 ≤ (R(θ̂)−
R(θ∗)). Here, κ is a strong convexity parameter. With this assumption, we can show
an upper bound that is like

R(θ̂)−R(θ∗) ≤ 2 sup
θ∈B(θ∗,‖θ̂−θ∗‖2)

|R̂n(θ)−R(θ)| . ‖θ̂ − θ∗‖2

√
d log d

n
.

This is nice because it scales linearly in the estimation error, which is usually smaller than

‖θ∗‖. We can bound ‖θ̂ − θ∗‖2 .
√

d log d
n . Applying the geometric assumption gives the

bound

R(θ̂)−R(θ∗) ≤ d log d

n
.

20.3 Principal component analysis in high dimensions

Suppose we observe covariates X1, X2, . . . , Xn
iid∼ X ∈ Rd with E[X] = 0 and Cov(X) =

Σ ∈ Sd×d+ . Let the eigenvalues of Σ be λ1(Σ) ≥ λ2(Σ) ≥ · · · ≥ λd(Σ) ≥ 0. We can find
an orthonormal basis of eigenvectors v1(Σ), . . . , vd(Σ) ∈ Rd such that Σvi = λivi for all
i ∈ [d]. If we let Λ = diag(λ1, . . . , λd) ∈ Rd×d nad B = [v1, . . . , vd] ∈ Rd×d, then we can
write Σ = V ΛV >.

The statistical interpretation of v1 is that

v1 ∈ arg max
‖v‖2=1

Var(〈x, v〉) X ∈ Rd,E[X] = 0.

= arg max
‖v‖2=1

〈v,E[XX>]v〉
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= arg max
‖v2‖=1

〈v,Σv〉.

More generally, if we let Vk = [v1, . . . , vk] ∈ Rd×k, then

Vk ∈ arg max
U∈Rd×k

partial orth.

E[‖U>X‖22]︸ ︷︷ ︸∑k
i=1 Var(〈X,ui〉)

.

Here is our statistical question: Given samples {Xi}i∈[n]
iid∼ X ∈ Rd, how can we

estimate the principal components? Straightforwardly, we can use the eigenvectors of the
sample covariance. If we define the sample covariance matrix

Σ̂ =
1

n

n∑
i=1

XiX
>
i , E[Σ̂] = Σ,

then our estimator is
θ̂ = arg max

θ
〈θ, Σ̂θ〉.

By comparison, the ground truth is

θ∗ = arg max
‖θ‖2=1

〈θ,Σθ〉.

How close is θ̂ to θ∗? We want to translate the closeless of Σ and Σ̂ to closeness of θ and
θ∗. To quantify this, recall Weyl’s eigenvalue perturbation inequality:

Lemma 20.1 (Weyl’s inequality). For any matrices Σ̂,Σ,

|λ(Σ̂)− λi(Σ)| ≤ ‖Σ̂− Σ‖op.

The proof of this fact comes from the variational characterization of the eigenvalues.
For a perturbation inequality for the eigenvectors, we also need the first eigen-gap to

be large.

Definition 20.2. Let λ1(Σ) ≥ λ2(Σ) ≥ · · · ≥ λd(Σ) be the eigenvalues of Σ. Then k-th
eigen-gap is νk = λk − λk+1.

We will write ν = ν1 to refer to the first eigen-gap. You can think of having a large
eigen-gap as similar to the restricted eigenvalue condition for LASSO. The parameter ν
plays a similar role to κ in LASSO, where RE(S, (κ, 3)) means that ∆>X

>X
n ∆ ≥ κ‖∆‖22.

Example 20.1. Here is an example of instability of a matrix with a small eigengap.
Suppose we have a diagonal matrix

Q0 =

[
1 0
0 1.01

]
.
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The eigenvalues are λ1(Q0) = 1.01 and λ2(Q0) = 1, so the eigengap is ν(Q0) = 0.01. In

this case, θ∗(Q0) =

[
0
1

]
. Now look at the perturbation

Qε = Q0 + ε

[
0 1
1 0

]
=

[
1 ε
ε 1.01

]
,

where ε is small. If ε = 0.01, then θ∗(Qε) ≈
[
0.53
0.85

]
, which is far from

[
0
1

]
.

20.4 General perturbation bound for eigenvectors

Theorem 20.4. Let Σ ∈ Sd×d+ , and let θ∗ ∈ Rd be an eigenvector for λ1(Σ). Let ν =
λ1(Σ) − λ2(Σ) > 0 be the first eigen-gap. Let the perturbation P ∈ Sd×d be such that
‖P‖op < ν/2, and let Σ̂ = Σ + P . If θ̂ ∈ Rd is an eigenvector for λ1(Σ̂), then

‖θ̂ − θ∗‖2 ≤
2‖P̃‖2

ν − 2‖P‖op
.

Here

P̃ = U>PU =

[
P̃1,1 P̃>

P̃ P̃2,2

]
∈ Rd×d,

where U is the orthogonal matrix such that Σ = UΛU> and the blocks of P̃ have sizes[
1× 1 d× (d− 1)

(d− 1)× 1 (d− 1)× (d− 1)

]
.

If ‖P‖op, then we get the bound

‖θ̂ − θ∗‖2 ≤
4

ν
‖P̃‖2 ≤

4

ν
‖P‖op.

To prove this, first let ∆̂ = θ̂ − θ∗, and define the quantity

Ψ(∆̂;P ) = 〈θ̂, P θ̂〉 − 〈θ∗, Pθ∗〉

= 〈∆̂, P ∆̂〉+ 2〈∆̃, Pθ∗〉.

Here is the basic inequality of PCA:

Lemma 20.2 (PCA basic inequality).

ν · (1− 〈θ̂, θ∗〉2) ≤ |ψ(∆̂;P )|.
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The left hand side measures the distance between θ̂ and θ∗. We first prove this basic
inequality:

Proof. The zero order optimality condition for θ̂ says that θ̂ = arg maxθ〈θ, Σ̂θ〉. Then

〈θ̂, Σ̂θ̂〉 ≥ 〈θ∗, Σ̂θ∗〉.

Recall that Σ̂ = Σ + P . We can express this inequality as

〈θ̂,Σθ̂〉+ 〈θ̂, P θ̂〉 ≥ 〈θ∗,Σθ∗〉+ 〈θ∗, Pθ∗〉.

Putting the like terms on each side gives

〈θ∗,Σθ∗〉 − 〈θ̂,Σθ̂〉 ≤ 〈θ̂, P θ̂〉 − 〈θ∗, Pθ∗〉.

The right hand side is ψ(∆̂;P ).
To figure out the left hand side, write θ̂ = ρθ∗+

√
1− ρ2z, where ‖z‖2 = 1, 〈z, θ∗〉 = 0.

Then ρ = 〈θ̂, θ∗〉. We can then expand

〈θ̂,Σθ̂〉 = 〈ρθ∗ +
√

1− ρ2z,Σ(ρθ∗ +
√

1− ρ2z)〉

= ρ2 〈θ∗,Σθ∗〉︸ ︷︷ ︸
=λ1

+2ρ
√

1− ρ2 〈θ∗,Σz〉︸ ︷︷ ︸
=0

+(1− ρ2) 〈z,Σz〉︸ ︷︷ ︸
≤2

.

The bound on the last term is because 〈z,Σz〉 ≤ sup‖z‖2=1,〈z,θ∗〉=0〈z,Σz〉 = λ2.

≤ ρ2λ1 + (1− ρ2)λ2.

So the left hand side is

〈θ∗,Σθ∗〉 − 〈θ̂,Σθ̂〉 ≥ λ1 − (ρ2λ1 + (1− ρ2)λ2)

= (λ1 − λ2)(1− ρ2)

= ν(1− ρ2).

So we get
ν(1− 〈θ̂, θ∗〉2) ≤ Ψ(∆̂;P ).

Proof. Given the basic inequality, we now upper bound

Ψ(∆̂;P ) = 〈θ̂, P θ̂〉 − 〈θ∗, Pθ∗〉.

Write Σ = UΛU> and P = UP̃U>. We know that U>θ∗ = e1, the first standard basis
vector, so

U>θ̂ = U>(ρθ∗ +
√

1− ρ2z) + ρe1 +
√

1− ρ2 U>z︸︷︷︸
=:z̃

,
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where ‖z̃‖2 = 1. Then

Ψ(∆̂;P ) = 〈U>θ̂, P̃U>θ̂〉 − 〈U>θ∗, P̃U>θ∗〉

= 〈ρe1 +
√

1− ρ2z̃, P̃ (ρe1 +
√

1− ρ2z̃〉 − 〈e1, P̃ e1〉

= ρ2〈e1, P̃ e1〉+ 2ρ
√

1− ρ2〈z̃, P̃ e1〉+ (1− ρ2)〈z̃, P̃ z̃〉 − 〈e1, P̃ e1〉

= (1− ρ2) 〈e1, P̃ e1〉︸ ︷︷ ︸
≤‖P‖op

+(1− ρ2)〈z̃, P̃ z̃〉+ 2ρ
√

1− ρ2 〈z̃, P̃ e1〉︸ ︷︷ ︸
≤‖P‖2

.

So, using the basic inequality, we get

ν(1− ρ2) ≤ 2(1− ρ2)‖P‖op + 2ρ
√

1− ρ2‖P̃‖2.

We can solve this to get √
1− ρ2 ≤ 2ρ‖P̃‖2

ν − 2‖P‖op

So

‖θ̂ − θ∗‖2 =
√

2(1− ρ)

≤
√

2ρ√
1 + ρ

2‖P̃‖2
ν − 2‖P‖op

≤ 2‖P̃‖2
ν − 2‖P‖op

.
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21 Principle Component Analysis for Spiked and Sparse En-
sembles

21.1 Recap: estimation error bound for principle component analysis

In high-dimensional principal component analysis, we observe X1, X2, . . . , Xn
iid∼ X ∈ Rd,

where E[X] = 0 and Cov(X) = Σ ∈ Rn×d. We have the empirical covariance matrix

Σ̂ =
1

n

n∑
i=1

xix
>
i .

The ground truth is
θ∗ = arg max

‖θ‖2=1
〈θ,Σθ〉,

while our estimator is
θ̂ = arg max

‖θ‖2=1
〈θ, Σ̂θ〉.

We want to upper bound the estimation error ‖θ̂ − θ∗‖2.
Last time, he had the following theorem:

Theorem 21.1. Let Σ ∈ Sd×d+ , and let θ∗ ∈ Rd be an eigenvector for λ1(Σ). Let ν =
λ1(Σ) − λ2(Σ) > 0 be the first eigen-gap. Let the perturbation P ∈ Sd×d be such that
‖P‖op < ν/2, and let Σ̂ = Σ + P . If θ̂ ∈ Rd is an eigenvector for λ1(Σ̂), then

‖θ̂ − θ∗‖2 ≤
2‖P̃‖2

ν − 2‖P‖op
.

Here

P̃ = U>PU =

[
P̃1,1 P̃>

P̃ P̃2,2

]
∈ Rd×d,

where U is the orthogonal matrix such that Σ = UΛU> and the blocks of P̃ have sizes[
1× 1 d× (d− 1)

(d− 1)× 1 (d− 1)× (d− 1)

]
.

21.2 Consequence for a spiked ensemble

In the spiked covariance model, introduced by Jonstone in 2001, we estimate θ∗ ∈ Rd with
‖θ∗‖2 = 1. We observe xi =

√
νξiθ

∗ + wi, where

ξi ∈ R, E[ξi] = 0, E[ξ2
i ] = 1,
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wi ∈ Rd E[wi] = 0, E[wiw
>
i ] = Id.

The wi and ξi are independent. If we calculate the covariance structure of xi, we have

E[xix
>
i ] = E(

√
νξiθ

∗ + wi)(
√
νξiθ

∗ + w>i )]

= νθ ∗ (θ∗)> + Id.

This is Σ. The largest eigenvalue is λmax(Σ) = ν + 1. The second largest eigenvalue is
λ2(Σ). So ν = λmax(Σ)−λ2(Σ) is the eigengap, and the leading aigenvector of Σ is θ∗. We
estimate θ by

θ̂ = arg max
‖θ‖2=1

〈θ,Σθ〉.

Our theorem gives us the following bound on ‖θ̂ − θ∗‖2.

Corollary 21.1. Assume ξ ∼ sG(1) and wi ∼ sG(1). If n > d and
√

ν+1
ν2

√
d
n ≤

1
128 , then

‖θ̂ − θ∗‖2 .

√
ν + 1

ν2

√
d

n

with high probability.

If you want this to be ≤ ε, you need n & dν+1
ν2

. For large ν, ‖θ̂ − θ∗‖2 ∼ 1√
ν
.

Proof. Recall that the theorem says that ‖θ̂ − θ‖2 ≤ 2‖P̃‖2
ν−2‖P‖op . We need to upper bound

‖P̃‖2 and ‖P‖op.

P = Σ̂− Σ
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=
1

n

n∑
i=1

(
√
νξθ∗ + wi)(

√
νξiθ

∗ + wi)
> − (νθ∗(θ∗)> + Id)

=

(
1

n

n∑
i=1

ξ2
i − 1

)
νθ∗(θ∗)> +

(
1

n

n∑
i=1

wiw
>
i − Id

)
+

(
1

n

n∑
i=1

ξiw
>
i

)
(θ∗)> + transpose.

So we get

‖P‖op ≤

∣∣∣∣∣ 1n
n∑
i=1

ξ2
i − 1

∣∣∣∣∣︸ ︷︷ ︸
a

ν +

∥∥∥∥∥ 1

n

n∑
i=1

wiw
>
i − Id

∥∥∥∥∥
op︸ ︷︷ ︸

c

+2
√
ν

∥∥∥∥∥ 1

n

n∑
i=1

ξiwi

∥∥∥∥∥
2︸ ︷︷ ︸

b

.

We can also bound

‖P̃‖2 ≤
√
ν

∥∥∥∥∥ 1

n

n∑
i=1

ξiwi

∥∥∥∥∥
2︸ ︷︷ ︸

b

+

∥∥∥∥∥ 1

n

n∑
i=1

wiw
>
i − Id

∥∥∥∥∥
op︸ ︷︷ ︸

c

,

so we just need to bound a, b, c.

By sub-exponential concentration, a .
√

1
n . The term c is a random matrix with

mean 0, and using a metric entropy argument with matrix concentration gives c .
√

d
n .

Similarly, we can show that b .
√

d
n . Given these upper bounds, we get

‖P‖op . ν

√
1

n
+ (
√
ν + 1)

√
d

n
,

‖P̃‖2 . (
√
ν + 1)

√
d

n
.

So if
√

d
n . ν√

ν+1
, then ν − 2‖P‖op ≥ ν

2 . This gives the bound

‖θ̂ − θ∗‖2 .
2‖P̃‖2
ν/2

.

√
ν + 1

ν2

√
d

n
.

Here, we give an example of how to use the metric entropy bound for the term b.∥∥∥∥∥ 1

n

n∑
i=1

εiwi

∥∥∥∥∥
2

= sup
‖ν‖2=1

〈
ν,

1

n

n∑
i=1

εiwi

〉

= sup
‖ν‖2=1

1

n

n∑
i=1

εi︸︷︷︸
sG(1)

〈wi, ν〉︸ ︷︷ ︸
sG|(1)︸ ︷︷ ︸

sE(1,1)

.
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This tells us that

P

(∣∣∣∣∣ 1n
n∑
i=1

εi〈wi, ν〉| ≥ t

∣∣∣∣∣
)
≤ 2 exp(−nmin(t, t2)) ∀ν ∈ Sd−1.

Now let Ω1/4 be a 1/4-cover of Sd−1, so |Ω1/4| ≤ Cd for a constant C. Show that tis implies

sup
ν∈Sd−1

|〈ν, a〉| ≤ 2 sup
ν∈Ω1/4

|〈ν, a〉|.

So we can use a union bound with

P

(∥∥∥∥∥ 1

n

n∑
i=1

εiwi

∥∥∥∥∥
2

≥ t

)
≤ P

(
2 sup
ν∈Ω1/4

1

n

n∑
i=1

εi〈wi, ν〉 ≥ t

)
≤ Cd exp(−nmin{t, t2}).

21.3 Sparse principle component analysis

This is an active research direction. It has been well-studied, but there are some important
properties that are not well-understood. We assume that θ = arg max‖θ‖2=1〈θ,Σθ〉 is
s-sparse, where s� n� d.

In the sparse spiked covariance model, θ∗ ∈ Rd, ‖θ∗‖2 = 1, and |S(θ∗)| . s. We observe

xi =
√
νξiθ

∗ + wi, i ∈ [n],

where ξi sG(1) and wi ∼ sG(1). We have two theoretical questions:

(a) What should the sample size be to get a consistent estimator? We will see that as
long as n� s, there is a consistent estimator.

(b) What is the sample size for a computationally efficient (polynomial time) consistent
estimator? The best known computationally efficient estimator has n� s2.

(c) What happens for s� n� s2? This is an active research direction. It is conjectured
that there exists a computational and statistical gap.

21.3.1 `1-penalized estimation

To answer part (a), we solve the estimation problem with an added `1 penalty.

• The 1-norm constrained formulation is

θ̂ = arg max
‖θ‖2=1
‖θ‖1≤R

〈θ, Σ̂θ〉.
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• The λ-penalized formulation is

θ̂ = arg max
‖θ‖2=1

〈θ, Σ̂θ〉 − λn‖θ‖1.

In this formulation, we need ‖θ‖1 ≤ ( n
log d)1/4 for theoretical analysis.

Theorem 21.2. Assume n & s log d.min{1, ν2

ν+1}. Take λn �
√
ν + 1

√
log d
n . Then

‖θ̂ − θ∗‖2 .

√
ν + 1

ν2

√
s log d

n
.

So the required sample size is & s log d.

Proof. Here are the steps:

1. Use a basic inequality from the zero order optimality condition to derive a determin-
istic upper bound of ‖θ̂ − θ∗‖2 by assuming a deterministic assumption on X. This
is like imposing the RE condition for LASSO.

2. Prove a concentration inequality and plug in the bound.

21.3.2 The semidefinite programing relaxation estimator

The 1-norm constrained formulation

max
‖θ‖2=1
‖θ‖1≤R

〈θ, Σ̂θ〉

is equivalent, by a change of variable Θ = θθ> ∈ Rd×d to

max
tr(Θ)=1∑

j,k |Θj,k|≤R2

rank(Θ)=1

〈Σ̂,Θ〉.

The only nonconvex constraint is the rank constraint. If we drop the rank constraint, then
the optimization problem becomes convex.

Theorem 21.3 (Amini, Wainwright, 2008). If n � s2 log d, then the semidefinite pro-
graming solution has rank 1 and is consistent.

21.3.3 The s� n� s2 regime

What do we know in this regime?

Theorem 21.4 (Berthet, Rigollet, 2013). For s� n� s2, sparse PCA is computationally
harder or equivalent to the planted clique problem in the hard regime.

It is conjectured that no polynomial time algorithm can solve this problem.
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21.4 Extra topics we will not cover

This completes our discussion of the material in chapter 7 and 8 of Wainwright’s book.
We will not cover chapters 9, 10, or 11, which generalize the material in chapters 7 and 8.
Some topics these chapters discuss are

• Logistic LASSO

• Phase retrieval (used in imaging science)

• Matrix sensing

• Matrix completion (used in recommendation systems)

Example 21.1. As an example, we will explain matrix completion. We want to estimate
Θ∗ ∈ Rd1×d2 , where Θ∗ = UV >, U ∈ Rd1×r, V ∈ Rd2×r, and r � min{d1, d2}. We can, for
example, think of Θi,j as the score of user i given to movie j. Then Ui is user i’s feature,
and Vj is movie j’s feature.

We observe {Mi,j = Θ∗i,j + εi,j}(i,j)∈Ω, and we want to estimate Θ∗ ∈ Rd1×d2 . How
many samples is required?

The MLE estimator is
min

rank(Θ)≤r
‖Mi,j −Θi,j‖22.

This rank constraint is not convex, so we can relax it to a constraint ‖Θ‖∗ ≤ r on the
nuclear norm.
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22 Examples of and Oracle Inequality for Non-Parametric
Least Squares Regression

22.1 Recap: localized Gaussian complexity bound for non-parametric
least squares

We are studying non-parametric regression. Our model is that we observe xi ∈ X and
yi ∈ R, where

yi = f∗(zi) + σ · wi, i ∈ [n]

and f∗ ∈ F ⊆ {f : X → R} is in a designated function class. The noise is wi
iid∼ N(0, 1).

We consider the non-parametric least squares problem, which has the constrained form

f̂ ∈ arg min
f∈F

1

n

n∑
i=1

(yi − f(xi))
2

Our goal is to bound the prediction error

‖f̂ − f∗‖L2(Pn) =
1

n

n∑
i=1

(f̂(xi)− f∗(xi))2.

Last time, we proved the following localized Gaussian complexity bound.

Theorem 22.1. Suppose that F∗ = F − {f∗} is star shaped. Then

Ewi [‖f̂n − f∗‖2n] . δ2
n,

where δ2
n solves Gn(δ;F∗) = δ2/(2σ), which is

Gn(δ;F∗) := E

 sup
g∈F∗
‖g‖n≤δ

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣
 .

The chaining method gives us a bound

Gn(δ;F∗) . δ2

4σ
+

16√
n

∫ δ

δ2

4δ

√
logNn(t;Bn(δ;F∗)) dt.

Let’s look at some concrete examples for this localized Gaussian complexity bound.
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22.2 Applications of the localized Gaussian complexity bound

Example 22.1. Let F1:n = {fθ(·) = 〈·, θ〉 : θ ∈ Rd}, and let

yi = 〈xi, θ∗〉+ σ · wi, i ∈ [n],

where θ∗ ∈ Rd. Our estimator is

θ̂ = min
θ∈Rd

1

n

n∑
i=1

(yi − 〈xi, θ〉)2,

so

f
θ̂

= arg min
fθ∈F1:n

1

n

n∑
i=1

(yi − fθ(xi))2.

We will show that

‖f
θ̂
− fθ∗‖2n =

1

n

n∑
i=1

〈xi, θ̂ − θ∗〉2

=
‖X(θ∗ − θ̂)‖22

n

. σ2 · rank(X)

n

. σ2 d

n
.

We have the upper bound proportional to 1√
n

∫ δ
δ2

4δ

√
logNn(t;Bn(δ;F∗)) dt, so we just

need to calculate this covering number. This ball is

Bn(δ;F1:n) =

∥∥∥∥∥∥fθ(x) = 〈x, θ〉 :

√√√√ 1

n

n∑
i=1

〈xi, θ〉2 ≤ δ

∥∥∥∥∥∥ ,
which is isomorphic to the δ-ball in the range of X (where dim range(X) = rank(X). Using
a volume argument, the covering number is

Nn(t;Bn(δ;F1:n)) ≤ r · log

(
1 +

2δ

t

)
, r = rank(X).

So the metric entropy integral is upper bounded by

√
r√
n

∫ δ

δ2

4δ

√
log

(
1 +

2δ

t

)
dt ≤ c · δ

√
rn.

We have cδ
√

r
n = δ2

4σ , so solving gives δn = cσ
√

r
n . So δ2

n = cσ
√

r
n , and we get

Ew[‖f
θ̂
− fθ∗‖2n] . σ

√
r

n
.
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Example 22.2 (Lipschitz function class). Let FLip(L) = {f : [0, 1] → R : f(0) =
0, f is L− Lipschitz}. Then

F∗ ⊆ FLip(L)−FLip(L) = FLip(2L).

We have upper bounded the metric entropy of this function class as

logN(ε;F(2L), ‖ · ‖∞) .
L

ε
,

where ‖f‖∞ = supx∈X , so ‖f‖n = ( 1
n

∑n
i=1 f(xi)

2)1/2 ≤ ‖f‖∞. This tells us that

logN(ε;F(2L), ‖ · ‖n) ≤ logN(ε;F(2L), ‖ · ‖∞) .
L

ε
.

So the metric entropy integral is

1√
n

∫ δ

δ2

4δ

√
logNn(t;F(2L), ‖ · ‖∞) dt ≤ 1√

n

∫ δ

δ2

4σ

√
L

t
dt

=

√
L

n

(
2
√
t

∣∣∣∣δ
δ2

4σ

)

= c

√
L

n
(
√
δ −

√
δ2/(4σ))

≤ c
√
L

n

√
δ.

Solving
√

Lδ
n = δ2 gives δ2 . (Lσ

2

n )2/3.

Example 22.3. What if logN � 1
εd

for d ≥ 3 (Lipschitz in d dimensions)? Then

1√
n

∫ δ

ε

1

td/2
dt =

1√
n

2

d− 2

−1

td/2−1

∣∣∣δ
ε

≤ 1√
n

2

d− 2

1

εd/2−1
.

Take ε = δ2

4σ and compare 1√
n

2
d−2

1
εd/2−1 = ε to get ε . 1

n4/d . This gives δ2 . 1
n4/d .
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22.3 Oracle inequalities

In practice, we may encounter the situation f∗ /∈ F , like if we fit a linear model to something
which is not exactly linear.

Suppose f̃ ∈ F is closest to f∗. We hope that f̂ is close to f̃ when we have a lot of samples.
That is, we hope that

‖f̂ − f∗‖ . inf
f∈F
‖f − f∗‖+ εn,

where εn → 0 as n → ∞. We would also like εn to decay as fast as possible. This
kind of bound gives us a justification that our nonparametric regression gives us a best
approximation to the function f∗.

Define ∂F = F − F = {f − g : f, g ∈ F}. Assume that ∂F is star-shaped; we can
always take the star hull to make this true, so this is not a stringent assumption.

Theorem 22.2. Let δn = inf{δ > 0 : Gn(δ; ∂F) ≤ δ2

2σ}. Then there exist constants c0, c1, c2

such that the event

{f̂ − f∗‖2n ≤ inf
γ∈(0,1)

[
1 + gamma

1− γ
‖f − f∗‖2n +

c0

γ(1− γ)
δnt

]
∀f ∈ F

occurs with probability at least 1− c1e
−c2 ntδn

σ2 .

This says that
‖f̂ − f∗‖2n . inf

f∈F
‖f − f∗‖2n + δ2

n,

so we can integrate this probability bound to get an expectation bound:

E[‖f̂ − f∗‖2n] . inf
f∈F
‖f − f∗‖2n + δ2

n +
σ2

n
.

Note that if f∗ ∈ F , then the first term is 0, so this recovers the prediction error bound in
the previous theorem.
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Proof. We start from a basic inequality:

1

2n

n∑
i=1

(yi − f̂(xi))
2 ≤ 1

2n

n∑
i=1

(y − i− f∗(xi))2.

This tells us that

1

2
‖f̂ − f∗‖2n ≤

1

2
‖f̃ − f∗‖2n +

∣∣∣∣∣ 1n
n∑
i=1

wi(f̂(xi)− f̃(xi))

∣∣∣∣∣︸ ︷︷ ︸
(∗)

.

We want to upper bound the right term; this is basically the same thing we did for the
previous prediction error bound, but with f̃ instead of f∗. Recall that by definition,
Fn(δ; ∂F) = E[sup g∈∂F

‖g‖n‖≤δ
| 1n
∑n

i=1wig(xi)|] and Gn(δ.∂F) � δ2
n.

The simple case is when ‖f̂ − f̃‖n ≤ δ. In this case,

(∗) . Gn(δn; ∂F) � δ2
n.

The harder case is when ‖f̂ − f̃‖n ≥ δn. In this case, our goal is to show that (∗) .
δn‖f̂ − f̃‖n.

(∗) =

∣∣∣∣∣ 1n
n∑
i=1

wi (f̂(xi)− f̃(xi))
δn

‖f̂ − f̃‖n︸ ︷︷ ︸
=:g(xi)

∣∣∣∣∣‖f̂ − f̃‖nδn

Since ∂F is star-shaped, we have g ∈ ∂F . Also observe that ‖g‖n ≤ δn.

. sup
g∈∂F
‖g‖n≤δ

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣ ‖f̂ − f̃‖nδn

If we have an argument to show that this quantity concentrates around its mean, we get

. Gn(δn; ∂F)
‖f̂ − f̃‖n

δn

= δn‖f̂ − f̃‖n.

Using this line of argument, we can show that

‖f̂ − f∗‖n ≤ ‖f̃ − f∗‖n + 2 max{δ2
n, δn‖f̂ − f̃‖n}

The way to deal with the last term is to use the inequality

δn‖f̂ − f̃‖n ≤ δn(‖f̂ − f∗‖n + ‖f̃ − f∗‖n) ≤ 1

ε
δ2
n + ε(‖f̂ − f∗‖n + ‖f̃ − f∗‖n)2

≤ 1

ε
δ2
n + 2ε‖f̂ − f∗‖2n + 2ε‖f̃ − f∗‖2n.

Here, we are using the Fenchel-Young inequality, ab = (a/
√
ε)(b
√
ε) ≤ ( a√

ε
)2 + (

√
εb)2.
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22.4 Applications of the oracle inequality

Example 22.4. Suppose {φm}∞m=1 is an orthogonal basis of L2(P), and let Fortho(1, T ) :=
{f =

∑T
n=1 βmφm :

∑T
m=1 β

2
m ≤ 1. If f∗ =

∑∞
m=1 θ

∗
mφm, then f∗ /∈ Fortho. Using this

oracle inequality, we can get

‖f̂ − f∗‖2n .
∞∑

m>T

(θ∗m)2 + σ2T

n
.

The intuition is that if we have n samples, we can choose T = εn so that the right term is
small. Then the error is roughly the contribution of the first term.

Example 22.5. Let yi = 〈xi, θ∗〉 + εi, and let fθ∗ = 〈·, θ∗〉. Then consider the function
class Fsparse(s) = {fθ = 〈·, θ〉 : θ ∈ Rd.‖θ‖0 ≤ s}. Our estimator is then

θ̂ = arg min
‖θ‖0≤s

‖y −Xθ‖22.

This is the `0-variant of LASSO, which is not efficiently computable. Even if the model is
not s-sparse, we get

‖X(θ̃ − θ∗)‖22
n

≤ inf
‖θ‖0≤s

‖X(θ − θ∗)‖22
n

+
δ2
n

n
.

Here, we know that

δ2
n . σ2 s log(ed/s)

n
.

In section 13.4.1 of Wainwright’s book, there is a discussion of oracle inequalities for
regularized estimators.
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23 L2 Prediction Error Bounds for Nonparametric Function
Regression

23.1 Recap: prediction error bounds for ‖ · ‖n compared to ‖ · ‖L2.

We have been studying non-parametric function regression, where we observe xi, yi ∈ R
with yi = f∗(xi) + wi for i ∈ [n]. We assume f∗ ∈ F ⊆ {f : X → R} for some specific

function class F and take the noise to be wi
iid∼ N(0, σ2).

For the non-parametric least squares problem, we have the constrained form

f̂ = arg min
f∈F

1

n

n∑
i=1

(yi − f(xi))
2.

Our goal is to bound the prediction error,

‖f̂ − f∗‖2L2(Pn) =
1

n

n∑
i=1

(f̂(xi)− f∗(xi))2.

We proved a prediction error bound that relies on a critical equation.

Theorem 23.1. Let F∗ = F − {f∗} be star-shaped. Then Ew[‖f̂n − f∗‖∗n] . δ2
n, where δn

solves the critical equation Gn(δ;F∗) = δ2.(2σ).

What if we want to look at the behavior of f̂ on a new dataset x̃ ∼ P instead of xi in the

original dataset? If we have yi = f∗(xi) + w̃i, where w̃i ∼ N(0, σ2) and (x̃i, ỹi)
iid∼ (xi, yi),

we can see that
Ex̃i,ỹi [(f̂(x̃i)− ỹi)]2 = σ2 + ‖f̂ − f∗‖2L2 .

So in many cases, we want to control the L2 distance between f̂ and f∗.

23.2 Relation between ‖ · ‖2
n and ‖ · ‖2

L2

Let f ∈ F . Then if the function f does not depend on our training data set,

EX [‖f‖2n] = Ex

[
1

n

n∑
i=1

f(xi)
2

]
= E[f(x)2]

= ‖f‖L2 .

Now suppose that f̂(x) = h(x; {xi, yi}i∈[n]) depends on our training data set. Then

Exi [‖f̂ − f∗‖2n] = Ex

[
1

n

n∑
i=1

(f̂(xi; {xi, yi}i∈[n])− f∗(x̃))2

]
6= Ex[(f̂(x̃; {xi, yi}i∈[n])− f∗(x̃))2]
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We hope to show a result like

‖f̂ − f∗‖2L2 . ‖f̂ − f∗‖2n︸ ︷︷ ︸
δ2n

+ε2
n,

where ε2
n → 0 as n→∞.

Today, we will show two bounds:

1. Naive bound: If we do not care about how fast εn → 0, we can get a bound by using
a global uniform bound, a global Rademacher complexity bound, and using bounded
difference concentration.

2. Tighter bound: We will use

(a) the local uniform bound

(b) local Rademacher complexity

(c) a tighter concentration inequality, known as the Talagrand concentration in-
equality.

23.3 Naive bound

Let f = f̂ − f∗ ∈ F∗. Then

∣∣∣‖f̂ − f∗‖2L2(Pn) − ‖f̂ − f
∗‖2L2(P)‖

∣∣∣ ≤ sup
g∈F∗

|‖g‖2n − ‖g‖2L2 |

= sup
g∈F∗

∣∣∣∣∣ 1n
n∑
i=1

g(xi)
2 − E[g(x)2]

∣∣∣∣∣
=: Z

We first try to find a bound on the expectation of Z:

E[Z] = E

[
sup
g∈F∗

∣∣∣∣∣ 1n
n∑
i=1

g(xi)
2 − E

[
1

n

n∑
i=1

g(x̃i)
2

]∣∣∣∣∣
]

≤ E

[
sup
g∈F∗

∣∣∣∣∣ 1n
n∑
i=1

(g(xi)
2 − g(x̃i)

2)

∣∣∣∣∣
]

Since the distribution of this is symmetric about 0,

= E

[
sup
g∈F∗

∣∣∣∣∣ 1n
n∑
i=1

ε2(g(xi)
2 − g(x̃i)

2)

∣∣∣∣∣
]
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≤ 2E

[
sup
g∈F∗

∣∣∣∣∣ 1n
n∑
i=1

ε2g(xi)
2

∣∣∣∣∣
]

If this just had g instead of g2, this quantity would be the Rademacher complexity. So we
want to bound this by the Rademacher complexity. Write φ(t) = t2, so

≤ 2E

[
sup
g∈F∗

∣∣∣∣∣ 1n
n∑
i=1

ε2φ(g(xi))

∣∣∣∣∣
]

The function φ is 2‖F∗‖∞-Lipschitz, where we can assume that ‖F∗‖∞ = 1.

≤ 4 E

[
sup
g∈F

∣∣∣∣∣ 1n
n∑
i=1

εig(xi)

∣∣∣∣∣
]

︸ ︷︷ ︸
Rn(F∗) Rademacher complexity

.

We can use chaining to bound this.
Now let’s bound the distance from the mean. Using the bounded difference inequality,

|Z − E[Z]| ∼ sG(‖g‖2∞/n), so

‖f̂ − f∗‖2L2 . ‖f̂ − f∗‖2n︸ ︷︷ ︸
δ2n

+Rn(F∗) +O(1/
√
n).

If F∗ is parametric with d parameters, then δ2
n � d

n and Rn(F∗) �
√

d
n .

23.4 Using localization to get a faster rate

We will present some heuristics, rather than something completely rigorous. The rigoorous
treatment is in Chapter 14 of Wainwright’s textbook. Suppose we already know that
‖f̂ − f∗‖L2(P) ≤ r. We can think about r decaying to 0 as n → ∞. It may seem strange
to assume that the L2 norm is bounded when this is what we want to prove, but the idea
is that we will get a more refined bound. So we can iterate this bound to get a nice final
result

Letting g = f̂ − f∗ ∈ F∗,∣∣∣‖f̂ − f∗‖2L2(Pn) − ‖f̂ − f
∗‖2L2(P)‖

∣∣∣ ≤ sup
g∈F∗
‖g‖L2≤r

∣∣∣∣∣ 1n
n∑
i=1

g(xi)
2 − E[g(xi)

2]

∣∣∣∣∣
=: Z(r).

Now we bound the expectation using the same line of argument as before:

E[Z(r)] ≤ 4 E

 sup
g∈F
‖g‖L2≤r

∣∣∣∣∣ 1n
n∑
i=1

εig(xi)

∣∣∣∣∣


︸ ︷︷ ︸
Rn(r;F∗) localized Rademacher complexity

.
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We now show that Rn(r;F∗) . εn · r, where εn = inf{ε : Rn(ε;F∗) ≤ ε2

16b} and

b = supg∈F∗ ‖g‖∞ = 1. This is because for any r ≥ εn, Rn(r;F∗)
r is non-increasing (as long

as F∗ is star-shaped). This tells us that

Rn(r;F∗)
r

≤ Rn(εn;F∗)
εn

=
εn
16
.

This means that Rn(r;F∗) . εnr.
Now let’s see how this implies an upper bound for the prediction error of the L2 norm.

Suppose that Z(r) ≈ E[Z(r)] for any r ∈ R (this should be made quantitative with the
Talagrand concentration inequality or a tighter concentration inequality). Then∣∣∣∣∣∣∣‖f̂ − f∗‖2L2(Pn)︸ ︷︷ ︸

a2

−‖f̂ − f∗‖2L2(P)︸ ︷︷ ︸
b2

∣∣∣∣∣∣∣ . Rn(r;F∗)

. εnr

= εn ‖f̂ − f∗‖L2︸ ︷︷ ︸
b

This is heuristic because the quantity ‖f̂ − f∗‖L2 is random and depends on the training
data set. However, we can use the iterative argument to make sense of this argument. We
now have

|a2 − b2| ≤ εnb ≤
b2

4
+ 4ε2

n,

which gives b2 . a2 + ε2
n. So we get that

‖f̂ − f∗‖2L2 . ‖f̂ − f∗‖2n︸ ︷︷ ︸
δ2n

+ε2
n.

This tells us that the upper bound of the prediction error in terms of the L2 norm is of the
same order as the upper bound of the prediction error in terms of the L2(Pn) norm. If T
is parametric with d parameters, then δ2

n � ε2
n � d

n .
Here, our proof is different in two ways from the treatment in the textbook.

1. The first way is that we have assumed that our concentration inequality does not
destroy our bound. If we just use the bounded differences inequality, we get the
naive bound

|Z(r)− E[Z(r)]| .
√

1

n
= ηn.

The issue with this is that Z(r) is O(1/n) and E[Z(r)] is O(1/n). Instead, we need
to use the Talagrand inequality.
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2. The second difference is that we have assumed beforehand that ‖f̂ − f∗‖L2(P) ≤ r.
The textbook instead uses a peeling argument. We actually want to find a bound on
supr |Z(r) − E[Z(r)]|. To use a union bound, we need to discretize r, and a clever
way to do so is to use a log scale, rather than a uniform grid.

In the end, we get the following theorem, which we state informally. This is Corollary
14.15 in the textbook.

Theorem 23.2. Let

f̂ = arg min
f∈F

1

2n

n∑
i=1

(yi − f∗(xi)))2.

Then
‖f̂ − f∗‖L2 . ε2

n + δ2
n,

where

εn = inf

{
r : Rn(r;F) .

r2

b

}
, δn = inf

{
δ : Gn(δ;F∗) . δ

b

}
.

Here, εn is deterministic, as Rn is averaged over (xi)i∈[n]. On the other hand, δn is
random, as Gn depends on (xi)i∈[n].

23.5 Uniform law for Lipschitz cost function

More generally, we may want to consider cost functions which are not the squared error.

Suppose we have (xi, yi)i∈[n]
iid∼ P ∈ P(X ×Y) with a function class F ⊆ {f : X → Ŷ}. Let

the loss be L : Ŷ × Y → R. Then we have the empirical risk

PnL(f(x), y) =
1

n

n∑
i=1

L(f(xi), yi),

with empirical risk minimizer

f̂ = arg min
f∈F

PnL(f(x), y)

and population risk minimizer

f∗ = arg min
f

PL(f(x), y)︸ ︷︷ ︸
Ex,y [L(f(x),y)]

.

Our goal is to bound ‖f̂ − f∗‖2L2 .
We assume the loss is L-Lipschitz:

|L(z, y)− L(z′, y)| ≤ L|z − z′|.
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Another assumption, which is harder to check, is that L is r-strongly convex: If we let
Lf (x, y) := L(f(x), y), then we require

P

(
Lf − Lf∗ −

∂L
∂z

∣∣∣∣
f∗

(f − f∗)

)
≥ r

2
‖f − f∗‖2L2 .

Example 23.1 (Logistic regression). Let Y = {±1}, L(ŷ, y) = log(1 + e−2yŷ), and

P(y | x) =
1

1 + e−2yf∗(x)
.

Then L(ŷ, y) is 1-Lipschitz in ŷ. Under mild conditions, PLf is r-strongly convex.

Here is Theorem 14.20 in the textbook.

Theorem 23.3. Assume that F is 1-uniformly bounded and star-shaped, with population
minimizer f∗. Let δn = inf{δ > c√

n
: Rn(δ;F∗) ≤ δ2}.

(a) If L is L-Lipschitz in Ŷ, then with high probability,

sup
f∈F

|Pn(Lf − Lf∗)− P(Lf − Lf∗)|
‖f − f∗‖L2 + δn

≤ 10L · δn.

(b) If PLf is also r-strongly convex, then with high probability, for all f̂ such that Pn(L
f̂
−

Lf∗) ≤ 0, we have

‖f̂ − f∗‖22 ≤
(

20L

r
+ 1

)2

δ2
n

and

P(L
f̂
− Lf∗) ≤ 10L

(
20L

r
+ 1

)2

δ2
n.

Remark 23.1. Statement (b) is a direct consequence of statement (a), using the r-strong
convexity condition. The proof of (a) also relies on a local Rademacher complexity bound.
We can bound supf∈F |Pn(Lf −Lf∗)−P(Lf −Lf∗)| using the Rademacher complexity, and
we can get a faster rate using local Rademacher complexity.

This concludes our discussion of nonparametric function estimation. Next time, we will
move on to minimax lower bounds.

151



24 Introduction to Minimax Lower Bounds

24.1 Minimax risk and methods of obtaining lower bounds

In the last few lectures, we were talking about upper bounds for error of statistical esti-
mators. Now we will prove some lower bounds, which tell us that for a certain number of
samples, you cannot have vanishing estimation error.

In statistical decision theory, we have a class of distributions P and a parameter/function
of distributions θ : P → Θ. If this is a one to one mapping, we write P = {Pθ : θ ∈ Θ}.
Then we have statistical estimators, which are mappings θ̂ : X → Θ. Suppose there is
a semimetric15 ρ(θ, θ′) : Θ×Θ→ R, such as

ρ(θ, θ′) = ‖θ − θ′‖2, ρ(f, f ′) = ‖f − f ′‖L2 .

If Φ : [0,∞)→ [0,∞) is increasing, the risk is

R(θ̂; θ(P )) = EX∼P [Φ(ρ(θ̂(X); θ(P )))].

In this framework, the loss function is ` = Φ ◦ ρ.

Definition 24.1. The minimax risk with n samples is

Mn(θ(P),Φ ◦ ρ) = inf
θ̂:X→Θ

sup
P∈P

R(θ̂; θ(P ))

The inf and the sup mean that we are taking the best estimator for the worst model.

(a) If R(θ̂) achieves Mn, it is good enough.

(b) If R(θ̂)�Mn, we should either find a better estimator or a sharper lower bound.

Example 24.1. Let Θ = Rd with Pθ = N(θ, σ2Id), θ ∈ Rd, where σ2 is known. Our sample

is (xi)i∈[n]
iid∼ Pθ, so x1:n ∼ Pnθ . Our metric is ρ(θ, θ′) = ‖θ − θ′‖2, and we pick Φ(t) = t2.

Consider the estimator θ̂n = 1
n

∑n
i=1 xi. Then

R(θ̂n;Pθ) = E

∥∥∥∥∥ 1

n

n∑
i=1

xi − θ

∥∥∥∥∥
2

2

 = σ2 d

n
,

which tells us that

Mn ≤ σ2 d

n
.

However, we can prove the same value as a lower bound. Our goal in this lecture and the
next is to show that Mn ≥ cσ2 d

n for some constant c.
15For a semimetric, we may allow θ 6= θ′ to still have ρ(θ, θ′) = 0.
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Remark 24.1. Here are some methods of showing lower bounds for estimation error, some
of which we have already seen.

(a) Bayesian decision theory: Mn is the Bayes risk of the least favorable prior.

(b) Cramer-Rao lower bound: For unbiased estimators, there is a lower bound given in
terms of the Fisher information. If this does not depend on the Fisher information,
then it is a minimax lower bound.

(c) Bayes Cramer-Rao (Van-Tree’s inequality): This gives a “local minimax” lower
bound.

(d) Reduction to a testing problem: We will study this now. We first need some tools
from information theory.

24.2 Reduction to an M-ary testing problem

The idea is to find a testing problem easier than the estimation problem. A lower bound
for the testing problem will imply a lower bound for estimation.

Step 1: Construct a 2δ-separated set of Θ in the ρ-metric.

So we require ρ(θi, θj) ≥ 2δ for all i 6= j. This is the same as a packing, except we allow ≥
instead of >. If our separated set is {θ1, θ2, . . . , θM}, we get {Pθ1 ,Pθ2 , . . . ,PθM }.

Step 2: Sample (J, Z) ∈ [M ]×X . The joint distribution is{
J ∼ Unif({1, 2, . . . ,M})
Z | J = j ∼ Pθj .

Step 3: Let Q be the joint distribution of (J, Z). Then the marginal distribution of Z
is

Q =
1

M

M∑
j=1

Pθj .

Our testing problem is that we want to find a ψ : X → [M ] such that Q(ψ(Z) 6= J) is
small. If M = 2, this is standard binary hypothesis testing. The testing error is

Q(ψ(Z) 6= J) =
1

2
[Pθ1(ψ(Z) 6= 1)︸ ︷︷ ︸

Type I error

+Pθ2(ψ(Z) 6= 2)︸ ︷︷ ︸
Type II error

].
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This is different from the traditional hypothesis testing setup in that instead of fixing the
Type I error and minimizing the Type II error, we want to minimize the average of these
errors.

Proposition 24.1 (From estimation to testing). Let Ψ be increasing and {θ1, . . . , θM} be
2δ-separated for δ > 0. Then

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
ψ

Q(ψ(Z) 6= J).

This works for all δ > 0, so we can pick the δ which gives the best lower bound. In
general, Φ(δ) is increasing with δ, but the testing error infψ Q(ψ(Z) 6= J) is decreasing
with δ. We can choose δ = δn such that infψ Q(ψ(Z) 6= J) = 1

2 ; any constant would work
here. Then the minimax lower bound will be

Mn ≥
1

2
Φ(δn).

Proof. Fix P and θ̂. By Markov’s inequality,

E[Φ(ρ(θ̂, θ))] ≥ Φ(δ)P(Φ(ρ(θ̂, θ)) ≥ Φ(δ))

= Φ(δ)P(ρ(θ̂, θ) ≥ δ).

We now want to relate this probability with the testing error. We have

sup
P∈P

P(ρ(θ̂, θ) ≥ δ) ≥ sup
θ∈{θ1,...,θM}

Pθ(ρ(θ̂, θ) ≥ δ)

≥ 1

M

M∑
j=1

Pθj (ρ(θ̂, θj) ≥ δ)

= Q(ρ(θ̂, θJ) ≥ δ).

Define a test ψ via θ̂: Let
ψ(z) = arg min

L∈[M ]
ρ(θ̂(Z), θ).

This gives the θj which is the closest to our estimate θ̂(Z). With this definition,

{ψ(Z) 6= J} ⊆ {ρ(θ̂(Z), θj) ≥ δ}.

This means we can lower bound the above Q probability:

inf
θ̂
Q(ρ(θ̂(Z), θj) ≥ δ) ≥ inf

ψ
Q(ψ(Z) 6= J).

How do we choose {θ1, . . . , θM}? Moreover, how do we lower bound infψ Q(ψ(Z) 6= J)?
Here are two general methods.
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1. M = 2: Le Cam’s method

• Two points method

• Convex hull method

2. M ≥ 3:

• Assoaud’s method

• Fano’s method

Le Cam’s method is the most classical one, so we will start with it. Fano’s method is
the most important and useful method for high-dimensional models.

24.3 Some divergence measures

Here are some basic tools for these methods. Let P,Q be two probability distributions on
X . How can we measure their distance?

Definition 24.2. The total variation distance is

‖P−Q‖TV := sup
A⊆X

|P(A)−Q(A)| = 1

2

∫
X
|p(x)− q(x)| dµ(x),

where p, q are the densities of P,Q, if they exist.

Definition 24.3. The Kullback-Leibler divergence is

D(Q || P) :=

∫
X
q(x) log

q(x)

p(x)
dλ(x).

There is a more general definition of the K-L divergence that does not require Q,P to
have densities with respect to Lebesgue measure. This is not a distance becauseD(Q || P) 6=
D(P || Q), but it has distance-like properties, such as D(P || Q) ≥ 0 with D(P || Q) = 0 iff
P = Q.

Definition 24.4. The Hellinger distance is

H2(P || Q) :=

∫
X

(
√
p(x)−

√
q(x))2 dν(x).

Here are some relationships between these notions of distance:

Proposition 24.2 (Pinsker’s inequality).

‖P−Q‖TV ≤
√

1
2D(P || Q).
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Proposition 24.3 (Le Cam’s inequality).

‖P−Q‖TV ≤
√

H2(P || Q)

√
1− H2(P || Q)

4︸ ︷︷ ︸
≤1

.

Proposition 24.4.

H2(P || Q) ≤ 1

2
D(P || Q).

We will see that the TV distance is related to the testing error for a binary testing situa-
tion. On the other hand, the KL-divergence and Hellinger distance have good tensorization
properties: If we let

P1:n = P1 × P2 × · · · × Pn, Q1:n = Q1 ×Q2 × · · · ×Qn,

then

D(P1:n || Q1:n) =
n∑
i=1

D(Pi || Qi),

1

2
H2(P1:n || Q1:n) = 1−

n∏
i=1

(
1− 1

2
H2(Pi || Qi)

)
.

Example 24.2 (Gaussian distribution). For a Gaussian distribution, we have the density

pθ =
1√

2πσ2
exp

(
−(x− θ)2

2σ2

)
, θ ∈ R.

The K-L divergence is

D(Pθ || Pθ′) =

∫
1√

2πσ2
exp

(
−(x− θ)2

2σ2

)
log

exp
(
− (x−θ)2

2σ2

)
exp

(
− (x−θ′)2

2σ2

) dx
= EX∼Pθ

[
−(X − θ)2

2σ2
+

(X − θ′)2

2σ2

]
=

(θ′)2

2σ2
− θ2

2σ2
+

1

σ2
EX∼Pθ [(θ − θ

′)X]

=
(θ′)2

2σ2
− θ2

2σ2
+

1

σ2
(θ − θ′)θ

=
(θ − θ′)2

2σ2
.

Using Pinsker’s inequality and the tensorization property of the K-L divergence,

‖Pnθ − Pnθ′‖TV ≤
√

1

2
D(Pnθ || Pnθ′)
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≤
√
n

2
D(Pθ || Pθ′)

≤
√
n(θ − θ′)2

4σ2
.

We can also calculate the Hellinger distance

H2(Pθ || Pθ′) = 1− exp

(
−(θ − θ)2

8σ2

)
.

More generally, for θ ∈ Rd and Pθ = N(θ, σ2Id), we get

D(pθ || pθ′) =
‖θ − θ‖22

2σ2
,

H2(Pθ || Pθ′) = 1− exp

(
−‖θ − θ‖

2
2

8σ2

)
.

157



25 Methods for Proving Minimax Lower Bounds

25.1 Recap: Testing lemma and divergence measures for minimax lower
bounds

We have been studying minimax lower bounds. We have a semi-meric ρ : Θ × Θ → R≥0

and a 2δ-separated set {θ1, . . . , θM} ⊆ Θ. In our testing situation, we have the joint
distribution

Q :

{
J ∼ Unif({1, 2, . . . ,M})
Z | J = j ∼ Pθj .

We have an increasing function Φ, as well. We proved the following result:

Proposition 25.1 (From estimation to testing). Let Ψ be increasing and {θ1, . . . , θM} be
2δ-separated for δ > 0. Then

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
ψ

Q(ψ(Z) 6= J).

We also defined the total variation distance the K-L divergence, and the Hellinger
distance

‖P−Q‖TV =
1

2

∫
X
|p(x)− q(x)| dx,

D(P || Q) =

∫
X
p(x) log

p(x)

q(x)
dx,

H2(P || Q)

∫
X

(
√
p(x)−

√
q(x))2 dx.

These had the following relationships:

‖P−Q‖TV ≤
√

1
2D(P || Q),

‖P−Q‖TV ≤
√

H2(P || Q)

√
1− H2(P || Q)

4︸ ︷︷ ︸
≤1

.

H2(P || Q) ≤ 1

2
D(P || Q).

25.2 Le Cam’s two points method

Take M = 2. Then J ∼ Unif({0, 1}), and Z | J = j ∼ Pj , and Q = 1
2P0 + 1

2P1. We claim
that

inf
ψ

Q(ψ(Z) 6= J) =
1

2
(1− ‖P0 − P1‖TV).
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Proof. For any ψ, we can find an A such that

ψ(x) =

{
1 x ∈ A
0 x ∈ Ac.

Then

Q(ψ(Z) = J) =
1

2
P1(A) +

1

2
P0(Ac)

=
1

2
(P1(A)− P0(A)) +

1

2
.

If we take the supremum over all ψ, we get

sup
ψ

Q(ψ(Z) = J) = sup
A

1

2
(P1(A)− P0(A)) +

1

2

=
1

2
‖P1 − P0‖TV +

1

2

The probability of the bad event is then

inf
ψ

Q(ψ(Z) 6= J) =
1

2
− 1

2
‖P1 − P0‖TV.

This gives the following theorem.

Theorem 25.1 (Le Cam’s two points lower bound). For all δ > 0 and P0,P1 ∈ P with
ρ(θ(P0), θ(P1)) ≥ 2δ,

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ)

2
(1− ‖P1 − P0‖TV).

For the generalization to Le Cam’s convex hull method, read chapter 15.2.2 in Wain-
wright’s textbook.

Example 25.1 (Gaussian location family, d = 1). Our model is P = {Pθ = N(θ, σ2) : θ ∈
R}, where σ is known. We have the semimetric ρ(θ′, θ)) = |θ′ − θ| and Φ(t) = t2. Our

sample is X1:n ∼ Pnθ . The true minimax risk is Mn = σ2

n . Here is a lower bound by Le
Cam’s method:

Consider P2δ and P0, so ρ(2δ, 0) ≥ 2δ. Then

Mn(θ(P); |θ − θ′|2) ≥ δ2

2
(1− ‖Pn2δ − Pn0‖TV),

where the n only appears in the bound as the fact that the measures are product measures.
We want to lower bound 1 − ‖Pn2δ − Pn0‖TV by 1/2. We have by Pinsker’s inequality and
the tensorization property of K-L divergence

‖Pn2δ − Pn0‖2TV ≤
1

2
D(Pn2δ || Pn0 )
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=
1

2
nD(P2δ || P0)

=
1

2
n

(2δ)2

2σ2

=
nδ2

σ2
.

Now choose nδ2n
σ2 = 1

2 , so δ2
n = σ2

2n . Then ‖Pn2δn −Pn0‖TV ≤ 1
2 , and we get the minimax lower

bound

Mn ≥
δ2
n

2
· 1

2
=

σ2

16n
.

Up to constants, this is sharp.

Here is the problem with Le Cam’s method. If we take θ ∈ Rd with Pθ = N(θ, σ2Id)
for d ≥ 2, then we will get the lower bound

Mn ≥
σ2

16n
,

even though the actual minimax risk is Mn = σ2 d
n .

25.3 Mutual information

Here, we will develop some tools for Fano’s method, which is a sharper method for lower
bounding the minimax risk. Suppose we have two random variables (X,Y ) ∼ PX,Y . We
want a measure of their dependence/independence (not the same as correlation). If X is
independent of Y , we have

PX,Y = PX × PY =

∫
Y
PX,Y (x, y) dy ×

∫
X
PX,Y (x, y) dx.

To get a measure of independence, we should look at the distance between these two
objects:

D

(
PX,Y ,

∫
Y
PX,Y (x, y) dy ×

∫
X
PX,Y (x, y) dx

)
.

Definition 25.1. The mutual information between X and Y is

I(X;Y ) := D(PX,Y || PX × PY ).

Remark 25.1. The mutual information is always ≥ 0. Although the K-L divergence is
not symmetric, we have I(X;Y ) = I(X;Y ).
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If X and Y are independent, I(X;Y ) = 0, and if Y = f(X), the mutual information is
maximized.

Recall that

Q :

{
J ∼ Unif({1, 2, . . . ,M})
Z | J = j ∼ Pθj .

Then

I(J ;Z) = D(Q2,J || Q2 ×QJ)

=
1

M

M∑
j=1

D(Pθj || baQ),

where

Q =
1

M

M∑
j=1

Pθj .

Suppose θj = θ for all j. Then I(J ;Z) = 0. Conversely, if the θj are far away from each
other, then I(J ;Z) will be large.

Here are two upper bounds of I(J ;Z) we will now prove:

Proposition 25.2.

I(J ;Z) ≤ 1

M2

M∑
j,k=1

D(Pθj || Pθk) ≤ max
j,k

D(Pθj || Pθk).

Lemma 25.1 (Yang-Barron’s bound). Let NKL(ε;P) be an ε-cover of P in
√
DKL. Then

I(Z; J) ≤ inf
ε>0

ε2 + logNKL(ε;P)

25.4 Fano’s inequality

Let

Q :

{
J ∼ Unif({1, 2, . . . ,M})
Z | J = j ∼ Pθj .

Lemma 25.2.

inf
ψ

Q(ψ(Z) 6= J) ≥ 1− I(Z; J) + log 2

logM
.

The proof is in Section 15.4 and requires some ideas such as the entropy. This does not
require any restriction on the Pθj . This lower bound gives us
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Proposition 25.3. Let {θ1, . . . , θM} be 2δ-separated in the semimetric ρ. Then

Mn(θ(P); Φ ◦ ρ) ≥ Φ(δ)

(
1− I(Z; J) + log 2

logM

)
.

When using this lower bound, we will find δn such that

1− I(Z; J) + log 2

logM
≥ 1

2
.

Then we will get

Mn ≥
1

2
Φ(δn).

So we need to upper bound I(Z; J).
A simple upper bound is given by

I(J ;Z) =
1

M

M∑
j=1

D(Pθj ||
1

M

M∑
`=1

Pθ`)

≤ 1

M2

M∑
j,`=1

D(Pθj || Pθ`)

Where we have used Jensens’s inequality to show that the K-L divergence is convex in the
second argument.

≤ max
j,`

D(Pθj || Pθ`)

Example 25.2 (Gaussian location family, d ≥ 2). Our model is P = {Pθ = n(θ, σ2Id) :
θ ∈ Rd}, where σ is known. Our semimetric is ρ(θ′, θ) = ‖θ′ − θ‖2 with Φ(t) = t2. The
true minimax risk is

Mn = inf
θ̂

sup
θ

E[‖θ̂ − θ‖22] = σ2 d

n
.

The lower bound by Fano’s method gives

Mn ≥ Φ(δ)

(
1− I(Z; J) + log 2

logM

)
≥ Φ(δ)

(
1−

maxj,kD(Pn
θj
|| Pn

θk
) + log 2

logM

)
Our goal is to find the largest δn,M, {θ1, . . . , θM} such that

(a) ‖θj − θk‖2 ≥ 2δn

(b)
maxj,kD(Pn

θj
|| Pn

θk
) + log 2

logM
≤ 1

2
.

162



Here is our construction: Let εn = σ
√

d
n and δn = 1

100εn = 1
100σ

√
d
n . Let {θ1, . . . , θM} be

a maximal 2δn packing of B(0, εn) = {θ ∈ Rd : θ‖2 ≤ εn}.

By a volume argument, we can get upper and lower bounds of M :

logM � d log

(
c
εn
δn

)
� c · d.

To upper bound the K-L divergence on top, we have

max
j,k

D(Pnθj || P
n
θk) = nmax

j,k
D(Pθj || Pθk)

= nmax
j,k

n‖θj − θk‖22
2σ2

≤ nε2
n

2σ2

= c · d

Our quantities only depend on the ratio between εn and δn, so we can adjust the constant
in front of δn to get the desired upper bound of 1

2 .
We then get

Mn ≥ Φ(δn)
1

2
=

1

2
·
(

1

100

)2

σ2 d

n
= cσ2 d

n
.

25.5 Yang-Barron’s method

The bound on I(J ;Z) by the max of the K-L divergences is generally only good when we
have a parametric problem. For nonparametric problems, we want to use a better bound.

Lemma 25.3 (Yang-Barron’s bound). Let NKL(ε;P) be an ε-cover of P in
√
DKL. Then

I(Z; J) ≤ inf
ε>0

ε2 + logNKL(ε;P)

To apply this bound, we have two steps:

1. Choose εn > 0 such that
ε2
n ≥ logNKL(εn;P).
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2. Choose the largest δn > 0 such that

logM(δn; ρ,Ω) ≥ 4ε2
n + 2 log 2.
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